MyArxiv
Computer Vision and Pattern Recognition 7
♻ ☆ RailSafeNet: Visual Scene Understanding for Tram Safety
Tram-human interaction safety is an important challenge, given that trams frequently operate in densely populated areas, where collisions can range from minor injuries to fatal outcomes. This paper addresses the issue from the perspective of designing a solution leveraging digital image processing, deep learning, and artificial intelligence to improve the safety of pedestrians, drivers, cyclists, pets, and tram passengers. We present RailSafeNet, a real-time framework that fuses semantic segmentation, object detection and a rule-based Distance Assessor to highlight track intrusions. Using only monocular video, the system identifies rails, localises nearby objects and classifies their risk by comparing projected distances with the standard 1435mm rail gauge. Experiments on the diverse RailSem19 dataset show that a class-filtered SegFormer B3 model achieves 65% intersection-over-union (IoU), while a fine-tuned YOLOv8 attains 75.6% mean average precision (mAP) calculated at an intersection over union (IoU) threshold of 0.50. RailSafeNet therefore delivers accurate, annotation-light scene understanding that can warn drivers before dangerous situations escalate. Code available at https://github.com/oValach/RailSafeNet.
comment: 11 pages, 5 figures, EPIA2025
♻ ☆ Enriched text-guided variational multimodal knowledge distillation network (VMD) for automated diagnosis of plaque vulnerability in 3D carotid artery MRI
Multimodal learning has attracted much attention in recent years due to its ability to effectively utilize data features from a variety of different modalities. Diagnosing the vulnerability of atherosclerotic plaques directly from carotid 3D MRI images is relatively challenging for both radiologists and conventional 3D vision networks. In clinical practice, radiologists assess patient conditions using a multimodal approach that incorporates various imaging modalities and domain-specific expertise, paving the way for the creation of multimodal diagnostic networks. In this paper, we have developed an effective strategy to leverage radiologists' domain knowledge to automate the diagnosis of carotid plaque vulnerability through Variation inference and Multimodal knowledge Distillation (VMD). This method excels in harnessing cross-modality prior knowledge from limited image annotations and radiology reports within training data, thereby enhancing the diagnostic network's accuracy for unannotated 3D MRI images. We conducted in-depth experiments on the dataset collected in-house and verified the effectiveness of the VMD strategy we proposed.
♻ ☆ MSMA: Multi-Scale Feature Fusion For Multi-Attribute 3D Face Reconstruction From Unconstrained Images
Reconstructing 3D face from a single unconstrained image remains a challenging problem due to diverse conditions in unconstrained environments. Recently, learning-based methods have achieved notable results by effectively capturing complex facial structures and details across varying conditions. Consequently, many existing approaches employ projection-based losses between generated and input images to constrain model training. However, learning-based methods for 3D face reconstruction typically require substantial amounts of 3D facial data, which is difficult and costly to obtain. Consequently, to reduce reliance on labeled 3D face datasets, many existing approaches employ projection-based losses between generated and input images to constrain model training. Nonetheless, despite these advancements, existing approaches frequently struggle to capture detailed and multi-scale features under diverse facial attributes and conditions, leading to incomplete or less accurate reconstructions. In this paper, we propose a Multi-Scale Feature Fusion with Multi-Attribute (MSMA) framework for 3D face reconstruction from unconstrained images. Our method integrates multi-scale feature fusion with a focus on multi-attribute learning and leverages a large-kernel attention module to enhance the precision of feature extraction across scales, enabling accurate 3D facial parameter estimation from a single 2D image. Comprehensive experiments on the MICC Florence, Facewarehouse and custom-collect datasets demonstrate that our approach achieves results on par with current state-of-the-art methods, and in some instances, surpasses SOTA performance across challenging conditions.
♻ ☆ DUAL-VAD: Dual Benchmarks and Anomaly-Focused Sampling for Video Anomaly Detection
Video Anomaly Detection (VAD) is critical for surveillance and public safety. However, existing benchmarks are limited to either frame-level or video-level tasks, restricting a holistic view of model generalization. This work first introduces a softmax-based frame allocation strategy that prioritizes anomaly-dense segments while maintaining full-video coverage, enabling balanced sampling across temporal scales. Building on this process, we construct two complementary benchmarks. The image-based benchmark evaluates frame-level reasoning with representative frames, while the video-based benchmark extends to temporally localized segments and incorporates an abnormality scoring task. Experiments on UCF-Crime demonstrate improvements at both the frame and video levels, and ablation studies confirm clear advantages of anomaly-focused sampling over uniform and random baselines.
comment: 6 pages in IEEE double-column format, 1 figure, 5 tables. The paper introduces a unified framework for Video Anomaly Detection (VAD) featuring dual benchmarks and an anomaly-focused sampling strategy
♻ ☆ Disentangling Content from Style to Overcome Shortcut Learning: A Hybrid Generative-Discriminative Learning Framework
Despite the remarkable success of Self-Supervised Learning (SSL), its generalization is fundamentally hindered by Shortcut Learning, where models exploit superficial features like texture instead of intrinsic structure. We experimentally verify this flaw within the generative paradigm (e.g., MAE) and argue it is a systemic issue also affecting discriminative methods, identifying it as the root cause of their failure on unseen domains. While existing methods often tackle this at a surface level by aligning or separating domain-specific features, they fail to alter the underlying learning mechanism that fosters shortcut dependency.To address this at its core, we propose HyGDL (Hybrid Generative-Discriminative Learning Framework), a hybrid framework that achieves explicit content-style disentanglement. Our approach is guided by the Invariance Pre-training Principle: forcing a model to learn an invariant essence by systematically varying a bias (e.g., style) at the input while keeping the supervision signal constant. HyGDL operates on a single encoder and analytically defines style as the component of a representation that is orthogonal to its style-invariant content, derived via vector projection. This is operationalized through a synergistic design: (1) a self-distillation objective learns a stable, style-invariant content direction; (2) an analytical projection then decomposes the representation into orthogonal content and style vectors; and (3) a style-conditioned reconstruction objective uses these vectors to restore the image, providing end-to-end supervision. Unlike prior methods that rely on implicit heuristics, this principled disentanglement allows HyGDL to learn truly robust representations, demonstrating superior performance on benchmarks designed to diagnose shortcut learning.
♻ ☆ SFGNet: Semantic and Frequency Guided Network for Camouflaged Object Detection ICASSP 2026
Camouflaged object detection (COD) aims to segment objects that blend into their surroundings. However, most existing studies overlook the semantic differences among textual prompts of different targets as well as fine-grained frequency features. In this work, we propose a novel Semantic and Frequency Guided Network (SFGNet), which incorporates semantic prompts and frequency-domain features to capture camouflaged objects and improve boundary perception. We further design Multi-Band Fourier Module(MBFM) to enhance the ability of the network in handling complex backgrounds and blurred boundaries. In addition, we design an Interactive Structure Enhancement Block (ISEB) to ensure structural integrity and boundary details in the predictions. Extensive experiments conducted on three COD benchmark datasets demonstrate that our method significantly outperforms state-of-the-art approaches. The core code of the model is available at the following link: https://github.com/winter794444/SFGNetICASSP2026.
comment: Submitted to ICASSP 2026 by Dezhen Wang et al. Copyright 2026 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, including reprinting/republishing, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work. DOI will be added upon IEEE Xplore publication
♻ ☆ Leveraging Geometric Priors for Unaligned Scene Change Detection
Unaligned Scene Change Detection aims to detect scene changes between image pairs captured at different times without assuming viewpoint alignment. To handle viewpoint variations, current methods rely solely on 2D visual cues to establish cross-image correspondence to assist change detection. However, large viewpoint changes can alter visual observations, causing appearance-based matching to drift or fail. Additionally, supervision limited to 2D change masks from small-scale SCD datasets restricts the learning of generalizable multi-view knowledge, making it difficult to reliably identify visual overlaps and handle occlusions. This lack of explicit geometric reasoning represents a critical yet overlooked limitation. In this work, we introduce geometric priors for the first time to address the core challenges of unaligned SCD, for reliable identification of visual overlaps, robust correspondence establishment, and explicit occlusion detection. Building on these priors, we propose a training-free framework that integrates them with the powerful representations of a visual foundation model to enable reliable change detection under viewpoint misalignment. Through extensive evaluation on the PSCD, ChangeSim, and PASLCD datasets, we demonstrate that our approach achieves superior and robust performance. Our code will be released at https://github.com/ZilingLiu/GeoSCD.
Machine Learning 3
♻ ☆ MillStone: How Open-Minded Are LLMs?
Large language models equipped with Web search, information retrieval tools, and other agentic capabilities are beginning to supplant traditional search engines. As users start to rely on LLMs for information on many topics, including controversial and debatable issues, it is important to understand how the stances and opinions expressed in LLM outputs are influenced by the documents they use as their information sources. In this paper, we present MillStone, the first benchmark that aims to systematically measure the effect of external arguments on the stances that LLMs take on controversial issues (not all of them political). We apply MillStone to nine leading LLMs and measure how ``open-minded'' they are to arguments supporting opposite sides of these issues, whether different LLMs agree with each other, which arguments LLMs find most persuasive, and whether these arguments are the same for different LLMs. In general, we find that LLMs are open-minded on most issues. An authoritative source of information can easily sway an LLM's stance, highlighting the importance of source selection and the risk that LLM-based information retrieval and search systems can be manipulated.
comment: 19 pages, 7 tables, 7 figures
♻ ☆ Vendi Information Gain for Active Learning and its Application to Ecology
While monitoring biodiversity through camera traps has become an important endeavor for ecological research, identifying species in the captured image data remains a major bottleneck due to limited labeling resources. Active learning -- a machine learning paradigm that selects the most informative data to label and train a predictive model -- offers a promising solution, but typically focuses on uncertainty in the individual predictions without considering uncertainty across the entire dataset. We introduce a new active learning policy, Vendi information gain (VIG), that selects images based on their impact on dataset-wide prediction uncertainty, capturing both informativeness and diversity. We applied VIG to the Snapshot Serengeti dataset and compared it against common active learning methods. VIG needs only 3% of the available data to reach 75% accuracy, a level that baselines require more than 10% of the data to achieve. With 10% of the data, VIG attains 88% predictive accuracy, 12% higher than the best of the baselines. This improvement in performance is consistent across metrics and batch sizes, and we show that VIG also collects more diverse data in the feature space. VIG has broad applicability beyond ecology, and our results highlight its value for biodiversity monitoring in data-limited environments.
♻ ☆ Disentangling Content from Style to Overcome Shortcut Learning: A Hybrid Generative-Discriminative Learning Framework
Despite the remarkable success of Self-Supervised Learning (SSL), its generalization is fundamentally hindered by Shortcut Learning, where models exploit superficial features like texture instead of intrinsic structure. We experimentally verify this flaw within the generative paradigm (e.g., MAE) and argue it is a systemic issue also affecting discriminative methods, identifying it as the root cause of their failure on unseen domains. While existing methods often tackle this at a surface level by aligning or separating domain-specific features, they fail to alter the underlying learning mechanism that fosters shortcut dependency.To address this at its core, we propose HyGDL (Hybrid Generative-Discriminative Learning Framework), a hybrid framework that achieves explicit content-style disentanglement. Our approach is guided by the Invariance Pre-training Principle: forcing a model to learn an invariant essence by systematically varying a bias (e.g., style) at the input while keeping the supervision signal constant. HyGDL operates on a single encoder and analytically defines style as the component of a representation that is orthogonal to its style-invariant content, derived via vector projection. This is operationalized through a synergistic design: (1) a self-distillation objective learns a stable, style-invariant content direction; (2) an analytical projection then decomposes the representation into orthogonal content and style vectors; and (3) a style-conditioned reconstruction objective uses these vectors to restore the image, providing end-to-end supervision. Unlike prior methods that rely on implicit heuristics, this principled disentanglement allows HyGDL to learn truly robust representations, demonstrating superior performance on benchmarks designed to diagnose shortcut learning.
Computer Vision and Pattern Recognition 133
☆ Character-Centric Understanding of Animated Movies
Animated movies are captivating for their unique character designs and imaginative storytelling, yet they pose significant challenges for existing recognition systems. Unlike the consistent visual patterns detected by conventional face recognition methods, animated characters exhibit extreme diversity in their appearance, motion, and deformation. In this work, we propose an audio-visual pipeline to enable automatic and robust animated character recognition, and thereby enhance character-centric understanding of animated movies. Central to our approach is the automatic construction of an audio-visual character bank from online sources. This bank contains both visual exemplars and voice (audio) samples for each character, enabling subsequent multi-modal character recognition despite long-tailed appearance distributions. Building on accurate character recognition, we explore two downstream applications: Audio Description (AD) generation for visually impaired audiences, and character-aware subtitling for the hearing impaired. To support research in this domain, we introduce CMD-AM, a new dataset of 75 animated movies with comprehensive annotations. Our character-centric pipeline demonstrates significant improvements in both accessibility and narrative comprehension for animated content over prior face-detection-based approaches. For the code and dataset, visit https://www.robots.ox.ac.uk/~vgg/research/animated_ad/.
☆ LazyDrag: Enabling Stable Drag-Based Editing on Multi-Modal Diffusion Transformers via Explicit Correspondence
The reliance on implicit point matching via attention has become a core bottleneck in drag-based editing, resulting in a fundamental compromise on weakened inversion strength and costly test-time optimization (TTO). This compromise severely limits the generative capabilities of diffusion models, suppressing high-fidelity inpainting and text-guided creation. In this paper, we introduce LazyDrag, the first drag-based image editing method for Multi-Modal Diffusion Transformers, which directly eliminates the reliance on implicit point matching. In concrete terms, our method generates an explicit correspondence map from user drag inputs as a reliable reference to boost the attention control. This reliable reference opens the potential for a stable full-strength inversion process, which is the first in the drag-based editing task. It obviates the necessity for TTO and unlocks the generative capability of models. Therefore, LazyDrag naturally unifies precise geometric control with text guidance, enabling complex edits that were previously out of reach: opening the mouth of a dog and inpainting its interior, generating new objects like a ``tennis ball'', or for ambiguous drags, making context-aware changes like moving a hand into a pocket. Additionally, LazyDrag supports multi-round workflows with simultaneous move and scale operations. Evaluated on the DragBench, our method outperforms baselines in drag accuracy and perceptual quality, as validated by VIEScore and human evaluation. LazyDrag not only establishes new state-of-the-art performance, but also paves a new way to editing paradigms.
☆ OmniWorld: A Multi-Domain and Multi-Modal Dataset for 4D World Modeling
The field of 4D world modeling - aiming to jointly capture spatial geometry and temporal dynamics - has witnessed remarkable progress in recent years, driven by advances in large-scale generative models and multimodal learning. However, the development of truly general 4D world models remains fundamentally constrained by the availability of high-quality data. Existing datasets and benchmarks often lack the dynamic complexity, multi-domain diversity, and spatial-temporal annotations required to support key tasks such as 4D geometric reconstruction, future prediction, and camera-control video generation. To address this gap, we introduce OmniWorld, a large-scale, multi-domain, multi-modal dataset specifically designed for 4D world modeling. OmniWorld consists of a newly collected OmniWorld-Game dataset and several curated public datasets spanning diverse domains. Compared with existing synthetic datasets, OmniWorld-Game provides richer modality coverage, larger scale, and more realistic dynamic interactions. Based on this dataset, we establish a challenging benchmark that exposes the limitations of current state-of-the-art (SOTA) approaches in modeling complex 4D environments. Moreover, fine-tuning existing SOTA methods on OmniWorld leads to significant performance gains across 4D reconstruction and video generation tasks, strongly validating OmniWorld as a powerful resource for training and evaluation. We envision OmniWorld as a catalyst for accelerating the development of general-purpose 4D world models, ultimately advancing machines' holistic understanding of the physical world.
comment: https://yangzhou24.github.io/OmniWorld/
☆ 3D Human Pose and Shape Estimation from LiDAR Point Clouds: A Review
In this paper, we present a comprehensive review of 3D human pose estimation and human mesh recovery from in-the-wild LiDAR point clouds. We compare existing approaches across several key dimensions, and propose a structured taxonomy to classify these methods. Following this taxonomy, we analyze each method's strengths, limitations, and design choices. In addition, (i) we perform a quantitative comparison of the three most widely used datasets, detailing their characteristics; (ii) we compile unified definitions of all evaluation metrics; and (iii) we establish benchmark tables for both tasks on these datasets to enable fair comparisons and promote progress in the field. We also outline open challenges and research directions critical for advancing LiDAR-based 3D human understanding. Moreover, we maintain an accompanying webpage that organizes papers according to our taxonomy and continuously update it with new studies: https://github.com/valeoai/3D-Human-Pose-Shape-Estimation-from-LiDAR
☆ Advancing Medical Artificial Intelligence Using a Century of Cases
BACKGROUND: For over a century, the New England Journal of Medicine Clinicopathological Conferences (CPCs) have tested the reasoning of expert physicians and, recently, artificial intelligence (AI). However, prior AI evaluations have focused on final diagnoses without addressing the multifaceted reasoning and presentation skills required of expert discussants. METHODS: Using 7102 CPCs (1923-2025) and 1021 Image Challenges (2006-2025), we conducted extensive physician annotation and automated processing to create CPC-Bench, a physician-validated benchmark spanning 10 text-based and multimodal tasks, against which we evaluated leading large language models (LLMs). Then, we developed "Dr. CaBot," an AI discussant designed to produce written and slide-based video presentations using only the case presentation, modeling the role of the human expert in these cases. RESULTS: When challenged with 377 contemporary CPCs, o3 (OpenAI) ranked the final diagnosis first in 60% of cases and within the top ten in 84% of cases, outperforming a 20-physician baseline; next-test selection accuracy reached 98%. Event-level physician annotations quantified AI diagnostic accuracy per unit of information. Performance was lower on literature search and image tasks; o3 and Gemini 2.5 Pro (Google) achieved 67% accuracy on image challenges. In blinded comparisons of CaBot vs. human expert-generated text, physicians misclassified the source of the differential in 46 of 62 (74%) of trials, and scored CaBot more favorably across quality dimensions. To promote research, we are releasing CaBot and CPC-Bench. CONCLUSIONS: LLMs exceed physician performance on complex text-based differential diagnosis and convincingly emulate expert medical presentations, but image interpretation and literature retrieval remain weaker. CPC-Bench and CaBot may enable transparent and continued tracking of progress in medical AI.
☆ Domain-Adaptive Pretraining Improves Primate Behavior Recognition CVPR 2025
Computer vision for animal behavior offers promising tools to aid research in ecology, cognition, and to support conservation efforts. Video camera traps allow for large-scale data collection, but high labeling costs remain a bottleneck to creating large-scale datasets. We thus need data-efficient learning approaches. In this work, we show that we can utilize self-supervised learning to considerably improve action recognition on primate behavior. On two datasets of great ape behavior (PanAf and ChimpACT), we outperform published state-of-the-art action recognition models by 6.1 %pt. accuracy and 6.3 %pt. mAP, respectively. We achieve this by utilizing a pretrained V-JEPA model and applying domain-adaptive pretraining (DAP), i.e. continuing the pretraining with in-domain data. We show that most of the performance gain stems from the DAP. Our method promises great potential for improving the recognition of animal behavior, as DAP does not require labeled samples. Code is available at https://github.com/ecker-lab/dap-behavior
comment: Oral at the CVPR 2025 Workshop CV4Animals
☆ HoloGarment: 360° Novel View Synthesis of In-the-Wild Garments
Novel view synthesis (NVS) of in-the-wild garments is a challenging task due significant occlusions, complex human poses, and cloth deformations. Prior methods rely on synthetic 3D training data consisting of mostly unoccluded and static objects, leading to poor generalization on real-world clothing. In this paper, we propose HoloGarment (Hologram-Garment), a method that takes 1-3 images or a continuous video of a person wearing a garment and generates 360{\deg} novel views of the garment in a canonical pose. Our key insight is to bridge the domain gap between real and synthetic data with a novel implicit training paradigm leveraging a combination of large-scale real video data and small-scale synthetic 3D data to optimize a shared garment embedding space. During inference, the shared embedding space further enables dynamic video-to-360{\deg} NVS through the construction of a garment "atlas" representation by finetuning a garment embedding on a specific real-world video. The atlas captures garment-specific geometry and texture across all viewpoints, independent of body pose or motion. Extensive experiments show that HoloGarment achieves state-of-the-art performance on NVS of in-the-wild garments from images and videos. Notably, our method robustly handles challenging real-world artifacts -- such as wrinkling, pose variation, and occlusion -- while maintaining photorealism, view consistency, fine texture details, and accurate geometry. Visit our project page for additional results: https://johannakarras.github.io/HoloGarment
☆ LoRA-fine-tuned Large Vision Models for Automated Assessment of Post-SBRT Lung Injury
This study investigates the efficacy of Low-Rank Adaptation (LoRA) for fine-tuning large Vision Models, DinoV2 and SwinV2, to diagnose Radiation-Induced Lung Injury (RILI) from X-ray CT scans following Stereotactic Body Radiation Therapy (SBRT). To evaluate the robustness and efficiency of this approach, we compare LoRA with traditional full fine-tuning and inference-only (no fine-tuning) methods. Cropped images of two sizes (50 mm3 and 75 mm3), centered at the treatment isocenter, in addition to different adaptation techniques for adapting the 2D LVMs for 3D data were used to determine the sensitivity of the models to spatial context. Experimental results show that LoRA achieves comparable or superior performance to traditional fine-tuning while significantly reducing computational costs and training times by requiring fewer trainable parameters.
comment: 5 pages, 5 figures
☆ Multi Anatomy X-Ray Foundation Model
X-ray imaging is a ubiquitous in radiology, yet most existing AI foundation models are limited to chest anatomy and fail to generalize across broader clinical tasks. In this work, we introduce XR-0, the multi-anatomy X-ray foundation model using self-supervised learning on a large, private dataset of 1.15 million images spanning diverse anatomical regions and evaluated across 12 datasets and 20 downstream tasks, including classification, retrieval, segmentation, localization, visual grounding, and report generation. XR-0 achieves state-of-the-art performance on most multi-anatomy tasks and remains competitive on chest-specific benchmarks. Our results demonstrate that anatomical diversity and supervision are critical for building robust, general-purpose medical vision models, paving the way for scalable and adaptable AI systems in radiology.
comment: This work has been submitted to the IEEE for possible publication
☆ Open-ended Hierarchical Streaming Video Understanding with Vision Language Models
We introduce Hierarchical Streaming Video Understanding, a task that combines online temporal action localization with free-form description generation. Given the scarcity of datasets with hierarchical and fine-grained temporal annotations, we demonstrate that LLMs can effectively group atomic actions into higher-level events, enriching existing datasets. We then propose OpenHOUSE (Open-ended Hierarchical Online Understanding System for Events), which extends streaming action perception beyond action classification. OpenHOUSE features a specialized streaming module that accurately detects boundaries between closely adjacent actions, nearly doubling the performance of direct extensions of existing methods. We envision the future of streaming action perception in the integration of powerful generative models, with OpenHOUSE representing a key step in that direction.
comment: 17 pages
☆ 3DViT-GAT: A Unified Atlas-Based 3D Vision Transformer and Graph Learning Framework for Major Depressive Disorder Detection Using Structural MRI Data
Major depressive disorder (MDD) is a prevalent mental health condition that negatively impacts both individual well-being and global public health. Automated detection of MDD using structural magnetic resonance imaging (sMRI) and deep learning (DL) methods holds increasing promise for improving diagnostic accuracy and enabling early intervention. Most existing methods employ either voxel-level features or handcrafted regional representations built from predefined brain atlases, limiting their ability to capture complex brain patterns. This paper develops a unified pipeline that utilizes Vision Transformers (ViTs) for extracting 3D region embeddings from sMRI data and Graph Neural Network (GNN) for classification. We explore two strategies for defining regions: (1) an atlas-based approach using predefined structural and functional brain atlases, and (2) an cube-based method by which ViTs are trained directly to identify regions from uniformly extracted 3D patches. Further, cosine similarity graphs are generated to model interregional relationships, and guide GNN-based classification. Extensive experiments were conducted using the REST-meta-MDD dataset to demonstrate the effectiveness of our model. With stratified 10-fold cross-validation, the best model obtained 78.98% accuracy, 76.54% sensitivity, 81.58% specificity, 81.58% precision, and 78.98% F1-score. Further, atlas-based models consistently outperformed the cube-based approach, highlighting the importance of using domain-specific anatomical priors for MDD detection.
comment: 14 pages, 1 figure, 7 tables
☆ Look Again, Think Slowly: Enhancing Visual Reflection in Vision-Language Models EMNLP2025
Recent advances in text-only "slow-thinking" reasoning have prompted efforts to transfer this capability to vision-language models (VLMs), for training visual reasoning models (\textbf{VRMs}). owever, such transfer faces critical challenges: Effective "slow thinking" in VRMs requires \textbf{visual reflection}, the ability to check the reasoning process based on visual information. Through quantitative analysis, we observe that current VRMs exhibit limited visual reflection, as their attention to visual information diminishes rapidly with longer generated responses. To address this challenge, we propose a new VRM \textbf{Reflection-V}, which enhances visual reflection based on reasoning data construction for cold-start and reward design for reinforcement learning (RL). Firstly, we construct vision-centered reasoning data by leveraging an agent that interacts between VLMs and reasoning LLMs, enabling cold-start learning of visual reflection patterns. Secondly, a visual attention based reward model is employed during RL to encourage reasoning based on visual information. Therefore, \textbf{Reflection-V} demonstrates significant improvements across multiple visual reasoning benchmarks. Furthermore, \textbf{Reflection-V} maintains a stronger and more consistent reliance on visual information during visual reasoning, indicating effective enhancement in visual reflection capabilities.
comment: EMNLP2025 Main
☆ FS-SAM2: Adapting Segment Anything Model 2 for Few-Shot Semantic Segmentation via Low-Rank Adaptation
Few-shot semantic segmentation has recently attracted great attention. The goal is to develop a model capable of segmenting unseen classes using only a few annotated samples. Most existing approaches adapt a pre-trained model by training from scratch an additional module. Achieving optimal performance with these approaches requires extensive training on large-scale datasets. The Segment Anything Model 2 (SAM2) is a foundational model for zero-shot image and video segmentation with a modular design. In this paper, we propose a Few-Shot segmentation method based on SAM2 (FS-SAM2), where SAM2's video capabilities are directly repurposed for the few-shot task. Moreover, we apply a Low-Rank Adaptation (LoRA) to the original modules in order to handle the diverse images typically found in standard datasets, unlike the temporally connected frames used in SAM2's pre-training. With this approach, only a small number of parameters is meta-trained, which effectively adapts SAM2 while benefiting from its impressive segmentation performance. Our method supports any K-shot configuration. We evaluate FS-SAM2 on the PASCAL-5$^i$, COCO-20$^i$ and FSS-1000 datasets, achieving remarkable results and demonstrating excellent computational efficiency during inference. Code is available at https://github.com/fornib/FS-SAM2
comment: Accepted at ICIAP 2025
☆ End-to-End 4D Heart Mesh Recovery Across Full-Stack and Sparse Cardiac MRI
Reconstructing cardiac motion from cine CMR sequences is critical for diagnosis, prediction, and intervention. Existing methods rely on complete CMR stacks to infer full heart motion, limiting their utility in intra-procedural scenarios where only sparse observations are available. We present TetHeart, the first end-to-end framework that unifies full 4D multi-structure heart mesh recovery from both offline full-stack acquisitions and intra-procedural sparse-slice observations. Our method leverages deep deformable tetrahedra, an explicit-implicit hybrid representation, to capture shape and motion in a coherent space shared across cardiac structures. It is initialized from high-quality pre-procedural or offline-acquired full stacks to build detailed, patient-specific heart meshes, which can then be updated using whatever slices are available, from full stacks down to a single slice. We further incorporate several key innovations: (i) an attentive mechanism for slice-adaptive 2D-3D feature assembly that dynamically integrates information from arbitrary numbers of slices at any position, combined with a distillation strategy from full-slice to sparse-slice settings to ensure accurate reconstruction under extreme sparsity; and (ii) a two-stage weakly supervised motion learning scheme requiring only keyframe (e.g., ED and ES) annotations. Trained and validated on three large public datasets and externally evaluated zero-shot on additional private interventional and public CMR datasets, TetHeart achieves state-of-the-art accuracy and strong generalization in both pre- and intra-procedural settings.
☆ Progressive Flow-inspired Unfolding for Spectral Compressive Imaging
Coded aperture snapshot spectral imaging (CASSI) retrieves a 3D hyperspectral image (HSI) from a single 2D compressed measurement, which is a highly challenging reconstruction task. Recent deep unfolding networks (DUNs), empowered by explicit data-fidelity updates and implicit deep denoisers, have achieved the state of the art in CASSI reconstruction. However, existing unfolding approaches suffer from uncontrollable reconstruction trajectories, leading to abrupt quality jumps and non-gradual refinement across stages. Inspired by diffusion trajectories and flow matching, we propose a novel trajectory-controllable unfolding framework that enforces smooth, continuous optimization paths from noisy initial estimates to high-quality reconstructions. To achieve computational efficiency, we design an efficient spatial-spectral Transformer tailored for hyperspectral reconstruction, along with a frequency-domain fusion module to gurantee feature consistency. Experiments on simulation and real data demonstrate that our method achieves better reconstruction quality and efficiency than prior state-of-the-art approaches.
☆ Early Detection of Branched Broomrape (Phelipanche ramosa) Infestation in Tomato Crops Using Leaf Spectral Analysis and Machine Learning
Branched broomrape (Phelipanche ramosa) is a chlorophyll-deficient parasitic weed that threatens tomato production by extracting nutrients from the host. We investigate early detection using leaf-level spectral reflectance (400-2500 nm) and ensemble machine learning. In a field experiment in Woodland, California, we tracked 300 tomato plants across growth stages defined by growing degree days (GDD). Leaf reflectance was acquired with a portable spectrometer and preprocessed (band denoising, 1 nm interpolation, Savitzky-Golay smoothing, correlation-based band reduction). Clear class differences were observed near 1500 nm and 2000 nm water absorption features, consistent with reduced leaf water content in infected plants at early stages. An ensemble combining Random Forest, XGBoost, SVM with RBF kernel, and Naive Bayes achieved 89% accuracy at 585 GDD, with recalls of 0.86 (infected) and 0.93 (noninfected). Accuracy declined at later stages (e.g., 69% at 1568 GDD), likely due to senescence and weed interference. Despite the small number of infected plants and environmental confounders, results show that proximal sensing with ensemble learning enables timely detection of broomrape before canopy symptoms are visible, supporting targeted interventions and reduced yield losses.
comment: Author-accepted version. Accepted and presented at AGRICONTROL 2025 (8th IFAC Conference on Sensing, Control and Automation Technologies for Agriculture), UC Davis, USA. To appear in IFAC-PapersOnLine (Elsevier)
☆ U-Mamba2: Scaling State Space Models for Dental Anatomy Segmentation in CBCT
Cone-Beam Computed Tomography (CBCT) is a widely used 3D imaging technique in dentistry, providing volumetric information about the anatomical structures of jaws and teeth. Accurate segmentation of these anatomies is critical for clinical applications such as diagnosis and surgical planning, but remains time-consuming and challenging. In this paper, we present U-Mamba2, a new neural network architecture designed for multi-anatomy CBCT segmentation in the context of the ToothFairy3 challenge. U-Mamba2 integrates the Mamba2 state space models into the U-Net architecture, enforcing stronger structural constraints for higher efficiency without compromising performance. In addition, we integrate interactive click prompts with cross-attention blocks, pre-train U-Mamba2 using self-supervised learning, and incorporate dental domain knowledge into the model design to address key challenges of dental anatomy segmentation in CBCT. Extensive experiments, including independent tests, demonstrate that U-Mamba2 is both effective and efficient, securing top 3 places in both tasks of the Toothfairy3 challenge. In Task 1, U-Mamba2 achieved a mean Dice of 0.792, HD95 of 93.19 with the held-out test data, with an average inference time of XX (TBC during the ODIN workshop). In Task 2, U-Mamba2 achieved the mean Dice of 0.852 and HD95 of 7.39 with the held-out test data. The code is publicly available at https://github.com/zhiqin1998/UMamba2.
☆ End-to-End Learning of Multi-Organ Implicit Surfaces from 3D Medical Imaging Data
The fine-grained surface reconstruction of different organs from 3D medical imaging can provide advanced diagnostic support and improved surgical planning. However, the representation of the organs is often limited by the resolution, with a detailed higher resolution requiring more memory and computing footprint. Implicit representations of objects have been proposed to alleviate this problem in general computer vision by providing compact and differentiable functions to represent the 3D object shapes. However, architectural and data-related differences prevent the direct application of these methods to medical images. This work introduces ImplMORe, an end-to-end deep learning method using implicit surface representations for multi-organ reconstruction from 3D medical images. ImplMORe incorporates local features using a 3D CNN encoder and performs multi-scale interpolation to learn the features in the continuous domain using occupancy functions. We apply our method for single and multiple organ reconstructions using the totalsegmentator dataset. By leveraging the continuous nature of occupancy functions, our approach outperforms the discrete explicit representation based surface reconstruction approaches, providing fine-grained surface details of the organ at a resolution higher than the given input image. The source code will be made publicly available at: https://github.com/CAMMA-public/ImplMORe
☆ Robust Fetal Pose Estimation across Gestational Ages via Cross-Population Augmentation MICCAI 2025
Fetal motion is a critical indicator of neurological development and intrauterine health, yet its quantification remains challenging, particularly at earlier gestational ages (GA). Current methods track fetal motion by predicting the location of annotated landmarks on 3D echo planar imaging (EPI) time-series, primarily in third-trimester fetuses. The predicted landmarks enable simplification of the fetal body for downstream analysis. While these methods perform well within their training age distribution, they consistently fail to generalize to early GAs due to significant anatomical changes in both mother and fetus across gestation, as well as the difficulty of obtaining annotated early GA EPI data. In this work, we develop a cross-population data augmentation framework that enables pose estimation models to robustly generalize to younger GA clinical cohorts using only annotated images from older GA cohorts. Specifically, we introduce a fetal-specific augmentation strategy that simulates the distinct intrauterine environment and fetal positioning of early GAs. Our experiments find that cross-population augmentation yields reduced variability and significant improvements across both older GA and challenging early GA cases. By enabling more reliable pose estimation across gestation, our work potentially facilitates early clinical detection and intervention in challenging 4D fetal imaging settings. Code is available at https://github.com/sebodiaz/cross-population-pose.
comment: Accepted MICCAI 2025
☆ AvatarSync: Rethinking Talking-Head Animation through Autoregressive Perspective
Existing talking-head animation approaches based on Generative Adversarial Networks (GANs) or diffusion models often suffer from inter-frame flicker, identity drift, and slow inference. These limitations inherent to their video generation pipelines restrict their suitability for applications. To address this, we introduce AvatarSync, an autoregressive framework on phoneme representations that generates realistic and controllable talking-head animations from a single reference image, driven directly text or audio input. In addition, AvatarSync adopts a two-stage generation strategy, decoupling semantic modeling from visual dynamics, which is a deliberate "Divide and Conquer" design. The first stage, Facial Keyframe Generation (FKG), focuses on phoneme-level semantic representation by leveraging the many-to-one mapping from text or audio to phonemes. A Phoneme-to-Visual Mapping is constructed to anchor abstract phonemes to character-level units. Combined with a customized Text-Frame Causal Attention Mask, the keyframes are generated. The second stage, inter-frame interpolation, emphasizes temporal coherence and visual smoothness. We introduce a timestamp-aware adaptive strategy based on a selective state space model, enabling efficient bidirectional context reasoning. To support deployment, we optimize the inference pipeline to reduce latency without compromising visual fidelity. Extensive experiments show that AvatarSync outperforms existing talking-head animation methods in visual fidelity, temporal consistency, and computational efficiency, providing a scalable and controllable solution.
☆ A Computer Vision Pipeline for Individual-Level Behavior Analysis: Benchmarking on the Edinburgh Pig Dataset
Animal behavior analysis plays a crucial role in understanding animal welfare, health status, and productivity in agricultural settings. However, traditional manual observation methods are time-consuming, subjective, and limited in scalability. We present a modular pipeline that leverages open-sourced state-of-the-art computer vision techniques to automate animal behavior analysis in a group housing environment. Our approach combines state-of-the-art models for zero-shot object detection, motion-aware tracking and segmentation, and advanced feature extraction using vision transformers for robust behavior recognition. The pipeline addresses challenges including animal occlusions and group housing scenarios as demonstrated in indoor pig monitoring. We validated our system on the Edinburgh Pig Behavior Video Dataset for multiple behavioral tasks. Our temporal model achieved 94.2% overall accuracy, representing a 21.2 percentage point improvement over existing methods. The pipeline demonstrated robust tracking capabilities with 93.3% identity preservation score and 89.3% object detection precision. The modular design suggests potential for adaptation to other contexts, though further validation across species would be required. The open-source implementation provides a scalable solution for behavior monitoring, contributing to precision pig farming and welfare assessment through automated, objective, and continuous analysis.
comment: 9 figures, Submitted to Computers and Electronics in Agriculture
☆ Layout-Conditioned Autoregressive Text-to-Image Generation via Structured Masking
While autoregressive (AR) models have demonstrated remarkable success in image generation, extending them to layout-conditioned generation remains challenging due to the sparse nature of layout conditions and the risk of feature entanglement. We present Structured Masking for AR-based Layout-to-Image (SMARLI), a novel framework for layoutto-image generation that effectively integrates spatial layout constraints into AR-based image generation. To equip AR model with layout control, a specially designed structured masking strategy is applied to attention computation to govern the interaction among the global prompt, layout, and image tokens. This design prevents mis-association between different regions and their descriptions while enabling sufficient injection of layout constraints into the generation process. To further enhance generation quality and layout accuracy, we incorporate Group Relative Policy Optimization (GRPO) based post-training scheme with specially designed layout reward functions for next-set-based AR models. Experimental results demonstrate that SMARLI is able to seamlessly integrate layout tokens with text and image tokens without compromising generation quality. It achieves superior layoutaware control while maintaining the structural simplicity and generation efficiency of AR models.
comment: 10 pages, 3 figures
☆ Exploring Efficient Open-Vocabulary Segmentation in the Remote Sensing
Open-Vocabulary Remote Sensing Image Segmentation (OVRSIS), an emerging task that adapts Open-Vocabulary Segmentation (OVS) to the remote sensing (RS) domain, remains underexplored due to the absence of a unified evaluation benchmark and the domain gap between natural and RS images. To bridge these gaps, we first establish a standardized OVRSIS benchmark (\textbf{OVRSISBench}) based on widely-used RS segmentation datasets, enabling consistent evaluation across methods. Using this benchmark, we comprehensively evaluate several representative OVS/OVRSIS models and reveal their limitations when directly applied to remote sensing scenarios. Building on these insights, we propose \textbf{RSKT-Seg}, a novel open-vocabulary segmentation framework tailored for remote sensing. RSKT-Seg integrates three key components: (1) a Multi-Directional Cost Map Aggregation (RS-CMA) module that captures rotation-invariant visual cues by computing vision-language cosine similarities across multiple directions; (2) an Efficient Cost Map Fusion (RS-Fusion) transformer, which jointly models spatial and semantic dependencies with a lightweight dimensionality reduction strategy; and (3) a Remote Sensing Knowledge Transfer (RS-Transfer) module that injects pre-trained knowledge and facilitates domain adaptation via enhanced upsampling. Extensive experiments on the benchmark show that RSKT-Seg consistently outperforms strong OVS baselines by +3.8 mIoU and +5.9 mACC, while achieving 2x faster inference through efficient aggregation. Our code is \href{https://github.com/LiBingyu01/RSKT-Seg}{\textcolor{blue}{here}}.
☆ RAM++: Robust Representation Learning via Adaptive Mask for All-in-One Image Restoration
This work presents Robust Representation Learning via Adaptive Mask (RAM++), a two-stage framework for all-in-one image restoration. RAM++ integrates high-level semantic understanding with low-level texture generation to achieve content-oriented robust restoration. It addresses the limitations of existing degradation-oriented methods in extreme scenarios (e.g., degradations strongly coupled with image structures). RAM++ also mitigates common challenges such as unbalanced performance across tasks, overfitting to seen degradations, and weak generalization to unseen ones through three key designs: 1) Adaptive Semantic-Aware Mask (AdaSAM): a pretraining strategy that applies pixel-level masks to semantically rich and textured regions. This design enables the network to learn both generative priors and image content priors from various degradations. 2) Mask Attribute Conductance (MAC): a selective fine-tuning strategy that adjusts the layers with higher contributions to bridge the integrity gap between masked pretraining and full-image fine-tuning while retaining learned priors. 3) Robust Feature Regularization (RFR): a strategy that leverages DINOv2's semantically consistent and degradation-invariant representations, together with efficient feature fusion, to achieve faithful and semantically coherent restoration. With these designs, RAM++ achieves robust, well-balanced, and state-of-the-art performance across seen, unseen, extreme, and mixed degradations. Our code and model will be released at https://github.com/DragonisCV/RAM
comment: 18 pages, 22 figures
☆ Robust Concept Erasure in Diffusion Models: A Theoretical Perspective on Security and Robustness
Diffusion models have achieved unprecedented success in image generation but pose increasing risks in terms of privacy, fairness, and security. A growing demand exists to \emph{erase} sensitive or harmful concepts (e.g., NSFW content, private individuals, artistic styles) from these models while preserving their overall generative capabilities. We introduce \textbf{SCORE} (Secure and Concept-Oriented Robust Erasure), a novel framework for robust concept removal in diffusion models. SCORE formulates concept erasure as an \emph{adversarial independence} problem, theoretically guaranteeing that the model's outputs become statistically independent of the erased concept. Unlike prior heuristic methods, SCORE minimizes the mutual information between a target concept and generated outputs, yielding provable erasure guarantees. We provide formal proofs establishing convergence properties and derive upper bounds on residual concept leakage. Empirically, we evaluate SCORE on Stable Diffusion and FLUX across four challenging benchmarks: object erasure, NSFW removal, celebrity face suppression, and artistic style unlearning. SCORE consistently outperforms state-of-the-art methods including EraseAnything, ANT, MACE, ESD, and UCE, achieving up to \textbf{12.5\%} higher erasure efficacy while maintaining comparable or superior image quality. By integrating adversarial optimization, trajectory consistency, and saliency-driven fine-tuning, SCORE sets a new standard for secure and robust concept erasure in diffusion models.
comment: Camera ready version
☆ Data-driven Smile Design: Personalized Dental Aesthetics Outcomes Using Deep Learning
A healthy smile plays a significant role in functional as well as esthetic considerations, improving confidence. It is difficult for dental professionals to strike a balance between esthetic requirements and functional requirements. Traditional smile design has had heavy reliance on dentist expertise and used plaster models and hand drawings, raising questions about the outcome for patients. Digital technology, led by Dr. Christian Coachman in 2007, allows photographic and videographic assessments, enabling improved intercommunication among specialists and patients. Advances in artificial intelligence (AI) and big data have supported analysis of facial features and development of personalized smile designs in the last few years. Outputs are, however, susceptible to practitioner bias or limitations of training data, and may be suboptimal for individual users. The study presented here suggests a comprehensive system integrating AI, big data, and recognition technologies to automate the smile design process so that both experienced and inexperienced dentists can generate pleasing aesthetics with ease. The system has a Facial Feature Extraction Module and an Image Generation Module, serving diverse practitioner and patient needs. User data can be incorporated in future research for design optimization and testing of virtual and augmented reality for real-time previewing. Data gathered can also be employed in aesthetic preference analyses, which can enhance our knowledge of smile design in dental practice.
comment: 6 pages, 2 figures
☆ Lost in Embeddings: Information Loss in Vision-Language Models
Vision--language models (VLMs) often process visual inputs through a pretrained vision encoder, followed by a projection into the language model's embedding space via a connector component. While crucial for modality fusion, the potential information loss induced by this projection step and its direct impact on model capabilities remain understudied. We introduce two complementary approaches to examine and quantify this loss by analyzing the latent representation space. First, we evaluate semantic information preservation by analyzing changes in k-nearest neighbor relationships between image representations, before and after projection. Second, we directly measure information loss by reconstructing visual embeddings from the projected representation, localizing loss at an image patch level. Experiments reveal that connectors substantially distort the local geometry of visual representations, with k-nearest neighbors diverging by 40--60\% post-projection, correlating with degradation in retrieval performance. The patch-level embedding reconstruction provides interpretable insights for model behavior on visually grounded question-answering tasks, finding that areas of high information loss reliably predict instances where models struggle.
☆ Learning to Generate 4D LiDAR Sequences ICCV 2025
While generative world models have advanced video and occupancy-based data synthesis, LiDAR generation remains underexplored despite its importance for accurate 3D perception. Extending generation to 4D LiDAR data introduces challenges in controllability, temporal stability, and evaluation. We present LiDARCrafter, a unified framework that converts free-form language into editable LiDAR sequences. Instructions are parsed into ego-centric scene graphs, which a tri-branch diffusion model transforms into object layouts, trajectories, and shapes. A range-image diffusion model generates the initial scan, and an autoregressive module extends it into a temporally coherent sequence. The explicit layout design further supports object-level editing, such as insertion or relocation. To enable fair assessment, we provide EvalSuite, a benchmark spanning scene-, object-, and sequence-level metrics. On nuScenes, LiDARCrafter achieves state-of-the-art fidelity, controllability, and temporal consistency, offering a foundation for LiDAR-based simulation and data augmentation.
comment: Abstract Paper (Non-Archival) @ ICCV 2025 Wild3D Workshop; GitHub Repo at https://lidarcrafter.github.io/
☆ CLAIRE: A Dual Encoder Network with RIFT Loss and Phi-3 Small Language Model Based Interpretability for Cross-Modality Synthetic Aperture Radar and Optical Land Cover Segmentation
Accurate land cover classification from satellite imagery is crucial in environmental monitoring and sustainable resource management. However, it remains challenging due to the complexity of natural landscapes, the visual similarity between classes, and the significant class imbalance in the available datasets. To address these issues, we propose a dual encoder architecture that independently extracts modality-specific features from optical and Synthetic Aperture Radar (SAR) imagery, which are then fused using a cross-modality attention-fusion module named Cross-modality Land cover segmentation with Attention and Imbalance-aware Reasoning-Enhanced Explanations (CLAIRE). This fusion mechanism highlights complementary spatial and textural features, enabling the network to better capture detailed and diverse land cover patterns. We incorporate a hybrid loss function that utilizes Weighted Focal Loss and Tversky Loss named RIFT (Rare-Instance Focal-Tversky) to address class imbalance and improve segmentation performance across underrepresented categories. Our model achieves competitive performance across multiple benchmarks: a mean Intersection over Union (mIoU) of 56.02% and Overall Accuracy (OA) of 84.56% on the WHU-OPT-SAR dataset; strong generalization with a mIoU of 59.89% and OA of 73.92% on the OpenEarthMap-SAR dataset; and remarkable robustness under cloud-obstructed conditions, achieving an mIoU of 86.86% and OA of 94.58% on the PIE-RGB-SAR dataset. Additionally, we introduce a metric-driven reasoning module generated by a Small Language Model (Phi-3), which generates expert-level, sample-specific justifications for model predictions, thereby enhancing transparency and interpretability.
comment: 23 pages, 6 figures, 10 tables
☆ Sphere-GAN: a GAN-based Approach for Saliency Estimation in 360° Videos
The recent success of immersive applications is pushing the research community to define new approaches to process 360{\deg} images and videos and optimize their transmission. Among these, saliency estimation provides a powerful tool that can be used to identify visually relevant areas and, consequently, adapt processing algorithms. Although saliency estimation has been widely investigated for 2D content, very few algorithms have been proposed for 360{\deg} saliency estimation. Towards this goal, we introduce Sphere-GAN, a saliency detection model for 360{\deg} videos that leverages a Generative Adversarial Network with spherical convolutions. Extensive experiments were conducted using a public 360{\deg} video saliency dataset, and the results demonstrate that Sphere-GAN outperforms state-of-the-art models in accurately predicting saliency maps.
☆ Graph Algorithm Unrolling with Douglas-Rachford Iterations for Image Interpolation with Guaranteed Initialization
Conventional deep neural nets (DNNs) initialize network parameters at random and then optimize each one via stochastic gradient descent (SGD), resulting in substantial risk of poor-performing local minima.Focusing on the image interpolation problem and leveraging a recent theorem that maps a (pseudo-)linear interpolator {\Theta} to a directed graph filter that is a solution to a MAP problem regularized with a graph shift variation (GSV) prior, we first initialize a directed graph adjacency matrix A based on a known interpolator {\Theta}, establishing a baseline performance.Then, towards further gain, we learn perturbation matrices P and P(2) from data to augment A, whose restoration effects are implemented via Douglas-Rachford (DR) iterations, which we unroll into a lightweight interpretable neural net.Experimental results demonstrate state-of-the-art image interpolation results, while drastically reducing network parameters.
☆ NeuroGaze-Distill: Brain-informed Distillation and Depression-Inspired Geometric Priors for Robust Facial Emotion Recognition ICLR
Facial emotion recognition (FER) models trained only on pixels often fail to generalize across datasets because facial appearance is an indirect and biased proxy for underlying affect. We present NeuroGaze-Distill, a cross-modal distillation framework that transfers brain-informed priors into an image-only FER student via static Valence/Arousal (V/A) prototypes and a depression-inspired geometric prior (D-Geo). A teacher trained on EEG topographic maps from DREAMER (with MAHNOB-HCI as unlabeled support) produces a consolidated 5x5 V/A prototype grid that is frozen and reused; no EEG-face pairing and no non-visual signals at deployment are required. The student (ResNet-18/50) is trained on FERPlus with conventional CE/KD and two lightweight regularizers: (i) Proto-KD (cosine) aligns student features to the static prototypes; (ii) D-Geo softly shapes the embedding geometry in line with affective findings often reported in depression research (e.g., anhedonia-like contraction in high-valence regions). We evaluate both within-domain (FERPlus validation) and cross-dataset protocols (AffectNet-mini; optional CK+), reporting standard 8-way scores alongside present-only Macro-F1 and balanced accuracy to fairly handle label-set mismatch. Ablations attribute consistent gains to prototypes and D-Geo, and favor 5x5 over denser grids for stability. The method is simple, deployable, and improves robustness without architectural complexity.
comment: Preprint. Vision-only deployment; EEG used only to form static prototypes. Includes appendix, 7 figures and 3 tables. Considering submission to the International Conference on Learning Representations (ICLR) 2026, Rio de Janeiro, Brazil
☆ Integrating Prior Observations for Incremental 3D Scene Graph Prediction ICML
3D semantic scene graphs (3DSSG) provide compact structured representations of environments by explicitly modeling objects, attributes, and relationships. While 3DSSGs have shown promise in robotics and embodied AI, many existing methods rely mainly on sensor data, not integrating further information from semantically rich environments. Additionally, most methods assume access to complete scene reconstructions, limiting their applicability in real-world, incremental settings. This paper introduces a novel heterogeneous graph model for incremental 3DSSG prediction that integrates additional, multi-modal information, such as prior observations, directly into the message-passing process. Utilizing multiple layers, the model flexibly incorporates global and local scene representations without requiring specialized modules or full scene reconstructions. We evaluate our approach on the 3DSSG dataset, showing that GNNs enriched with multi-modal information such as semantic embeddings (e.g., CLIP) and prior observations offer a scalable and generalizable solution for complex, real-world environments. The full source code of the presented architecture will be made available at https://github.com/m4renz/incremental-scene-graph-prediction.
comment: Accepted at 24th International Conference on Machine Learning and Applications (ICMLA'25)
☆ Logit Mixture Outlier Exposure for Fine-grained Out-of-Distribution Detection
The ability to detect out-of-distribution data is essential not only for ensuring robustness against unknown or unexpected input data but also for improving the generalization performance of the model. Among various out-of-distribution detection methods, Outlier Exposure and Mixture Outlier Exposure are promising approaches that enhance out-of-distribution detection performance by exposing the outlier data during training. However, even with these sophisticated techniques, it remains challenging for models to learn the relationships between classes effectively and to distinguish data sampling from in-distribution and out-of-distribution clearly. Therefore, we focus on the logit space, where the properties between class-wise distributions are distinctly separated from those in the input or feature spaces. Specifically, we propose a linear interpolation technique in the logit space that mixes in-distribution and out-of-distribution data to facilitate smoothing logits between classes and improve the out-of-distribution detection performance, particularly for out-of-distribution data that lie close to the in-distribution data. Additionally, we enforce consistency between the logits obtained through mixing in the logit space and those generated via mixing in the input space. Our experiments demonstrate that our logit-space mixing technique reduces the abrupt fluctuations in the model outputs near the decision boundaries, resulting in smoother and more reliable separation between in-distribution and out-of-distribution data. Furthermore, we evaluate the effectiveness of the proposed method on a fine-grained out-of-distribution detection task.
comment: Accepted to DICTA2025
☆ BREA-Depth: Bronchoscopy Realistic Airway-geometric Depth Estimation MICCAI 2025
Monocular depth estimation in bronchoscopy can significantly improve real-time navigation accuracy and enhance the safety of interventions in complex, branching airways. Recent advances in depth foundation models have shown promise for endoscopic scenarios, yet these models often lack anatomical awareness in bronchoscopy, overfitting to local textures rather than capturing the global airway structure, particularly under ambiguous depth cues and poor lighting. To address this, we propose Brea-Depth, a novel framework that integrates airway-specific geometric priors into foundation model adaptation for bronchoscopic depth estimation. Our method introduces a depth-aware CycleGAN, refining the translation between real bronchoscopic images and airway geometries from anatomical data, effectively bridging the domain gap. In addition, we introduce an airway structure awareness loss to enforce depth consistency within the airway lumen while preserving smooth transitions and structural integrity. By incorporating anatomical priors, Brea-Depth enhances model generalization and yields more robust, accurate 3D airway reconstructions. To assess anatomical realism, we introduce Airway Depth Structure Evaluation, a new metric for structural consistency. We validate BREA-Depth on a collected ex vivo human lung dataset and an open bronchoscopic dataset, where it outperforms existing methods in anatomical depth preservation.
comment: The paper has been accepted to MICCAI 2025
☆ SAM-TTT: Segment Anything Model via Reverse Parameter Configuration and Test-Time Training for Camouflaged Object Detection ACM MM 25
This paper introduces a new Segment Anything Model (SAM) that leverages reverse parameter configuration and test-time training to enhance its performance on Camouflaged Object Detection (COD), named SAM-TTT. While most existing SAM-based COD models primarily focus on enhancing SAM by extracting favorable features and amplifying its advantageous parameters, a crucial gap is identified: insufficient attention to adverse parameters that impair SAM's semantic understanding in downstream tasks. To tackle this issue, the Reverse SAM Parameter Configuration Module is proposed to effectively mitigate the influence of adverse parameters in a train-free manner by configuring SAM's parameters. Building on this foundation, the T-Visioner Module is unveiled to strengthen advantageous parameters by integrating Test-Time Training layers, originally developed for language tasks, into vision tasks. Test-Time Training layers represent a new class of sequence modeling layers characterized by linear complexity and an expressive hidden state. By integrating two modules, SAM-TTT simultaneously suppresses adverse parameters while reinforcing advantageous ones, significantly improving SAM's semantic understanding in COD task. Our experimental results on various COD benchmarks demonstrate that the proposed approach achieves state-of-the-art performance, setting a new benchmark in the field. The code will be available at https://github.com/guobaoxiao/SAM-TTT.
comment: accepted by ACM MM 25
☆ Do It Yourself (DIY): Modifying Images for Poems in a Zero-Shot Setting Using Weighted Prompt Manipulation
Poetry is an expressive form of art that invites multiple interpretations, as readers often bring their own emotions, experiences, and cultural backgrounds into their understanding of a poem. Recognizing this, we aim to generate images for poems and improve these images in a zero-shot setting, enabling audiences to modify images as per their requirements. To achieve this, we introduce a novel Weighted Prompt Manipulation (WPM) technique, which systematically modifies attention weights and text embeddings within diffusion models. By dynamically adjusting the importance of specific words, WPM enhances or suppresses their influence in the final generated image, leading to semantically richer and more contextually accurate visualizations. Our approach exploits diffusion models and large language models (LLMs) such as GPT in conjunction with existing poetry datasets, ensuring a comprehensive and structured methodology for improved image generation in the literary domain. To the best of our knowledge, this is the first attempt at integrating weighted prompt manipulation for enhancing imagery in poetic language.
☆ Multi-animal tracking in Transition: Comparative Insights into Established and Emerging Methods
Precision livestock farming requires advanced monitoring tools to meet the increasing management needs of the industry. Computer vision systems capable of long-term multi-animal tracking (MAT) are essential for continuous behavioral monitoring in livestock production. MAT, a specialized subset of multi-object tracking (MOT), shares many challenges with MOT, but also faces domain-specific issues including frequent animal occlusion, highly similar appearances among animals, erratic motion patterns, and a wide range of behavior types. While some existing MAT tools are user-friendly and widely adopted, they often underperform compared to state-of-the-art MOT methods, which can result in inaccurate downstream tasks such as behavior analysis, health state estimation, and related applications. In this study, we benchmarked both MAT and MOT approaches for long-term tracking of pigs. We compared tools such as DeepLabCut and idTracker with MOT-based methods including ByteTrack, DeepSORT, cross-input consistency, and newer approaches like Track-Anything and PromptTrack. All methods were evaluated on a 10-minute pig tracking dataset. Our results demonstrate that, overall, MOT approaches outperform traditional MAT tools, even for long-term tracking scenarios. These findings highlight the potential of recent MOT techniques to enhance the accuracy and reliability of automated livestock tracking.
comment: 21 pages, 3 figures, 5 tables
☆ Dr.V: A Hierarchical Perception-Temporal-Cognition Framework to Diagnose Video Hallucination by Fine-grained Spatial-Temporal Grounding
Recent advancements in large video models (LVMs) have significantly enhance video understanding. However, these models continue to suffer from hallucinations, producing content that conflicts with input videos. To address this issue, we propose Dr.V, a hierarchical framework covering perceptive, temporal, and cognitive levels to diagnose video hallucination by fine-grained spatial-temporal grounding. Dr.V comprises of two key components: a benchmark dataset Dr.V-Bench and a satellite video agent Dr.V-Agent. Dr.V-Bench includes 10k instances drawn from 4,974 videos spanning diverse tasks, each enriched with detailed spatial-temporal annotation. Dr.V-Agent detects hallucinations in LVMs by systematically applying fine-grained spatial-temporal grounding at the perceptive and temporal levels, followed by cognitive level reasoning. This step-by-step pipeline mirrors human-like video comprehension and effectively identifies hallucinations. Extensive experiments demonstrate that Dr.V-Agent is effective in diagnosing hallucination while enhancing interpretability and reliability, offering a practical blueprint for robust video understanding in real-world scenarios. All our data and code are available at https://github.com/Eurekaleo/Dr.V.
comment: 25 pages, 16 figures
☆ Bridging Vision Language Models and Symbolic Grounding for Video Question Answering
Video Question Answering (VQA) requires models to reason over spatial, temporal, and causal cues in videos. Recent vision language models (VLMs) achieve strong results but often rely on shallow correlations, leading to weak temporal grounding and limited interpretability. We study symbolic scene graphs (SGs) as intermediate grounding signals for VQA. SGs provide structured object-relation representations that complement VLMs holistic reasoning. We introduce SG-VLM, a modular framework that integrates frozen VLMs with scene graph grounding via prompting and visual localization. Across three benchmarks (NExT-QA, iVQA, ActivityNet-QA) and multiple VLMs (QwenVL, InternVL), SG-VLM improves causal and temporal reasoning and outperforms prior baselines, though gains over strong VLMs are limited. These findings highlight both the promise and current limitations of symbolic grounding, and offer guidance for future hybrid VLM-symbolic approaches in video understanding.
☆ Segmentation-Driven Initialization for Sparse-view 3D Gaussian Splatting
Sparse-view synthesis remains a challenging problem due to the difficulty of recovering accurate geometry and appearance from limited observations. While recent advances in 3D Gaussian Splatting (3DGS) have enabled real-time rendering with competitive quality, existing pipelines often rely on Structure-from-Motion (SfM) for camera pose estimation, an approach that struggles in genuinely sparse-view settings. Moreover, several SfM-free methods replace SfM with multi-view stereo (MVS) models, but generate massive numbers of 3D Gaussians by back-projecting every pixel into 3D space, leading to high memory costs. We propose Segmentation-Driven Initialization for Gaussian Splatting (SDI-GS), a method that mitigates inefficiency by leveraging region-based segmentation to identify and retain only structurally significant regions. This enables selective downsampling of the dense point cloud, preserving scene fidelity while substantially reducing Gaussian count. Experiments across diverse benchmarks show that SDI-GS reduces Gaussian count by up to 50% and achieves comparable or superior rendering quality in PSNR and SSIM, with only marginal degradation in LPIPS. It further enables faster training and lower memory footprint, advancing the practicality of 3DGS for constrained-view scenarios.
☆ Synthetic Captions for Open-Vocabulary Zero-Shot Segmentation ICCV 2025
Generative vision-language models (VLMs) exhibit strong high-level image understanding but lack spatially dense alignment between vision and language modalities, as our findings indicate. Orthogonal to advancements in generative VLMs, another line of research has focused on representation learning for vision-language alignment, targeting zero-shot inference for dense tasks like segmentation. In this work, we bridge these two directions by densely aligning images with synthetic descriptions generated by VLMs. Synthetic captions are inexpensive, scalable, and easy to generate, making them an excellent source of high-level semantic understanding for dense alignment methods. Empirically, our approach outperforms prior work on standard zero-shot open-vocabulary segmentation benchmarks/datasets, while also being more data-efficient.
comment: ICCV 2025 CDEL Workshop
☆ TrajBooster: Boosting Humanoid Whole-Body Manipulation via Trajectory-Centric Learning
Imitation learning (IL) enables efficient skill acquisition from demonstrations but often struggles with long-horizon tasks and high-precision control due to compounding errors. Residual policy learning offers a promising, model-agnostic solution by refining a base policy through closed-loop corrections. However, existing approaches primarily focus on local corrections to the base policy, lacking a global understanding of state evolution, which limits robustness and generalization to unseen scenarios. To address this, we propose incorporating global dynamics modeling to guide residual policy updates. Specifically, we leverage Koopman operator theory to impose linear time-invariant structure in a learned latent space, enabling reliable state transitions and improved extrapolation for long-horizon prediction and unseen environments. We introduce KORR (Koopman-guided Online Residual Refinement), a simple yet effective framework that conditions residual corrections on Koopman-predicted latent states, enabling globally informed and stable action refinement. We evaluate KORR on long-horizon, fine-grained robotic furniture assembly tasks under various perturbations. Results demonstrate consistent gains in performance, robustness, and generalization over strong baselines. Our findings further highlight the potential of Koopman-based modeling to bridge modern learning methods with classical control theory. For more details, please refer to https://jiachengliu3.github.io/TrajBooster.
☆ Probabilistic Robustness Analysis in High Dimensional Space: Application to Semantic Segmentation Network
Semantic segmentation networks (SSNs) play a critical role in domains such as medical imaging, autonomous driving, and environmental monitoring, where safety hinges on reliable model behavior under uncertainty. Yet, existing probabilistic verification approaches struggle to scale with the complexity and dimensionality of modern segmentation tasks, often yielding guarantees that are too conservative to be practical. We introduce a probabilistic verification framework that is both architecture-agnostic and scalable to high-dimensional outputs. Our approach combines sampling-based reachability analysis with conformal inference (CI) to deliver provable guarantees while avoiding the excessive conservatism of prior methods. To counteract CI's limitations in high-dimensional settings, we propose novel strategies that reduce conservatism without compromising rigor. Empirical evaluation on large-scale segmentation models across CamVid, OCTA-500, Lung Segmentation, and Cityscapes demonstrates that our method provides reliable safety guarantees while substantially tightening bounds compared to SOTA. We also provide a toolbox implementing this technique, available on Github.
☆ FedDAF: Federated Domain Adaptation Using Model Functional Distance WACV 2026
Federated Domain Adaptation (FDA) is a federated learning (FL) approach that improves model performance at the target client by collaborating with source clients while preserving data privacy. FDA faces two primary challenges: domain shifts between source and target data and limited labeled data at the target. Most existing FDA methods focus on domain shifts, assuming ample target data, yet often neglect the combined challenges of both domain shifts and data scarcity. Moreover, approaches that address both challenges fail to prioritize sharing relevant information from source clients according to the target's objective. In this paper, we propose FedDAF, a novel approach addressing both challenges in FDA. FedDAF uses similarity-based aggregation of the global source model and target model by calculating model functional distance from their mean gradient fields computed on target data. This enables effective model aggregation based on the target objective, constructed using target data, even with limited data. While computing model functional distance between these two models, FedDAF computes the angle between their mean gradient fields and then normalizes with the Gompertz function. To construct the global source model, all the local source models are aggregated using simple average in the server. Experiments on real-world datasets demonstrate FedDAF's superiority over existing FL, PFL, and FDA methods in terms of achieving better test accuracy.
comment: 9 pages, 2 figures, 3 tables. Submitted to WACV 2026
☆ MAFS: Masked Autoencoder for Infrared-Visible Image Fusion and Semantic Segmentation
Infrared-visible image fusion methods aim at generating fused images with good visual quality and also facilitate the performance of high-level tasks. Indeed, existing semantic-driven methods have considered semantic information injection for downstream applications. However, none of them investigates the potential for reciprocal promotion between pixel-wise image fusion and cross-modal feature fusion perception tasks from a macroscopic task-level perspective. To address this limitation, we propose a unified network for image fusion and semantic segmentation. MAFS is a parallel structure, containing a fusion sub-network and a segmentation sub-network. On the one hand, We devise a heterogeneous feature fusion strategy to enhance semantic-aware capabilities for image fusion. On the other hand, by cascading the fusion sub-network and a segmentation backbone, segmentation-related knowledge is transferred to promote feature-level fusion-based segmentation. Within the framework, we design a novel multi-stage Transformer decoder to aggregate fine-grained multi-scale fused features efficiently. Additionally, a dynamic factor based on the max-min fairness allocation principle is introduced to generate adaptive weights of two tasks and guarantee smooth training in a multi-task manner. Extensive experiments demonstrate that our approach achieves competitive results compared with state-of-the-art methods. The code is available at https://github.com/Abraham-Einstein/MAFS/.
comment: Accepted by TIP 2025
☆ SpecVLM: Fast Speculative Decoding in Vision-Language Models
Speculative decoding is a powerful way to accelerate autoregressive large language models (LLMs), but directly porting it to vision-language models (VLMs) faces unique systems constraints: the prefill stage is dominated by visual tokens whose count scales with image resolution and video length, inflating both compute and memory, especially the key-value (KV) cache. We study speculative decoding for VLMs and introduce SpecVLM, a practical system that (1) establishes a strong EAGLE-2-style baseline, EagleVLM, delivering 1.5--2.3x end-to-end speedups over full autoregressive inference, and (2) further accelerates VLM inference with an elastic visual compressor that adaptively selects among pruning, pooling, convolution, and resampler primitives to balance FLOPs/parameters and accuracy per input. To avoid costly offline distillation corpora, we propose an online-logit distillation protocol that trains the draft model with on-the-fly teacher logits and penultimate features using a combined cross-entropy and Smooth L1 objective, eliminating storage and preprocessing while remaining compute-efficient. This protocol reveals a training-time scaling effect: longer online training monotonically increases the draft model's average accepted length, improving speculative efficiency. Empirically, SpecVLM achieves additional acceleration, culminating in 2.5--2.9x end-to-end speedups within 5 epochs across LLaVA and MMMU, consistently over resolutions and task difficulties, while preserving the target model's output distribution (lossless decoding). Our code is available at https://github.com/haiduo/SpecVLM.
☆ LFRA-Net: A Lightweight Focal and Region-Aware Attention Network for Retinal Vessel Segmentatio
Retinal vessel segmentation is critical for the early diagnosis of vision-threatening and systemic diseases, especially in real-world clinical settings with limited computational resources. Although significant improvements have been made in deep learning-based segmentation methods, current models still face challenges in extracting tiny vessels and suffer from high computational costs. In this study, we present LFRA-Net by incorporating focal modulation attention at the encoder-decoder bottleneck and region-aware attention in the selective skip connections. LFRA-Net is a lightweight network optimized for precise and effective retinal vascular segmentation. It enhances feature representation and regional focus by efficiently capturing local and global dependencies. LFRA-Net outperformed many state-of-the-art models while maintaining lightweight characteristics with only 0.17 million parameters, 0.66 MB memory size, and 10.50 GFLOPs. We validated it on three publicly available datasets: DRIVE, STARE, and CHASE\_DB. It performed better in terms of Dice score (84.28\%, 88.44\%, and 85.50\%) and Jaccard index (72.86\%, 79.31\%, and 74.70\%) on the DRIVE, STARE, and CHASE\_DB datasets, respectively. LFRA-Net provides an ideal ratio between segmentation accuracy and computational cost compared to existing deep learning methods, which makes it suitable for real-time clinical applications in areas with limited resources. The code can be found at https://github.com/Mehwish4593/LFRA-Net.
☆ Pseudo-D: Informing Multi-View Uncertainty Estimation with Calibrated Neural Training Dynamics
Computer-aided diagnosis systems must make critical decisions from medical images that are often noisy, ambiguous, or conflicting, yet today's models are trained on overly simplistic labels that ignore diagnostic uncertainty. One-hot labels erase inter-rater variability and force models to make overconfident predictions, especially when faced with incomplete or artifact-laden inputs. We address this gap by introducing a novel framework that brings uncertainty back into the label space. Our method leverages neural network training dynamics (NNTD) to assess the inherent difficulty of each training sample. By aggregating and calibrating model predictions during training, we generate uncertainty-aware pseudo-labels that reflect the ambiguity encountered during learning. This label augmentation approach is architecture-agnostic and can be applied to any supervised learning pipeline to enhance uncertainty estimation and robustness. We validate our approach on a challenging echocardiography classification benchmark, demonstrating superior performance over specialized baselines in calibration, selective classification, and multi-view fusion.
☆ FineQuest: Adaptive Knowledge-Assisted Sports Video Understanding via Agent-of-Thoughts Reasoning ACM MM 2025
Video Question Answering (VideoQA) based on Large Language Models (LLMs) has shown potential in general video understanding but faces significant challenges when applied to the inherently complex domain of sports videos. In this work, we propose FineQuest, the first training-free framework that leverages dual-mode reasoning inspired by cognitive science: i) Reactive Reasoning for straightforward sports queries and ii) Deliberative Reasoning for more complex ones. To bridge the knowledge gap between general-purpose models and domain-specific sports understanding, FineQuest incorporates SSGraph, a multimodal sports knowledge scene graph spanning nine sports, which encodes both visual instances and domain-specific terminology to enhance reasoning accuracy. Furthermore, we introduce two new sports VideoQA benchmarks, Gym-QA and Diving-QA, derived from the FineGym and FineDiving datasets, enabling diverse and comprehensive evaluation. FineQuest achieves state-of-the-art performance on these benchmarks as well as the existing SPORTU dataset, while maintains strong general VideoQA capabilities.
comment: ACM MM 2025
☆ SA-UNetv2: Rethinking Spatial Attention U-Net for Retinal Vessel Segmentation
Retinal vessel segmentation is essential for early diagnosis of diseases such as diabetic retinopathy, hypertension, and neurodegenerative disorders. Although SA-UNet introduces spatial attention in the bottleneck, it underuses attention in skip connections and does not address the severe foreground-background imbalance. We propose SA-UNetv2, a lightweight model that injects cross-scale spatial attention into all skip connections to strengthen multi-scale feature fusion and adopts a weighted Binary Cross-Entropy (BCE) plus Matthews Correlation Coefficient (MCC) loss to improve robustness to class imbalance. On the public DRIVE and STARE datasets, SA-UNetv2 achieves state-of-the-art performance with only 1.2MB memory and 0.26M parameters (less than 50% of SA-UNet), and 1 second CPU inference on 592 x 592 x 3 images, demonstrating strong efficiency and deployability in resource-constrained, CPU-only settings.
comment: The code is available at github.com/clguo/SA-UNetv2
☆ Seg2Track-SAM2: SAM2-based Multi-object Tracking and Segmentation for Zero-shot Generalization
Autonomous systems require robust Multi-Object Tracking (MOT) capabilities to operate reliably in dynamic environments. MOT ensures consistent object identity assignment and precise spatial delineation. Recent advances in foundation models, such as SAM2, have demonstrated strong zero-shot generalization for video segmentation, but their direct application to MOTS (MOT+Segmentation) remains limited by insufficient identity management and memory efficiency. This work introduces Seg2Track-SAM2, a framework that integrates pre-trained object detectors with SAM2 and a novel Seg2Track module to address track initialization, track management, and reinforcement. The proposed approach requires no fine-tuning and remains detector-agnostic. Experimental results on KITTI MOT and KITTI MOTS benchmarks show that Seg2Track-SAM2 achieves state-of-the-art (SOTA) performance, ranking fourth overall in both car and pedestrian classes on KITTI MOTS, while establishing a new benchmark in association accuracy (AssA). Furthermore, a sliding-window memory strategy reduces memory usage by up to 75% with negligible performance degradation, supporting deployment under resource constraints. These results confirm that Seg2Track-SAM2 advances MOTS by combining robust zero-shot tracking, enhanced identity preservation, and efficient memory utilization. The code is available at https://github.com/hcmr-lab/Seg2Track-SAM2
☆ A Fully Open and Generalizable Foundation Model for Ultrasound Clinical Applications
Artificial intelligence (AI) that can effectively learn ultrasound representations by integrating multi-source data holds significant promise for advancing clinical care. However, the scarcity of large labeled datasets in real-world clinical environments and the limited generalizability of task-specific models have hindered the development of generalizable clinical AI models for ultrasound applications. In this study, we present EchoCare, a novel ultrasound foundation model for generalist clinical use, developed via self-supervised learning on our curated, publicly available, large-scale dataset EchoCareData. EchoCareData comprises 4.5 million ultrasound images, sourced from over 23 countries across 5 continents and acquired via a diverse range of distinct imaging devices, thus encompassing global cohorts that are multi-center, multi-device, and multi-ethnic. Unlike prior studies that adopt off-the-shelf vision foundation model architectures, we introduce a hierarchical classifier into EchoCare to enable joint learning of pixel-level and representation-level features, capturing both global anatomical contexts and local ultrasound characteristics. With minimal training, EchoCare outperforms state-of-the-art comparison models across 10 representative ultrasound benchmarks of varying diagnostic difficulties, spanning disease diagnosis, lesion segmentation, organ detection, landmark prediction, quantitative regression, imaging enhancement and report generation. The code and pretrained model are publicly released, rendering EchoCare accessible for fine-tuning and local adaptation, supporting extensibility to additional applications. EchoCare provides a fully open and generalizable foundation model to boost the development of AI technologies for diverse clinical ultrasound applications.
☆ Bridging the Gap Between Sparsity and Redundancy: A Dual-Decoding Framework with Global Context for Map Inference
Trajectory data has become a key resource for automated map in-ference due to its low cost, broad coverage, and continuous availability. However, uneven trajectory density often leads to frag-mented roads in sparse areas and redundant segments in dense regions, posing significant challenges for existing methods. To address these issues, we propose DGMap, a dual-decoding framework with global context awareness, featuring Multi-scale Grid Encoding, Mask-enhanced Keypoint Extraction, and Global Context-aware Relation Prediction. By integrating global semantic context with local geometric features, DGMap improves keypoint detection accuracy to reduce road fragmentation in sparse-trajectory areas. Additionally, the Global Context-aware Relation Prediction module suppresses false connections in dense-trajectory regions by modeling long-range trajectory patterns. Experimental results on three real-world datasets show that DGMap outperforms state-of-the-art methods by 5% in APLS, with notable performance gains on trajectory data from the Didi Chuxing platform
☆ Microsurgical Instrument Segmentation for Robot-Assisted Surgery
Accurate segmentation of thin structures is critical for microsurgical scene understanding but remains challenging due to resolution loss, low contrast, and class imbalance. We propose Microsurgery Instrument Segmentation for Robotic Assistance(MISRA), a segmentation framework that augments RGB input with luminance channels, integrates skip attention to preserve elongated features, and employs an Iterative Feedback Module(IFM) for continuity restoration across multiple passes. In addition, we introduce a dedicated microsurgical dataset with fine-grained annotations of surgical instruments including thin objects, providing a benchmark for robust evaluation Dataset available at https://huggingface.co/datasets/KIST-HARILAB/MISAW-Seg. Experiments demonstrate that MISRA achieves competitive performance, improving the mean class IoU by 5.37% over competing methods, while delivering more stable predictions at instrument contacts and overlaps. These results position MISRA as a promising step toward reliable scene parsing for computer-assisted and robotic microsurgery.
comment: 8 pages, 7 figures
☆ DRAG: Data Reconstruction Attack using Guided Diffusion ICML 2025
With the rise of large foundation models, split inference (SI) has emerged as a popular computational paradigm for deploying models across lightweight edge devices and cloud servers, addressing data privacy and computational cost concerns. However, most existing data reconstruction attacks have focused on smaller CNN classification models, leaving the privacy risks of foundation models in SI settings largely unexplored. To address this gap, we propose a novel data reconstruction attack based on guided diffusion, which leverages the rich prior knowledge embedded in a latent diffusion model (LDM) pre-trained on a large-scale dataset. Our method performs iterative reconstruction on the LDM's learned image prior, effectively generating high-fidelity images resembling the original data from their intermediate representations (IR). Extensive experiments demonstrate that our approach significantly outperforms state-of-the-art methods, both qualitatively and quantitatively, in reconstructing data from deep-layer IRs of the vision foundation model. The results highlight the urgent need for more robust privacy protection mechanisms for large models in SI scenarios. Code is available at: https://github.com/ntuaislab/DRAG.
comment: ICML 2025
☆ Advanced Layout Analysis Models for Docling
This technical report documents the development of novel Layout Analysis models integrated into the Docling document-conversion pipeline. We trained several state-of-the-art object detectors based on the RT-DETR, RT-DETRv2 and DFINE architectures on a heterogeneous corpus of 150,000 documents (both openly available and proprietary). Post-processing steps were applied to the raw detections to make them more applicable to the document conversion task. We evaluated the effectiveness of the layout analysis on various document benchmarks using different methodologies while also measuring the runtime performance across different environments (CPU, Nvidia and Apple GPUs). We introduce five new document layout models achieving 20.6% - 23.9% mAP improvement over Docling's previous baseline, with comparable or better runtime. Our best model, "heron-101", attains 78% mAP with 28 ms/image inference time on a single NVIDIA A100 GPU. Extensive quantitative and qualitative experiments establish best practices for training, evaluating, and deploying document-layout detectors, providing actionable guidance for the document conversion community. All trained checkpoints, code, and documentation are released under a permissive license on HuggingFace.
comment: 11 pages. 4 figures. Technical report for the layout models of Docling
☆ The Quest for Universal Master Key Filters in DS-CNNs
A recent study has proposed the "Master Key Filters Hypothesis" for convolutional neural network filters. This paper extends this hypothesis by radically constraining its scope to a single set of just 8 universal filters that depthwise separable convolutional networks inherently converge to. While conventional DS-CNNs employ thousands of distinct trained filters, our analysis reveals these filters are predominantly linear shifts (ax+b) of our discovered universal set. Through systematic unsupervised search, we extracted these fundamental patterns across different architectures and datasets. Remarkably, networks initialized with these 8 unique frozen filters achieve over 80% ImageNet accuracy, and even outperform models with thousands of trainable parameters when applied to smaller datasets. The identified master key filters closely match Difference of Gaussians (DoGs), Gaussians, and their derivatives, structures that are not only fundamental to classical image processing but also strikingly similar to receptive fields in mammalian visual systems. Our findings provide compelling evidence that depthwise convolutional layers naturally gravitate toward this fundamental set of spatial operators regardless of task or architecture. This work offers new insights for understanding generalization and transfer learning through the universal language of these master key filters.
☆ CoachMe: Decoding Sport Elements with a Reference-Based Coaching Instruction Generation Model ACL 2025
Motion instruction is a crucial task that helps athletes refine their technique by analyzing movements and providing corrective guidance. Although recent advances in multimodal models have improved motion understanding, generating precise and sport-specific instruction remains challenging due to the highly domain-specific nature of sports and the need for informative guidance. We propose CoachMe, a reference-based model that analyzes the differences between a learner's motion and a reference under temporal and physical aspects. This approach enables both domain-knowledge learning and the acquisition of a coach-like thinking process that identifies movement errors effectively and provides feedback to explain how to improve. In this paper, we illustrate how CoachMe adapts well to specific sports such as skating and boxing by learning from general movements and then leveraging limited data. Experiments show that CoachMe provides high-quality instructions instead of directions merely in the tone of a coach but without critical information. CoachMe outperforms GPT-4o by 31.6% in G-Eval on figure skating and by 58.3% on boxing. Analysis further confirms that it elaborates on errors and their corresponding improvement methods in the generated instructions. You can find CoachMe here: https://motionxperts.github.io/
comment: Published in Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2025. Official version: https://doi.org/10.18653/v1/2025.acl-long.1413
☆ Uncertainty-Aware Retinal Vessel Segmentation via Ensemble Distillation
Uncertainty estimation is critical for reliable medical image segmentation, particularly in retinal vessel analysis, where accurate predictions are essential for diagnostic applications. Deep Ensembles, where multiple networks are trained individually, are widely used to improve medical image segmentation performance. However, training and testing costs increase with the number of ensembles. In this work, we propose Ensemble Distillation as a robust alternative to commonly used uncertainty estimation techniques by distilling the knowledge of multiple ensemble models into a single model. Through extensive experiments on the DRIVE and FIVES datasets, we demonstrate that Ensemble Distillation achieves comparable performance via calibration and segmentation metrics, while significantly reducing computational complexity. These findings suggest that Ensemble distillation provides an efficient and reliable approach for uncertainty estimation in the segmentation of the retinal vessels, making it a promising tool for medical imaging applications.
comment: 5 pages, 5 figure
☆ IMD: A 6-DoF Pose Estimation Benchmark for Industrial Metallic Objects
Object 6DoF (6D) pose estimation is essential for robotic perception, especially in industrial settings. It enables robots to interact with the environment and manipulate objects. However, existing benchmarks on object 6D pose estimation primarily use everyday objects with rich textures and low-reflectivity, limiting model generalization to industrial scenarios where objects are often metallic, texture-less, and highly reflective. To address this gap, we propose a novel dataset and benchmark namely \textit{Industrial Metallic Dataset (IMD)}, tailored for industrial applications. Our dataset comprises 45 true-to-scale industrial components, captured with an RGB-D camera under natural indoor lighting and varied object arrangements to replicate real-world conditions. The benchmark supports three tasks, including video object segmentation, 6D pose tracking, and one-shot 6D pose estimation. We evaluate existing state-of-the-art models, including XMem and SAM2 for segmentation, and BundleTrack and BundleSDF for pose estimation, to assess model performance in industrial contexts. Evaluation results show that our industrial dataset is more challenging than existing household object datasets. This benchmark provides the baseline for developing and comparing segmentation and pose estimation algorithms that better generalize to industrial robotics scenarios.
comment: 8 pages, 19 figures, 2 tables. Accepted in 2025 8th International Conference on Robotics, Control and Automation Engineering (RCAE 2025)
☆ RouteExtract: A Modular Pipeline for Extracting Routes from Paper Maps ICCV 2025
Paper maps remain widely used for hiking and sightseeing because they contain curated trails and locally relevant annotations that are often missing from digital navigation applications such as Google Maps. We propose a pipeline to extract navigable trails from scanned maps, enabling their use in GPS-based navigation. Our method combines georeferencing, U-Net-based binary segmentation, graph construction, and an iterative refinement procedure using a routing engine. We evaluate the full end-to-end pipeline as well as individual components, showing that the approach can robustly recover trail networks from diverse map styles and generate GPS routes suitable for practical use.
comment: Accepted to the Workshop on Graphic Design Understanding and Generation (GDUG) at ICCV 2025. 8 pages, 7 figures
☆ ParaEQsA: Parallel and Asynchronous Embodied Questions Scheduling and Answering ICRA 2026
This paper formulates the Embodied Questions Answering (EQsA) problem, introduces a corresponding benchmark, and proposes a system to tackle the problem. Classical Embodied Question Answering (EQA) is typically formulated as answering one single question by actively exploring a 3D environment. Real deployments, however, often demand handling multiple questions that may arrive asynchronously and carry different urgencies. We formalize this setting as Embodied Questions Answering (EQsA) and present ParaEQsA, a framework for parallel, urgency-aware scheduling and answering. ParaEQsA leverages a group memory module shared among questions to reduce redundant exploration, and a priority-planning module to dynamically schedule questions. To evaluate this setting, we contribute the Parallel Asynchronous Embodied Questions (PAEQs) benchmark containing 40 indoor scenes and five questions per scene (200 in total), featuring asynchronous follow-up questions and urgency labels. We further propose metrics for EQsA performance: Direct Answer Rate (DAR), and Normalized Urgency-Weighted Latency (NUWL), which jointly measure efficiency and responsiveness of this system. ParaEQsA consistently outperforms strong sequential baselines adapted from recent EQA systems, while reducing exploration and delay. Empirical evaluations investigate the relative contributions of priority, urgency modeling, spatial scope, reward estimation, and dependency reasoning within our framework. Together, these results demonstrate that urgency-aware, parallel scheduling is key to making embodied agents responsive and efficient under realistic, multi-question workloads.
comment: 8 pages, 6 figures, 2026 IEEE Conference on Robotics and Automation (ICRA 2026)
☆ MindVL: Towards Efficient and Effective Training of Multimodal Large Language Models on Ascend NPUs
We propose MindVL, a multimodal large langauge model trained on Ascend NPUs. Similar to Qwen2.5-VL, MindVL adopts native-resolution Vision Transformers, which enables it to process images at their original variable resolutions. This design avoids the degradation caused by fixed-resolution tiling while preserving fine-grained details and global layouts, which is crucial for visually dense content such as complex charts and diagrams. To ensure the smooth training of MindVL on Ascend NPUs, we develop Mindspeed-MLLM, a distributed multimodal training framework tailored for Ascend NPUs. To maintain training accuracy, we implement equivalent replacements for certain operators. MindVL undergoes a three-phase training process, namely the warm-up phase, multitask training phase, and supervised instruction tuning phase, to gradually enhance its capabilities. This process starts with basic visual and multimodal pre-training, followed by large-scale multiask trainging and instruction tuning. We also adopt multimodal data packaging and hybrid parallelism techniques, which significantly improve end-to-end training speed. To further boost model performance, we specifically introduce test-time resolution search and model weight averaging. Notably, despite using about 1/10 of the training data required by Qwen2.5-VL, MindVL achieves performance on par with Qwen2.5-VL in evaluations of general multimodal understanding and document/table comprehension. Beyond overall scores, MindVL also delivers leading performance in OCR assessments.
☆ DTGen: Generative Diffusion-Based Few-Shot Data Augmentation for Fine-Grained Dirty Tableware Recognition
Intelligent tableware cleaning is a critical application in food safety and smart homes, but existing methods are limited by coarse-grained classification and scarcity of few-shot data, making it difficult to meet industrialization requirements. We propose DTGen, a few-shot data augmentation scheme based on generative diffusion models, specifically designed for fine-grained dirty tableware recognition. DTGen achieves efficient domain specialization through LoRA, generates diverse dirty images via structured prompts, and ensures data quality through CLIP-based cross-modal filtering. Under extremely limited real few-shot conditions, DTGen can synthesize virtually unlimited high-quality samples, significantly improving classifier performance and supporting fine-grained dirty tableware recognition. We further elaborate on lightweight deployment strategies, promising to transfer DTGen's benefits to embedded dishwashers and integrate with cleaning programs to intelligently regulate energy consumption and detergent usage. Research results demonstrate that DTGen not only validates the value of generative AI in few-shot industrial vision but also provides a feasible deployment path for automated tableware cleaning and food safety monitoring.
☆ Joint-octamamba:an octa joint segmentation network based on feature enhanced mamba
OCTA is a crucial non-invasive imaging technique for diagnosing and monitoring retinal diseases like diabetic retinopathy, age-related macular degeneration, and glaucoma. Current 2D-based methods for retinal vessel (RV) segmentation offer insufficient accuracy. To address this, we propose RVMamba, a novel architecture integrating multiple feature extraction modules with the Mamba state-space model. Moreover, existing joint segmentation models for OCTA data exhibit performance imbalance between different tasks. To simultaneously improve the segmentation of the foveal avascular zone (FAZ) and mitigate this imbalance, we introduce FAZMamba and a unified Joint-OCTAMamba framework. Experimental results on the OCTA-500 dataset demonstrate that Joint-OCTAMamba outperforms existing models across evaluation metrics.The code is available at https://github.com/lc-sfis/Joint-OCTAMamba.
☆ WeatherBench: A Real-World Benchmark Dataset for All-in-One Adverse Weather Image Restoration
Existing all-in-one image restoration approaches, which aim to handle multiple weather degradations within a single framework, are predominantly trained and evaluated using mixed single-weather synthetic datasets. However, these datasets often differ significantly in resolution, style, and domain characteristics, leading to substantial domain gaps that hinder the development and fair evaluation of unified models. Furthermore, the lack of a large-scale, real-world all-in-one weather restoration dataset remains a critical bottleneck in advancing this field. To address these limitations, we present a real-world all-in-one adverse weather image restoration benchmark dataset, which contains image pairs captured under various weather conditions, including rain, snow, and haze, as well as diverse outdoor scenes and illumination settings. The resulting dataset provides precisely aligned degraded and clean images, enabling supervised learning and rigorous evaluation. We conduct comprehensive experiments by benchmarking a variety of task-specific, task-general, and all-in-one restoration methods on our dataset. Our dataset offers a valuable foundation for advancing robust and practical all-in-one image restoration in real-world scenarios. The dataset has been publicly released and is available at https://github.com/guanqiyuan/WeatherBench.
comment: Accepted by ACMMM 2025 Datasets Track
☆ IS-Diff: Improving Diffusion-Based Inpainting with Better Initial Seed
Diffusion models have shown promising results in free-form inpainting. Recent studies based on refined diffusion samplers or novel architectural designs led to realistic results and high data consistency. However, random initialization seed (noise) adopted in vanilla diffusion process may introduce mismatched semantic information in masked regions, leading to biased inpainting results, e.g., low consistency and low coherence with the other unmasked area. To address this issue, we propose the Initial Seed refined Diffusion Model (IS-Diff), a completely training-free approach incorporating distributional harmonious seeds to produce harmonious results. Specifically, IS-Diff employs initial seeds sampled from unmasked areas to imitate the masked data distribution, thereby setting a promising direction for the diffusion procedure. Moreover, a dynamic selective refinement mechanism is proposed to detect severe unharmonious inpaintings in intermediate latent and adjust the strength of our initialization prior dynamically. We validate our method on both standard and large-mask inpainting tasks using the CelebA-HQ, ImageNet, and Places2 datasets, demonstrating its effectiveness across all metrics compared to state-of-the-art inpainting methods.
☆ SpeCa: Accelerating Diffusion Transformers with Speculative Feature Caching
Diffusion models have revolutionized high-fidelity image and video synthesis, yet their computational demands remain prohibitive for real-time applications. These models face two fundamental challenges: strict temporal dependencies preventing parallelization, and computationally intensive forward passes required at each denoising step. Drawing inspiration from speculative decoding in large language models, we present SpeCa, a novel 'Forecast-then-verify' acceleration framework that effectively addresses both limitations. SpeCa's core innovation lies in introducing Speculative Sampling to diffusion models, predicting intermediate features for subsequent timesteps based on fully computed reference timesteps. Our approach implements a parameter-free verification mechanism that efficiently evaluates prediction reliability, enabling real-time decisions to accept or reject each prediction while incurring negligible computational overhead. Furthermore, SpeCa introduces sample-adaptive computation allocation that dynamically modulates resources based on generation complexity, allocating reduced computation for simpler samples while preserving intensive processing for complex instances. Experiments demonstrate 6.34x acceleration on FLUX with minimal quality degradation (5.5% drop), 7.3x speedup on DiT while preserving generation fidelity, and 79.84% VBench score at 6.1x acceleration for HunyuanVideo. The verification mechanism incurs minimal overhead (1.67%-3.5% of full inference costs), establishing a new paradigm for efficient diffusion model inference while maintaining generation quality even at aggressive acceleration ratios. Our codes have been released in Github: \textbf{https://github.com/Shenyi-Z/Cache4Diffusion}
comment: 15 pages, 9 figures, ACM Multimedia 2025
☆ A Controllable 3D Deepfake Generation Framework with Gaussian Splatting
We propose a novel 3D deepfake generation framework based on 3D Gaussian Splatting that enables realistic, identity-preserving face swapping and reenactment in a fully controllable 3D space. Compared to conventional 2D deepfake approaches that suffer from geometric inconsistencies and limited generalization to novel view, our method combines a parametric head model with dynamic Gaussian representations to support multi-view consistent rendering, precise expression control, and seamless background integration. To address editing challenges in point-based representations, we explicitly separate the head and background Gaussians and use pre-trained 2D guidance to optimize the facial region across views. We further introduce a repair module to enhance visual consistency under extreme poses and expressions. Experiments on NeRSemble and additional evaluation videos demonstrate that our method achieves comparable performance to state-of-the-art 2D approaches in identity preservation, as well as pose and expression consistency, while significantly outperforming them in multi-view rendering quality and 3D consistency. Our approach bridges the gap between 3D modeling and deepfake synthesis, enabling new directions for scene-aware, controllable, and immersive visual forgeries, revealing the threat that emerging 3D Gaussian Splatting technique could be used for manipulation attacks.
☆ MVQA-68K: A Multi-dimensional and Causally-annotated Dataset with Quality Interpretability for Video Assessment
With the rapid advancement of video generation models such as Sora, video quality assessment (VQA) is becoming increasingly crucial for selecting high-quality videos from large-scale datasets used in pre-training. Traditional VQA methods, typically producing single numerical scores, often lack comprehensiveness and interpretability. To address these challenges, we introduce MVQA-68K, a novel multi-dimensional VQA dataset comprising over 68,000 carefully annotated videos, covering seven essential quality dimensions: overall aesthetics, camera movement, dynamic degree, texture detail, composition, visual quality, and factual consistency. Each annotation includes detailed chain-of-thought reasoning to facilitate interpretability and comprehensive understanding. Extensive experiments demonstrate that MVQA-68K significantly enhances the performance of various multimodal large language models (MLLMs) on the VQA task, achieving state-of-the-art results not only on our internal test set (Fig.1) but also on public benchmarks including LSVQ-test, LSVQ-1080p, and LIVE-VQC. Meantime, incorporating explicit reasoning process during VQA training substantially boosts the zero-shot generalization. Code and dataset will be available at github: https://github.com/Controller01-ai/MVQA-68K
☆ Optimizing Class Distributions for Bias-Aware Multi-Class Learning
We propose BiCDO (Bias-Controlled Class Distribution Optimizer), an iterative, data-centric framework that identifies Pareto optimized class distributions for multi-class image classification. BiCDO enables performance prioritization for specific classes, which is useful in safety-critical scenarios (e.g. prioritizing 'Human' over 'Dog'). Unlike uniform distributions, BiCDO determines the optimal number of images per class to enhance reliability and minimize bias and variance in the objective function. BiCDO can be incorporated into existing training pipelines with minimal code changes and supports any labelled multi-class dataset. We have validated BiCDO using EfficientNet, ResNet and ConvNeXt on CIFAR-10 and iNaturalist21 datasets, demonstrating improved, balanced model performance through optimized data distribution.
comment: This paper has been accepted for the upcoming 59th Hawaii International Conference on System Sciences (HICSS-59)
☆ Hierarchical Identity Learning for Unsupervised Visible-Infrared Person Re-Identification
Unsupervised visible-infrared person re-identification (USVI-ReID) aims to learn modality-invariant image features from unlabeled cross-modal person datasets by reducing the modality gap while minimizing reliance on costly manual annotations. Existing methods typically address USVI-ReID using cluster-based contrastive learning, which represents a person by a single cluster center. However, they primarily focus on the commonality of images within each cluster while neglecting the finer-grained differences among them. To address the limitation, we propose a Hierarchical Identity Learning (HIL) framework. Since each cluster may contain several smaller sub-clusters that reflect fine-grained variations among images, we generate multiple memories for each existing coarse-grained cluster via a secondary clustering. Additionally, we propose Multi-Center Contrastive Learning (MCCL) to refine representations for enhancing intra-modal clustering and minimizing cross-modal discrepancies. To further improve cross-modal matching quality, we design a Bidirectional Reverse Selection Transmission (BRST) mechanism, which establishes reliable cross-modal correspondences by performing bidirectional matching of pseudo-labels. Extensive experiments conducted on the SYSU-MM01 and RegDB datasets demonstrate that the proposed method outperforms existing approaches. The source code is available at: https://github.com/haonanshi0125/HIL.
☆ Gaussian-Plus-SDF SLAM: High-fidelity 3D Reconstruction at 150+ fps
While recent Gaussian-based SLAM methods achieve photorealistic reconstruction from RGB-D data, their computational performance remains a critical bottleneck. State-of-the-art techniques operate at less than 20 fps, significantly lagging behind geometry-centric approaches like KinectFusion (hundreds of fps). This limitation stems from the heavy computational burden: modeling scenes requires numerous Gaussians and complex iterative optimization to fit RGB-D data, where insufficient Gaussian counts or optimization iterations cause severe quality degradation. To address this, we propose a Gaussian-SDF hybrid representation, combining a colorized Signed Distance Field (SDF) for smooth geometry and appearance with 3D Gaussians to capture underrepresented details. The SDF is efficiently constructed via RGB-D fusion (as in geometry-centric methods), while Gaussians undergo iterative optimization. Our representation enables drastic Gaussian reduction (50% fewer) by avoiding full-scene Gaussian modeling, and efficient Gaussian optimization (75% fewer iterations) through targeted appearance refinement. Building upon this representation, we develop GPS-SLAM (Gaussian-Plus-SDF SLAM), a real-time 3D reconstruction system achieving over 150 fps on real-world Azure Kinect sequences -- delivering an order-of-magnitude speedup over state-of-the-art techniques while maintaining comparable reconstruction quality. We will release the source code and data to facilitate future research.
☆ How Auxiliary Reasoning Unleashes GUI Grounding in VLMs
Graphical user interface (GUI) grounding is a fundamental task for building GUI agents. However, general vision-language models (VLMs) struggle with this task due to a lack of specific optimization. We identify a key gap in this paper: while VLMs exhibit significant latent grounding potential, as demonstrated by their performance measured by Pointing Game, they underperform when tasked with outputting explicit coordinates. To address this discrepancy, and bypass the high data and annotation costs of current fine-tuning approaches, we propose three zero-shot auxiliary reasoning methods. By providing explicit spatial cues such as axes, grids and labeled intersections as part of the input image, these methods enable VLMs to articulate their implicit spatial understanding capabilities. We evaluate these methods on four GUI grounding benchmarks across seven open-source and proprietary VLMs. The evaluation results demonstrate that the proposed methods substantially improve the performance of GUI grounding.
☆ Multiple Instance Learning Framework with Masked Hard Instance Mining for Gigapixel Histopathology Image Analysis
Digitizing pathological images into gigapixel Whole Slide Images (WSIs) has opened new avenues for Computational Pathology (CPath). As positive tissue comprises only a small fraction of gigapixel WSIs, existing Multiple Instance Learning (MIL) methods typically focus on identifying salient instances via attention mechanisms. However, this leads to a bias towards easy-to-classify instances while neglecting challenging ones. Recent studies have shown that hard examples are crucial for accurately modeling discriminative boundaries. Applying such an idea at the instance level, we elaborate a novel MIL framework with masked hard instance mining (MHIM-MIL), which utilizes a Siamese structure with a consistency constraint to explore the hard instances. Using a class-aware instance probability, MHIM-MIL employs a momentum teacher to mask salient instances and implicitly mine hard instances for training the student model. To obtain diverse, non-redundant hard instances, we adopt large-scale random masking while utilizing a global recycle network to mitigate the risk of losing key features. Furthermore, the student updates the teacher using an exponential moving average, which identifies new hard instances for subsequent training iterations and stabilizes optimization. Experimental results on cancer diagnosis, subtyping, survival analysis tasks, and 12 benchmarks demonstrate that MHIM-MIL outperforms the latest methods in both performance and efficiency. The code is available at: https://github.com/DearCaat/MHIM-MIL.
comment: 27 pages, 8 figures
☆ Geometric Analysis of Magnetic Labyrinthine Stripe Evolution via U-Net Segmentation
Labyrinthine stripe patterns are common in many physical systems, yet their lack of long-range order makes quantitative characterization challenging. We investigate the evolution of such patterns in bismuth-doped yttrium iron garnet (Bi:YIG) films subjected to a magnetic field annealing protocol. A U-Net deep learning model, trained with synthetic degradations including additive white Gaussian and Simplex noise, enables robust segmentation of experimental magneto-optical images despite noise and occlusions. Building on this segmentation, we develop a geometric analysis pipeline based on skeletonization, graph mapping, and spline fitting, which quantifies local stripe propagation through length and curvature measurements. Applying this framework to 444 images from 12 annealing protocol trials, we analyze the transition from the "quenched" state to a more parallel and coherent "annealed" state, and identify two distinct evolution modes (Type A and Type B) linked to field polarity. Our results provide a quantitative analysis of geometric and topological properties in magnetic stripe patterns and offer new insights into their local structural evolution, and establish a general tool for analyzing complex labyrinthine systems.
comment: 15 pages, 13 figures. This manuscript has been submitted to IEEE Access for possible publication. It has not yet been peer reviewed or accepted
☆ Cross-Platform Scaling of Vision-Language-Action Models from Edge to Cloud GPUs
Vision-Language-Action (VLA) models have emerged as powerful generalist policies for robotic control, yet their performance scaling across model architectures and hardware platforms, as well as their associated power budgets, remain poorly understood. This work presents an evaluation of five representative VLA models -- spanning state-of-the-art baselines and two newly proposed architectures -- targeting edge and datacenter GPU platforms. Using the LIBERO benchmark, we measure accuracy alongside system-level metrics, including latency, throughput, and peak memory usage, under varying edge power constraints and high-performance datacenter GPU configurations. Our results identify distinct scaling trends: (1) architectural choices, such as action tokenization and model backbone size, strongly influence throughput and memory footprint; (2) power-constrained edge devices exhibit non-linear performance degradation, with some configurations matching or exceeding older datacenter GPUs; and (3) high-throughput variants can be achieved without significant accuracy loss. These findings provide actionable insights when selecting and optimizing VLAs across a range of deployment constraints. Our work challenges current assumptions about the superiority of datacenter hardware for robotic inference.
comment: To appear in the Asilomar Conference on Signals, Systems, and Computers 2025
♻ ☆ Towards Understanding Visual Grounding in Visual Language Models
Visual grounding refers to the ability of a model to identify a region within some visual input that matches a textual description. Consequently, a model equipped with visual grounding capabilities can target a wide range of applications in various domains, including referring expression comprehension, answering questions pertinent to fine-grained details in images or videos, caption visual context by explicitly referring to entities, as well as low and high-level control in simulated and real environments. In this survey paper, we review representative works across the key areas of research on modern general-purpose vision language models (VLMs). We first outline the importance of grounding in VLMs, then delineate the core components of the contemporary paradigm for developing grounded models, and examine their practical applications, including benchmarks and evaluation metrics for grounded multimodal generation. We also discuss the multifaceted interrelations among visual grounding, multimodal chain-of-thought, and reasoning in VLMs. Finally, we analyse the challenges inherent to visual grounding and suggest promising directions for future research.
♻ ☆ On the Geometric Accuracy of Implicit and Primitive-based Representations Derived from View Rendering Constraints
We present the first systematic comparison of implicit and explicit Novel View Synthesis methods for space-based 3D object reconstruction, evaluating the role of appearance embeddings. While embeddings improve photometric fidelity by modeling lighting variation, we show they do not translate into meaningful gains in geometric accuracy - a critical requirement for space robotics applications. Using the SPEED+ dataset, we compare K-Planes, Gaussian Splatting, and Convex Splatting, and demonstrate that embeddings primarily reduce the number of primitives needed for explicit methods rather than enhancing geometric fidelity. Moreover, convex splatting achieves more compact and clutter-free representations than Gaussian splatting, offering advantages for safety-critical applications such as interaction and collision avoidance. Our findings clarify the limits of appearance embeddings for geometry-centric tasks and highlight trade-offs between reconstruction quality and representation efficiency in space scenarios.
comment: 9 pages, 3 figures, to be presented at ASTRA25,
♻ ☆ Earth Observation Foundation Model PhilEO: Pretraining on the MajorTOM and FastTOM Datasets
Today, Earth Observation (EO) satellites generate massive volumes of data, with the Copernicus Sentinel-2 constellation alone producing approximately 1.6TB per day. To fully exploit this information, it is essential to pretrain EO Foundation Models (FMs) on large unlabeled datasets, enabling efficient fine-tuning for several different downstream tasks with minimal labeled data. In this work, we present the scaling-up of our recently proposed EO Foundation Model, PhilEO Geo-Aware U-Net, on the unlabeled 23TB dataset MajorTOM, which covers the vast majority of the Earth's surface, as well as on the specialized subset FastTOM 2TB that does not include oceans and ice. We develop and study various PhilEO model variants with different numbers of parameters and architectures. We fine-tune the models on the PhilEO Bench for road density estimation, building density pixel-wise regression, and land cover semantic segmentation, and we evaluate the performance. Our results demonstrate that for all n-shots for road density regression, the PhilEO 44M MajorTOM 23TB model outperforms PhilEO Globe 0.5TB 44M. We also show that for most n-shots for road density estimation and building density regression, PhilEO 200M FastTOM outperforms all the other models we examine. The effectiveness of both dataset and model scaling is validated using the PhilEO Bench. We also study the impact of architecture scaling, transitioning from U-Net Convolutional Neural Networks (CNN) to Vision Transformers (ViT).
comment: 15 pages, 22 figures, 2 tables, 64 references
♻ ☆ LayerLock: Non-collapsing Representation Learning with Progressive Freezing ICCV 2025
We introduce LayerLock, a simple yet effective approach for self-supervised visual representation learning, that gradually transitions from pixel to latent prediction through progressive layer freezing. First, we make the observation that during training of video masked-autoencoding (MAE) models, ViT layers converge in the order of their depth: shallower layers converge early, deeper layers converge late. We then show that this observation can be exploited to accelerate standard MAE by progressively freezing the model according to an explicit schedule, throughout training. Furthermore, this same schedule can be used in a simple and scalable approach to latent prediction that does not suffer from "representation collapse". We apply our proposed approach, LayerLock, to large models of up to 4B parameters with results surpassing those of non-latent masked prediction on the 4DS perception suite.
comment: ICCV 2025
♻ ☆ Similarity-based Outlier Detection for Noisy Object Re-Identification Using Beta Mixtures
Object re-identification (Re-ID) methods are highly sensitive to label noise, which typically leads to significant performance degradation. We address this challenge by reframing Re-ID as a supervised image similarity task and adopting a Siamese network architecture trained to capture discriminative pairwise relationships. Central to our approach is a novel statistical outlier detection (OD) framework, termed Beta-SOD (Beta mixture Similarity-based Outlier Detection), which models the distribution of cosine similarities between embedding pairs using a two-component Beta distribution mixture model. We establish a novel identifiability result for mixtures of two Beta distributions, ensuring that our learning task is well-posed. The proposed OD step complements the Re-ID architecture combining binary cross-entropy, contrastive, and cosine embedding losses that jointly optimize feature-level similarity learning. We demonstrate the effectiveness of Beta-SOD in de-noising and Re-ID tasks for person Re-ID, on CUHK03 and Market-1501 datasets, and vehicle Re-ID, on VeRi-776 dataset. Our method shows superior performance compared to the state-of-the-art methods across various noise levels (10-30\%), demonstrating both robustness and broad applicability in noisy Re-ID scenarios. The implementation of Beta-SOD is available at: github.com/waqar3411/Beta-SOD
♻ ☆ On the Generalization of Representation Uncertainty in Earth Observation ICCV 2025
Recent advances in Computer Vision have introduced the concept of pretrained representation uncertainty, enabling zero-shot uncertainty estimation. This holds significant potential for Earth Observation (EO), where trustworthiness is critical, yet the complexity of EO data poses challenges to uncertainty-aware methods. In this work, we investigate the generalization of representation uncertainty in EO, considering the domain's unique semantic characteristics. We pretrain uncertainties on large EO datasets and propose an evaluation framework to assess their zero-shot performance in multi-label classification and segmentation EO tasks. Our findings reveal that, unlike uncertainties pretrained on natural images, EO-pretraining exhibits strong generalization across unseen EO domains, geographic locations, and target granularities, while maintaining sensitivity to variations in ground sampling distance. We demonstrate the practical utility of pretrained uncertainties showcasing their alignment with task-specific uncertainties in downstream tasks, their sensitivity to real-world EO image noise, and their ability to generate spatial uncertainty estimates out-of-the-box. Initiating the discussion on representation uncertainty in EO, our study provides insights into its strengths and limitations, paving the way for future research in the field. Code and weights are available at: https://github.com/Orion-AI-Lab/EOUncertaintyGeneralization.
comment: Accepted to ICCV 2025
♻ ☆ Video Signature: In-generation Watermarking for Latent Video Diffusion Models
The rapid development of Artificial Intelligence Generated Content (AIGC) has led to significant progress in video generation but also raises serious concerns about intellectual property protection and reliable content tracing. Watermarking is a widely adopted solution to this issue, but existing methods for video generation mainly follow a post-generation paradigm, which introduces additional computational overhead and often fails to effectively balance the trade-off between video quality and watermark extraction. To address these issues, we propose Video Signature (VIDSIG), an in-generation watermarking method for latent video diffusion models, which enables implicit and adaptive watermark integration during generation. Specifically, we achieve this by partially fine-tuning the latent decoder, where Perturbation-Aware Suppression (PAS) pre-identifies and freezes perceptually sensitive layers to preserve visual quality. Beyond spatial fidelity, we further enhance temporal consistency by introducing a lightweight Temporal Alignment module that guides the decoder to generate coherent frame sequences during fine-tuning. Experimental results show that VIDSIG achieves the best overall performance in watermark extraction, visual quality, and generation efficiency. It also demonstrates strong robustness against both spatial and temporal tampering, highlighting its practicality in real-world scenarios. Our code is available at \href{https://github.com/hardenyu21/Video-Signature}{here}
♻ ☆ HSIDMamba: Exploring Bidirectional State-Space Models for Hyperspectral Denoising
Effectively modeling global context information in hyperspectral image (HSI) denoising is crucial, but prevailing methods using convolution or transformers still face localized or computational efficiency limitations. Inspired by the emerging Selective State Space Model (Mamba) with nearly linear computational complexity and efficient long-term modeling, we present a novel HSI denoising network named HSIDMamba (HSDM). HSDM is tailored to exploit the capture of potential spatial-spectral dependencies effectively and efficiently for HSI denoising. In particular, HSDM comprises multiple Hyperspectral Continuous Scan Blocks (HCSB) to strengthen spatial-spectral interactions. HCSB links forward and backward scans and enhances information from eight directions through the State Space Model (SSM), strengthening the context representation learning of HSDM and improving denoising performance more effectively. In addition, to enhance the utilization of spectral information and mitigate the degradation problem caused by long-range scanning, spectral attention mechanism. Extensive evaluations against HSI denoising benchmarks validate the superior performance of HSDM, achieving state-of-the-art performance and surpassing the efficiency of the transformer method SERT by 31%.
♻ ☆ Eye, Robot: Learning to Look to Act with a BC-RL Perception-Action Loop
Humans do not passively observe the visual world -- we actively look in order to act. Motivated by this principle, we introduce EyeRobot, a robotic system with gaze behavior that emerges from the need to complete real-world tasks. We develop a mechanical eyeball that can freely rotate to observe its surroundings and train a gaze policy to control it using reinforcement learning. We accomplish this by first collecting teleoperated demonstrations paired with a 360 camera. This data is imported into a simulation environment that supports rendering arbitrary eyeball viewpoints, allowing episode rollouts of eye gaze on top of robot demonstrations. We then introduce a BC-RL loop to train the hand and eye jointly: the hand (BC) agent is trained from rendered eye observations, and the eye (RL) agent is rewarded when the hand produces correct action predictions. In this way, hand-eye coordination emerges as the eye looks towards regions which allow the hand to complete the task. EyeRobot implements a foveal-inspired policy architecture allowing high resolution with a small compute budget, which we find also leads to the emergence of more stable fixation as well as improved ability to track objects and ignore distractors. We evaluate EyeRobot on five panoramic workspace manipulation tasks requiring manipulation in an arc surrounding the robot arm. Our experiments suggest EyeRobot exhibits hand-eye coordination behaviors which effectively facilitate manipulation over large workspaces with a single camera. See project site for videos: https://www.eyerobot.net/
comment: CoRL 2025, project page: https://www.eyerobot.net/
♻ ☆ Social Perception of Faces in a Vision-Language Model
We explore social perception of human faces in CLIP, a widely used open-source vision-language model. To this end, we compare the similarity in CLIP embeddings between different textual prompts and a set of face images. Our textual prompts are constructed from well-validated social psychology terms denoting social perception. The face images are synthetic and are systematically and independently varied along six dimensions: the legally protected attributes of age, gender, and race, as well as facial expression, lighting, and pose. Independently and systematically manipulating face attributes allows us to study the effect of each on social perception and avoids confounds that can occur in wild-collected data due to uncontrolled systematic correlations between attributes. Thus, our findings are experimental rather than observational. Our main findings are three. First, while CLIP is trained on the widest variety of images and texts, it is able to make fine-grained human-like social judgments on face images. Second, age, gender, and race do systematically impact CLIP's social perception of faces, suggesting an undesirable bias in CLIP vis-a-vis legally protected attributes. Most strikingly, we find a strong pattern of bias concerning the faces of Black women, where CLIP produces extreme values of social perception across different ages and facial expressions. Third, facial expression impacts social perception more than age and lighting as much as age. The last finding predicts that studies that do not control for unprotected visual attributes may reach the wrong conclusions on bias. Our novel method of investigation, which is founded on the social psychology literature and on the experiments involving the manipulation of individual attributes, yields sharper and more reliable observations than previous observational methods and may be applied to study biases in any vision-language model.
♻ ☆ RISE: Enhancing VLM Image Annotation with Self-Supervised Reasoning
Vision-Language Models (VLMs) struggle with complex image annotation tasks, such as emotion classification and context-driven object detection, which demand sophisticated reasoning. Standard Supervised Fine-Tuning (SFT) focuses solely on annotation outcomes, ignoring underlying rationales, while Visual Reinforcement Fine-Tuning (Visual-RFT) produces inconsistent Chains of Thought (CoTs) due to the absence of high-quality, verified CoTs during pre-training. We introduce RISE (Reason-Inspire-Strengthen-Expertise), a two-stage framework to overcome these limitations. In the Reason stage (RISE-CoT), a reinforcement learning-driven "annotation-reasoning-annotation" closed-loop generates visually grounded, logically consistent CoTs by verifying their ability to reconstruct original annotations without direct leakage. The Inspire and Strengthen stage (RISE-R1) leverages a high-quality CoT subset, filtered by RISE-CoT rewards, for supervised fine-tuning, followed by reinforcement fine-tuning to produce interpretable reasoning and accurate annotations, achieving Expertise in complex visual tasks. Evaluated on complex and simple image annotation tasks, RISE-trained Qwen2-VL-2B outperforms SFT and Visual-RFT, achieving robust performance and enhanced explainability. RISE offers a self-supervised solution for advancing VLM reasoning without requiring manually annotated CoTs.Code and resources are available at: https://github.com/HSH55/RISE.
♻ ☆ Learning Precise Affordances from Egocentric Videos for Robotic Manipulation ICCV 2025
Affordance, defined as the potential actions that an object offers, is crucial for embodied AI agents. For example, such knowledge directs an agent to grasp a knife by the handle for cutting or by the blade for safe handover. While existing approaches have made notable progress, affordance research still faces three key challenges: data scarcity, poor generalization, and real-world deployment. Specifically, there is a lack of large-scale affordance datasets with precise segmentation maps, existing models struggle to generalize across different domains or novel object and affordance classes, and little work demonstrates deployability in real-world scenarios. In this work, we address these issues by proposing a complete affordance learning system that (1) takes in egocentric videos and outputs precise affordance annotations without human labeling, (2) leverages geometric information and vision foundation models to improve generalization, and (3) introduces a framework that facilitates affordance-oriented robotic manipulation such as tool grasping and robot-to-human tool handover. Experimental results show that our model surpasses the state-of-the-art by 13.8% in mIoU, and the framework achieves 77.1% successful grasping among 179 trials, including evaluations on seen, unseen classes, and cluttered scenes. Project page: https://reagan1311.github.io/affgrasp.
comment: ICCV 2025
♻ ☆ Regist3R: Incremental Registration with Stereo Foundation Model
Multi-view 3D reconstruction has remained an essential yet challenging problem in the field of computer vision. While DUSt3R and its successors have achieved breakthroughs in 3D reconstruction from unposed images, these methods exhibit significant limitations when scaling to multi-view scenarios, including high computational cost and cumulative error induced by global alignment. To address these challenges, we propose Regist3R, a novel stereo foundation model tailored for efficient and scalable incremental reconstruction. Regist3R leverages an incremental reconstruction paradigm, enabling large-scale 3D reconstructions from unordered and many-view image collections. We evaluate Regist3R on public datasets for camera pose estimation and 3D reconstruction. Our experiments demonstrate that Regist3R achieves comparable performance with optimization-based methods while significantly improving computational efficiency, and outperforms existing multi-view reconstruction models. Furthermore, to assess its performance in real-world applications, we introduce a challenging oblique aerial dataset which has long spatial spans and hundreds of views. The results highlight the effectiveness of Regist3R. We also demonstrate the first attempt to reconstruct large-scale scenes encompassing over thousands of views through pointmap-based foundation models, showcasing its potential for practical applications in large-scale 3D reconstruction tasks, including urban modeling, aerial mapping, and beyond.
comment: Accepted by ACM Multimedia 2025. github link: https://github.com/Liu-SD/Regist3R
♻ ☆ Avat3r: Large Animatable Gaussian Reconstruction Model for High-fidelity 3D Head Avatars
Traditionally, creating photo-realistic 3D head avatars requires a studio-level multi-view capture setup and expensive optimization during test-time, limiting the use of digital human doubles to the VFX industry or offline renderings. To address this shortcoming, we present Avat3r, which regresses a high-quality and animatable 3D head avatar from just a few input images, vastly reducing compute requirements during inference. More specifically, we make Large Reconstruction Models animatable and learn a powerful prior over 3D human heads from a large multi-view video dataset. For better 3D head reconstructions, we employ position maps from DUSt3R and generalized feature maps from the human foundation model Sapiens. To animate the 3D head, our key discovery is that simple cross-attention to an expression code is already sufficient. Finally, we increase robustness by feeding input images with different expressions to our model during training, enabling the reconstruction of 3D head avatars from inconsistent inputs, e.g., an imperfect phone capture with accidental movement, or frames from a monocular video. We compare Avat3r with current state-of-the-art methods for few-input and single-input scenarios, and find that our method has a competitive advantage in both tasks. Finally, we demonstrate the wide applicability of our proposed model, creating 3D head avatars from images of different sources, smartphone captures, single images, and even out-of-domain inputs like antique busts. Project website: https://tobias-kirschstein.github.io/avat3r/
comment: Project website: https://tobias-kirschstein.github.io/avat3r/, Video: https://youtu.be/P3zNVx15gYs
♻ ☆ KB-DMGen: Knowledge-Based Global Guidance and Dynamic Pose Masking for Human Image Generation
Recent methods using diffusion models have made significant progress in Human Image Generation (HIG) with various control signals such as pose priors. In HIG, both accurate human poses and coherent visual quality are crucial for image generation. However, most existing methods mainly focus on pose accuracy while neglecting overall image quality, often improving pose alignment at the cost of image quality. To address this, we propose Knowledge-Based Global Guidance and Dynamic pose Masking for human image Generation (KB-DMGen). The Knowledge Base (KB), implemented as a visual codebook, provides coarse, global guidance based on input text-related visual features, improving pose accuracy while maintaining image quality, while the Dynamic pose Mask (DM) offers fine-grained local control to enhance precise pose accuracy. By injecting KB and DM at different stages of the diffusion process, our framework enhances pose accuracy through both global and local control without compromising image quality. Experiments demonstrate the effectiveness of KB-DMGen, achieving new state-of-the-art results in terms of AP and CAP on the HumanArt dataset. The project page and code are available at https://lushbng.github.io/KBDMGen.
♻ ☆ 3D Mesh Editing using Masked LRMs ICCV 2025
We present a novel approach to shape editing, building on recent progress in 3D reconstruction from multi-view images. We formulate shape editing as a conditional reconstruction problem, where the model must reconstruct the input shape with the exception of a specified 3D region, in which the geometry should be generated from the conditional signal. To this end, we train a conditional Large Reconstruction Model (LRM) for masked reconstruction, using multi-view consistent masks rendered from a randomly generated 3D occlusion, and using one clean viewpoint as the conditional signal. During inference, we manually define a 3D region to edit and provide an edited image from a canonical viewpoint to fill that region. We demonstrate that, in just a single forward pass, our method not only preserves the input geometry in the unmasked region through reconstruction capabilities on par with SoTA, but is also expressive enough to perform a variety of mesh edits from a single image guidance that past works struggle with, while being 2-10x faster than the top-performing prior work.
comment: ICCV 2025. Project Page: https://chocolatebiscuit.github.io/MaskedLRM/
♻ ☆ Long-Tailed 3D Detection via Multi-Modal Fusion
Contemporary autonomous vehicle (AV) benchmarks have advanced techniques for training 3D detectors. While class labels naturally follow a long-tailed distribution in the real world, existing benchmarks only focus on a few common classes (e.g., pedestrian and car) and neglect many rare but crucial classes (e.g., emergency vehicle and stroller). However, AVs must reliably detect both common and rare classes for safe operation in the open world. We address this challenge by formally studying the problem of Long-Tailed 3D Detection (LT3D), which evaluates all annotated classes, including those in-the-tail. We address LT3D with hierarchical losses that promote feature sharing across classes, and introduce diagnostic metrics that award partial credit to "reasonable" mistakes with respect to the semantic hierarchy. Further, we point out that rare-class accuracy is particularly improved via multi-modal late fusion (MMLF) of independently trained uni-modal LiDAR and RGB detectors. Such an MMLF framework allows us to leverage large-scale uni-modal datasets (with more examples for rare classes) to train better uni-modal detectors. Finally, we examine three critical components of our simple MMLF approach from first principles: whether to train 2D or 3D RGB detectors for fusion, whether to match RGB and LiDAR detections in 3D or the projected 2D image plane, and how to fuse matched detections. Extensive experiments reveal that 2D RGB detectors achieve better recognition accuracy for rare classes than 3D RGB detectors, matching on the 2D image plane mitigates depth estimation errors for better matching, and score calibration and probabilistic fusion notably improves the final performance further. Our MMLF significantly outperforms prior work for LT3D, particularly improving on the six rarest classes from 12.8 to 20.0 mAP! Our code and models are available on our project page.
comment: The first two authors contributed equally. Project page: https://mayechi.github.io/lt3d-lf-io/
♻ ☆ Automated Building Heritage Assessment Using Street-Level Imagery
Detailed data is required to quantify energy conservation measures in buildings, such as envelop retrofits, without compromising cultural heritage. Novel artificial intelligence tools may improve efficiency in identifying heritage values in buildings compared to costly and time-consuming traditional inventories. In this study, the large language model GPT was used to detect various aspects of cultural heritage value in fa\c{c}ade images. Using this data and building register data as features, machine learning models were trained to classify multi-family and non-residential buildings in Stockholm, Sweden. Validation against an expert-created inventory shows a macro F1-score of 0.71 using a combination of register data and features retrieved from GPT, and a score of 0.60 using only GPT-derived data. The presented methodology can contribute to a higher-quality database and thus support careful energy efficiency measures and integrated consideration of heritage value in large-scale energetic refurbishment scenarios.
♻ ☆ PartComposer: Learning and Composing Part-Level Concepts from Single-Image Examples
We present PartComposer: a framework for part-level concept learning from single-image examples that enables text-to-image diffusion models to compose novel objects from meaningful components. Existing methods either struggle with effectively learning fine-grained concepts or require a large dataset as input. We propose a dynamic data synthesis pipeline generating diverse part compositions to address one-shot data scarcity. Most importantly, we propose to maximize the mutual information between denoised latents and structured concept codes via a concept predictor, enabling direct regulation on concept disentanglement and re-composition supervision. Our method achieves strong disentanglement and controllable composition, outperforming subject and part-level baselines when mixing concepts from the same, or different, object categories.
♻ ☆ Less is More: Token-Efficient Video-QA via Adaptive Frame-Pruning and Semantic Graph Integration AAAI 2026
The practical application of Multimodal Large Language Models (MLLMs) to Video Question Answering (Video-QA) is severely hindered by the high token cost of processing numerous video frames. While increasing the number of sampled frames is a common strategy, we observe a "less is more" phenomenon where excessive frames can paradoxically degrade performance due to context dilution. Concurrently, state-of-the-art keyframe selection methods, while effective, still yield significant temporal redundancy, which we term 'visual echoes'. To address these dual challenges, we propose Adaptive Frame-Pruning (AFP), a novel post-processing method that intelligently prunes the selected keyframes. AFP employs an adaptive hierarchical clustering algorithm on a fused ResNet-50 and CLIP feature space to identify and merge these echoes into single representatives. To compensate for information loss, we then introduce a lightweight, text-based semantic graph that provides critical context with minimal token overhead. Conducting extensive experiments on the LongVideoBench and VideoMME benchmarks across multiple leading MLLMs, our full approach demonstrates a drastic reduction in required frames by up to 86.9% and total input tokens by up to 83.2%. Crucially, by providing a concise, high-quality set of frames, our method not only enhances efficiency but often improves accuracy over baselines that use more frames. The code will be released upon publication.
comment: Corresponding authors: Weiyu Guo, Hui Xiong. This manuscript is a preprint. An earlier version of this work was submitted to AAAI 2026. This version has been revised and is formatted using the AAAI 2026 style file
♻ ☆ InstructHumans: Editing Animated 3D Human Textures with Instructions
We present InstructHumans, a novel framework for instruction-driven {animatable} 3D human texture editing. Existing text-based 3D editing methods often directly apply Score Distillation Sampling (SDS). SDS, designed for generation tasks, cannot account for the defining requirement of editing -- maintaining consistency with the source avatar. This work shows that naively using SDS harms editing, as it may destroy consistency. We propose a modified SDS for Editing (SDS-E) that selectively incorporates subterms of SDS across diffusion timesteps. We further enhance SDS-E with spatial smoothness regularization and gradient-based viewpoint sampling for edits with sharp and high-fidelity detailing. Incorporating SDS-E into a 3D human texture editing framework allows us to outperform existing 3D editing methods. Our avatars faithfully reflect the textual edits while remaining consistent with the original avatars. Project page: https://jyzhu.top/instruct-humans/.
comment: Accepted for publication in IEEE Transactions on Multimedia (TMM), 2025
♻ ☆ HD-OOD3D: Supervised and Unsupervised Out-of-Distribution object detection in LiDAR data IROS
Autonomous systems rely on accurate 3D object detection from LiDAR data, yet most detectors are limited to a predefined set of known classes, making them vulnerable to unexpected out-of-distribution (OOD) objects. In this work, we present HD-OOD3D, a novel two-stage method for detecting unknown objects. We demonstrate the superiority of two-stage approaches over single-stage methods, achieving more robust detection of unknown objects while addressing key challenges in the evaluation protocol. Furthermore, we conduct an in-depth analysis of the standard evaluation protocol for OOD detection, revealing the critical impact of hyperparameter choices. To address the challenge of scaling the learning of unknown objects, we explore unsupervised training strategies to generate pseudo-labels for unknowns. Among the different approaches evaluated, our experiments show that top-5 auto-labelling offers more promising performance compared to simple resizing techniques.
comment: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2025
♻ ☆ So-Fake: Benchmarking and Explaining Social Media Image Forgery Detection
Recent advances in AI-powered generative models have enabled the creation of increasingly realistic synthetic images, posing significant risks to information integrity and public trust on social media platforms. While robust detection frameworks and diverse, large-scale datasets are essential to mitigate these risks, existing academic efforts remain limited in scope: current datasets lack the diversity, scale, and realism required for social media contexts, while detection methods struggle with generalization to unseen generative technologies. To bridge this gap, we introduce So-Fake-Set, a comprehensive social media-oriented dataset with over 2 million high-quality images, diverse generative sources, and photorealistic imagery synthesized using 35 state-of-the-art generative models. To rigorously evaluate cross-domain robustness, we establish a novel and large-scale (100K) out-of-domain benchmark (So-Fake-OOD) featuring synthetic imagery from commercial models explicitly excluded from the training distribution, creating a realistic testbed for evaluating real-world performance. Leveraging these resources, we present So-Fake-R1, an advanced vision-language framework that employs reinforcement learning for highly accurate forgery detection, precise localization, and explainable inference through interpretable visual rationales. Extensive experiments show that So-Fake-R1 outperforms the second-best method, with a 1.3% gain in detection accuracy and a 4.5% increase in localization IoU. By integrating a scalable dataset, a challenging OOD benchmark, and an advanced detection framework, this work establishes a new foundation for social media-centric forgery detection research. The code, models, and datasets will be released publicly.
♻ ☆ A Statistical 3D Stomach Shape Model for Anatomical Analysis
Realistic and parameterized 3D models of human anatomy have become invaluable in research, diagnostics, and surgical planning. However, the development of detailed models for internal organs, such as the stomach, has been limited by data availability and methodological challenges. In this paper, we propose a novel pipeline for the generation of synthetic 3D stomach models, enabling the creation of anatomically diverse morphologies informed by established studies on stomach shape variability. Using this pipeline, we construct a dataset of synthetic stomachs. Building on this dataset, we develop a 3D statistical shape model of the stomach, trained to capture natural anatomical variability in a low-dimensional shape space. The model is further refined using CT meshes derived from publicly available datasets through a semi-supervised alignment process, enhancing its ability to generalize to unseen anatomical variations. We evaluated the model on a held-out test set of real stomach CT scans, demonstrating robust generalization and fit accuracy. We make the statistical shape model along with the synthetic dataset publicly available on GitLab: https://gitlab.com/Erez.Posner/stomach_pytorch to facilitate further research. This work introduces the first statistical 3D shape model of the stomach, with applications ranging from surgical simulation and pre-operative planning to medical education and computational modeling. By combining synthetic data generation, parametric modeling, and real-world validation, our approach represents a significant advancement in organ modeling and opens new possibilities for personalized healthcare solutions.
♻ ☆ CVVNet: A Cross-Vertical-View Network for Gait Recognition
Gait recognition enables contact-free, long-range person identification that is robust to clothing variations and non-cooperative scenarios. While existing methods perform well in controlled indoor environments, they struggle with cross-vertical view scenarios, where surveillance angles vary significantly in elevation. Our experiments show up to 60\% accuracy degradation in low-to-high vertical view settings due to severe deformations and self-occlusions of key anatomical features. Current CNN and self-attention-based methods fail to effectively handle these challenges, due to their reliance on single-scale convolutions or simplistic attention mechanisms that lack effective multi-frequency feature integration. To tackle this challenge, we propose CVVNet (Cross-Vertical-View Network), a frequency aggregation architecture specifically designed for robust cross-vertical-view gait recognition. CVVNet employs a High-Low Frequency Extraction module (HLFE) that adopts parallel multi-scale convolution/max-pooling path and self-attention path as high- and low-frequency mixers for effective multi-frequency feature extraction from input silhouettes. We also introduce the Dynamic Gated Aggregation (DGA) mechanism to adaptively adjust the fusion ratio of high- and low-frequency features. The integration of our core Multi-Scale Attention Gated Aggregation (MSAGA) module, HLFE and DGA enables CVVNet to effectively handle distortions from view changes, significantly improving the recognition robustness across different vertical views. Experimental results show that our CVVNet achieves state-of-the-art performance, with $8.6\%$ improvement on DroneGait and $2\%$ on Gait3D compared with the best existing methods.
♻ ☆ SCP-Diff: Spatial-Categorical Joint Prior for Diffusion Based Semantic Image Synthesis SC
Semantic image synthesis (SIS) shows good promises for sensor simulation. However, current best practices in this field, based on GANs, have not yet reached the desired level of quality. As latent diffusion models make significant strides in image generation, we are prompted to evaluate ControlNet, a notable method for its dense control capabilities. Our investigation uncovered two primary issues with its results: the presence of weird sub-structures within large semantic areas and the misalignment of content with the semantic mask. Through empirical study, we pinpointed the cause of these problems as a mismatch between the noised training data distribution and the standard normal prior applied at the inference stage. To address this challenge, we developed specific noise priors for SIS, encompassing spatial, categorical, and a novel spatial-categorical joint prior for inference. This approach, which we have named SCP-Diff, has set new state-of-the-art results in SIS on Cityscapes, ADE20K and COCO-Stuff, yielding a FID as low as 10.53 on Cityscapes. The code and models can be accessed via the project page.
comment: Project Page: https://air-discover.github.io/SCP-Diff/
♻ ☆ SRSNetwork: Siamese Reconstruction-Segmentation Networks based on Dynamic-Parameter Convolution
Dynamic convolution demonstrates outstanding representation capabilities, which are crucial for natural image segmentation. However, it fails when applied to medical image segmentation (MIS) and infrared small target segmentation (IRSTS) due to limited data and limited fitting capacity. In this paper, we propose a new type of dynamic convolution called dynamic parameter convolution (DPConv) which shows superior fitting capacity, and it can efficiently leverage features from deep layers of encoder in reconstruction tasks to generate DPConv kernels that adapt to input variations.Moreover, we observe that DPConv, built upon deep features derived from reconstruction tasks, significantly enhances downstream segmentation performance. We refer to the segmentation network integrated with DPConv generated from reconstruction network as the siamese reconstruction-segmentation network (SRS). We conduct extensive experiments on seven datasets including five medical datasets and two infrared datasets, and the experimental results demonstrate that our method can show superior performance over several recently proposed methods. Furthermore, the zero-shot segmentation under unseen modality demonstrates the generalization of DPConv. The code is available at: https://github.com/fidshu/SRSNet.
comment: Accepted by IEEE Transactions on Image Processing (IEEE-TIP)
♻ ☆ Automatic quality control in multi-centric fetal brain MRI super-resolution reconstruction MICCAI
Quality control (QC) has long been considered essential to guarantee the reliability of neuroimaging studies. It is particularly important for fetal brain MRI, where acquisitions and image processing techniques are less standardized than in adult imaging. In this work, we focus on automated quality control of super-resolution reconstruction (SRR) volumes of fetal brain MRI, an important processing step where multiple stacks of thick 2D slices are registered together and combined to build a single, isotropic and artifact-free T2 weighted volume. We propose FetMRQC$_{SR}$, a machine-learning method that extracts more than 100 image quality metrics to predict image quality scores using a random forest model. This approach is well suited to a problem that is high dimensional, with highly heterogeneous data and small datasets. We validate FetMRQC$_{SR}$ in an out-of-domain (OOD) setting and report high performance (ROC AUC = 0.89), even when faced with data from an unknown site or SRR method. We also investigate failure cases and show that they occur in $45\%$ of the images due to ambiguous configurations for which the rating from the expert is arguable. These results are encouraging and illustrate how a non deep learning-based method like FetMRQC$_{SR}$ is well suited to this multifaceted problem. Our tool, along with all the code used to generate, train and evaluate the model are available at https://github.com/Medical-Image-Analysis-Laboratory/fetmrqc_sr/ .
comment: 14 pages, 5 figures; accepted at the 2025 MICCAI Perinatal, Preterm and Paediatric Image Analysis (PIPPI) Workshop
♻ ☆ Comparing Conditional Diffusion Models for Synthesizing Contrast-Enhanced Breast MRI from Pre-Contrast Images MICCAI
Dynamic contrast-enhanced (DCE) MRI is essential for breast cancer diagnosis and treatment. However, its reliance on contrast agents introduces safety concerns, contraindications, increased cost, and workflow complexity. To this end, we present pre-contrast conditioned denoising diffusion probabilistic models to synthesize DCE-MRI, introducing, evaluating, and comparing a total of 22 generative model variants in both single-breast and full breast settings. Towards enhancing lesion fidelity, we introduce both tumor-aware loss functions and explicit tumor segmentation mask conditioning. Using a public multicenter dataset and comparing to respective pre-contrast baselines, we observe that subtraction image-based models consistently outperform post-contrast-based models across five complementary evaluation metrics. Apart from assessing the entire image, we also separately evaluate the region of interest, where both tumor-aware losses and segmentation mask inputs improve evaluation metrics. The latter notably enhance qualitative results capturing contrast uptake, albeit assuming access to tumor localization inputs that are not guaranteed to be available in screening settings. A reader study involving 2 radiologists and 4 MRI technologists confirms the high realism of the synthetic images, indicating an emerging clinical potential of generative contrast-enhancement. We share our codebase at https://github.com/sebastibar/conditional-diffusion-breast-MRI.
comment: 13 pages, 5 figures, submitted and accepted to MICCAI Deepbreath workshop 2025
♻ ☆ RealRAG: Retrieval-augmented Realistic Image Generation via Self-reflective Contrastive Learning ICML2025
Recent text-to-image generative models, e.g., Stable Diffusion V3 and Flux, have achieved notable progress. However, these models are strongly restricted to their limited knowledge, a.k.a., their own fixed parameters, that are trained with closed datasets. This leads to significant hallucinations or distortions when facing fine-grained and unseen novel real-world objects, e.g., the appearance of the Tesla Cybertruck. To this end, we present the first real-object-based retrieval-augmented generation framework (RealRAG), which augments fine-grained and unseen novel object generation by learning and retrieving real-world images to overcome the knowledge gaps of generative models. Specifically, to integrate missing memory for unseen novel object generation, we train a reflective retriever by self-reflective contrastive learning, which injects the generator's knowledge into the sef-reflective negatives, ensuring that the retrieved augmented images compensate for the model's missing knowledge. Furthermore, the real-object-based framework integrates fine-grained visual knowledge for the generative models, tackling the distortion problem and improving the realism for fine-grained object generation. Our Real-RAG is superior in its modular application to all types of state-of-the-art text-to-image generative models and also delivers remarkable performance boosts with all of them, such as a gain of 16.18% FID score with the auto-regressive model on the Stanford Car benchmark.
comment: Accepted to ICML2025
♻ ☆ Seeing Further on the Shoulders of Giants: Knowledge Inheritance for Vision Foundation Models
Vision foundation models (VFMs) are predominantly developed using data-centric methods. These methods require training on vast amounts of data usually with high-quality labels, which poses a bottleneck for most institutions that lack both large-scale data and high-end GPUs. On the other hand, many open-source vision models have been pretrained on domain-specific data, enabling them to distill and represent core knowledge in a form that is transferable across diverse applications. Even though these models are highly valuable assets, they remain largely under-explored in empowering the development of a general-purpose VFM. In this paper, we present a new model-driven approach for training VFMs through joint knowledge transfer and preservation. Our method unifies multiple pre-trained teacher models in a shared latent space to mitigate the ``imbalanced transfer'' issue caused by their distributional gaps. Besides, we introduce a knowledge preservation strategy to take a general-purpose teacher as a knowledge base for integrating knowledge from the remaining purpose-specific teachers using an adapter module. By unifying and aggregating existing models, we build a powerful VFM to inherit teachers' expertise without needing to train on a large amount of labeled data. Our model not only provides generalizable visual features, but also inherently supports multiple downstream tasks. Extensive experiments demonstrate that our VFM outperforms existing data-centric models across four fundamental vision tasks, including image classification, object detection, semantic and instance segmentation.
comment: Technical report
♻ ☆ TeleOpBench: A Simulator-Centric Benchmark for Dual-Arm Dexterous Teleoperation
Teleoperation is a cornerstone of embodied-robot learning, and bimanual dexterous teleoperation in particular provides rich demonstrations that are difficult to obtain with fully autonomous systems. While recent studies have proposed diverse hardware pipelines-ranging from inertial motion-capture gloves to exoskeletons and vision-based interfaces-there is still no unified benchmark that enables fair, reproducible comparison of these systems. In this paper, we introduce TeleOpBench, a simulator-centric benchmark tailored to bimanual dexterous teleoperation. TeleOpBench contains 30 high-fidelity task environments that span pick-and-place, tool use, and collaborative manipulation, covering a broad spectrum of kinematic and force-interaction difficulty. Within this benchmark we implement four representative teleoperation modalities-(i) MoCap, (ii) VR device, (iii) arm-hand exoskeletons, and (iv) monocular vision tracking-and evaluate them with a common protocol and metric suite. To validate that performance in simulation is predictive of real-world behavior, we conduct mirrored experiments on a physical dual-arm platform equipped with two 6-DoF dexterous hands. Across 10 held-out tasks we observe a strong correlation between simulator and hardware performance, confirming the external validity of TeleOpBench. TeleOpBench establishes a common yardstick for teleoperation research and provides an extensible platform for future algorithmic and hardware innovation. Codes is now available at https://github.com/cyjdlhy/TeleOpBench .
comment: Project page:https://gorgeous2002.github.io/TeleOpBench/, Codes:https://github.com/cyjdlhy/TeleOpBench
♻ ☆ RemixFusion: Residual-based Mixed Representation for Large-scale Online RGB-D Reconstruction
The introduction of the neural implicit representation has notably propelled the advancement of online dense reconstruction techniques. Compared to traditional explicit representations, such as TSDF, it improves the mapping completeness and memory efficiency. However, the lack of reconstruction details and the time-consuming learning of neural representations hinder the widespread application of neural-based methods to large-scale online reconstruction. We introduce RemixFusion, a novel residual-based mixed representation for scene reconstruction and camera pose estimation dedicated to high-quality and large-scale online RGB-D reconstruction. In particular, we propose a residual-based map representation comprised of an explicit coarse TSDF grid and an implicit neural module that produces residuals representing fine-grained details to be added to the coarse grid. Such mixed representation allows for detail-rich reconstruction with bounded time and memory budget, contrasting with the overly-smoothed results by the purely implicit representations, thus paving the way for high-quality camera tracking. Furthermore, we extend the residual-based representation to handle multi-frame joint pose optimization via bundle adjustment (BA). In contrast to the existing methods, which optimize poses directly, we opt to optimize pose changes. Combined with a novel technique for adaptive gradient amplification, our method attains better optimization convergence and global optimality. Furthermore, we adopt a local moving volume to factorize the mixed scene representation with a divide-and-conquer design to facilitate efficient online learning in our residual-based framework. Extensive experiments demonstrate that our method surpasses all state-of-the-art ones, including those based either on explicit or implicit representations, in terms of the accuracy of both mapping and tracking on large-scale scenes.
comment: project page: https://lanlan96.github.io/RemixFusion/
♻ ☆ WiseLVAM: A Novel Framework For Left Ventricle Automatic Measurements
Clinical guidelines recommend performing left ventricular (LV) linear measurements in B-mode echocardiographic images at the basal level -- typically at the mitral valve leaflet tips -- and aligned perpendicular to the LV long axis along a virtual scanline (SL). However, most automated methods estimate landmarks directly from B-mode images for the measurement task, where even small shifts in predicted points along the LV walls can lead to significant measurement errors, reducing their clinical reliability. A recent semi-automatic method, EnLVAM, addresses this limitation by constraining landmark prediction to a clinician-defined SL and training on generated Anatomical Motion Mode (AMM) images to predict LV landmarks along the same. To enable full automation, a contour-aware SL placement approach is proposed in this work, in which the LV contour is estimated using a weakly supervised B-mode landmark detector. SL placement is then performed by inferring the LV long axis and the basal level- mimicking clinical guidelines. Building on this foundation, we introduce \textit{WiseLVAM} -- a novel, fully automated yet manually adaptable framework for automatically placing the SL and then automatically performing the LV linear measurements in the AMM mode. \textit{WiseLVAM} utilizes the structure-awareness from B-mode images and the motion-awareness from AMM mode to enhance robustness and accuracy with the potential to provide a practical solution for the routine clinical application. The source code is publicly available at https://github.com/SFI-Visual-Intelligence/wiselvam.git.
♻ ☆ DLF: Extreme Image Compression with Dual-generative Latent Fusion ICCV 2025
Recent studies in extreme image compression have achieved remarkable performance by compressing the tokens from generative tokenizers. However, these methods often prioritize clustering common semantics within the dataset, while overlooking the diverse details of individual objects. Consequently, this results in suboptimal reconstruction fidelity, especially at low bitrates. To address this issue, we introduce a Dual-generative Latent Fusion (DLF) paradigm. DLF decomposes the latent into semantic and detail elements, compressing them through two distinct branches. The semantic branch clusters high-level information into compact tokens, while the detail branch encodes perceptually critical details to enhance the overall fidelity. Additionally, we propose a cross-branch interactive design to reduce redundancy between the two branches, thereby minimizing the overall bit cost. Experimental results demonstrate the impressive reconstruction quality of DLF even below 0.01 bits per pixel (bpp). On the CLIC2020 test set, our method achieves bitrate savings of up to 27.93% on LPIPS and 53.55% on DISTS compared to MS-ILLM. Furthermore, DLF surpasses recent diffusion-based codecs in visual fidelity while maintaining a comparable level of generative realism. Project: https://dlfcodec.github.io/
comment: Accepted by ICCV 2025
♻ ☆ LH2Face: Loss function for Hard High-quality Face
In current practical face authentication systems, most face recognition (FR) algorithms are based on cosine similarity with softmax classification. Despite its reliable classification performance, this method struggles with hard samples. A popular strategy to improve FR performance is incorporating angular or cosine margins. However, it does not take face quality or recognition hardness into account, simply increasing the margin value and thus causing an overly uniform training strategy. To address this problem, a novel loss function is proposed, named Loss function for Hard High-quality Face (LH2Face). Firstly, a similarity measure based on the von Mises-Fisher (vMF) distribution is stated, specifically focusing on the logarithm of the Probability Density Function (PDF), which represents the distance between a probability distribution and a vector. Then, an adaptive margin-based multi-classification method using softmax, called the Uncertainty-Aware Margin Function, is implemented in the article. Furthermore, proxy-based loss functions are used to apply extra constraints between the proxy and sample to optimize their representation space distribution. Finally, a renderer is constructed that optimizes FR through face reconstruction and vice versa. Our LH2Face is superior to similiar schemes on hard high-quality face datasets, achieving 49.39% accuracy on the IJB-B dataset, which surpasses the second-place method by 2.37%.
♻ ☆ Static or Dynamic: Towards Query-Adaptive Token Selection for Video Question Answering EMNLP 2025
Video question answering benefits from the rich information in videos, enabling various applications. However, the large volume of tokens generated from long videos presents challenges to memory efficiency and model performance. To alleviate this, existing works propose to compress video inputs, but often overlook the varying importance of static and dynamic information across different queries, leading to inefficient token usage within limited budgets. We propose a novel token selection strategy, \textsc{explore-then-select}, that adaptively adjusts static and dynamic information based on question requirements. Our framework first explores different token allocations between key frames, which preserve spatial details, and delta frames, which capture temporal changes. Then it employs a query-aware attention-based metric to select the optimal token combination without model updates. Our framework is plug-and-play and can be seamlessly integrated within diverse video language models. Extensive experiments show that our method achieves significant performance improvements (up to 5.8\%) on multiple video question answering benchmarks. Our code is available at https://github.com/ANDgate99/Explore-Then-Select .
comment: Accepted to EMNLP 2025 (main)
♻ ☆ Remote Sensing SpatioTemporal Vision-Language Models: A Comprehensive Survey
The interpretation of multi-temporal remote sensing imagery is critical for monitoring Earth's dynamic processes-yet previous change detection methods, which produce binary or semantic masks, fall short of providing human-readable insights into changes. Recent advances in Vision-Language Models (VLMs) have opened a new frontier by fusing visual and linguistic modalities, enabling spatio-temporal vision-language understanding: models that not only capture spatial and temporal dependencies to recognize changes but also provide a richer interactive semantic analysis of temporal images (e.g., generate descriptive captions and answer natural-language queries). In this survey, we present the first comprehensive review of RS-STVLMs. The survey covers the evolution of models from early task-specific models to recent general foundation models that leverage powerful large language models. We discuss progress in representative tasks, such as change captioning, change question answering, and change grounding. Moreover, we systematically dissect the fundamental components and key technologies underlying these models, and review the datasets and evaluation metrics that have driven the field. By synthesizing task-level insights with a deep dive into shared architectural patterns, we aim to illuminate current achievements and chart promising directions for future research in spatio-temporal vision-language understanding for remote sensing. We will keep tracing related works at https://github.com/Chen-Yang-Liu/Awesome-RS-SpatioTemporal-VLMs
comment: Published in IEEE Geoscience and Remote Sensing Magazine
♻ ☆ FOCUS on Contamination: A Geospatial Deep Learning Framework with a Noise-Aware Loss for Surface Water PFAS Prediction
Per- and polyfluoroalkyl substances (PFAS), chemicals found in products like non-stick cookware, are unfortunately persistent environmental pollutants with severe health risks. Accurately mapping PFAS contamination is crucial for guiding targeted remediation efforts and protecting public and environmental health, yet detection across large regions remains challenging due to the cost of testing and the difficulty of simulating their spread. In this work, we introduce FOCUS, a geospatial deep learning framework with a label noise-aware loss function, to predict PFAS contamination in surface water over large regions. By integrating hydrological flow data, land cover information, and proximity to known PFAS sources, our approach leverages both spatial and environmental context to improve prediction accuracy. We evaluate the performance of our approach through extensive ablation studies, robustness analysis, real-world validation, and comparative analyses against baselines like sparse segmentation, as well as existing scientific methods, including Kriging and pollutant transport simulations. Results and expert feedback highlight our framework's potential for scalable PFAS monitoring.
♻ ☆ LATTE: Learning to Think with Vision Specialists
While open-source vision-language models perform well on simple question-answering, they still struggle with complex questions that require both perceptual and reasoning capabilities. We propose LATTE, a family of vision-language models that have LeArned to Think wiTh vision spEcialists. By offloading perception to state-of-the-art vision models, our approach enables vision-language models to focus solely on reasoning over high-quality perceptual information. To train LATTE, we synthesize and filter a large dataset of 293K multi-modal reasoning traces over perceptual outputs of vision specialists. LATTE trained on this data achieves significant 4-5% gains over baselines across 6 benchmarks covering both perception and reasoning abilities. Ablation studies reveal that the effectiveness of multi-modal reasoning traces depends on the data sources, formats, and quality of thoughts.
♻ ☆ Scalp Diagnostic System With Label-Free Segmentation and Training-Free Image Translation MICCAI 2025
Scalp disorders are highly prevalent worldwide, yet remain underdiagnosed due to limited access to expert evaluation and the high cost of annotation. Although AI-based approaches hold great promise, their practical deployment is hindered by challenges such as severe data imbalance and the absence of pixel-level segmentation labels. To address these issues, we propose ScalpVision, an AI-driven system for the holistic diagnosis of scalp diseases. In ScalpVision, effective hair segmentation is achieved using pseudo image-label pairs and an innovative prompting method in the absence of traditional hair masking labels. Additionally, ScalpVision introduces DiffuseIT-M, a generative model adopted for dataset augmentation while maintaining hair information, facilitating improved predictions of scalp disease severity. Our experimental results affirm ScalpVision's efficiency in diagnosing a variety of scalp conditions, showcasing its potential as a valuable tool in dermatological care. Our code is available at https://github.com/winston1214/ScalpVision.
comment: Accepted to MICCAI 2025(https://papers.miccai.org/miccai-2025/0806-Paper5080.html), Project page: https://0110tpwls.github.io/scalpvision25/
♻ ☆ Steering LVLMs via Sparse Autoencoder for Hallucination Mitigation EMNLP 2025
Large vision-language models (LVLMs) have achieved remarkable performance on multimodal tasks. However, they still suffer from hallucinations, generating text inconsistent with visual input, posing significant risks in real-world applications. Existing approaches to address this issue focus on incorporating external knowledge bases, alignment training, or decoding strategies, all of which require substantial computational cost and time. Recent works try to explore more efficient alternatives by adjusting LVLMs' internal representations. Although promising, these methods may cause hallucinations to be insufficiently suppressed or lead to excessive interventions that negatively affect normal semantics. In this work, we leverage sparse autoencoders (SAEs) to identify semantic directions closely associated with faithfulness or hallucination, extracting more precise and disentangled hallucination-related representations. Our analysis demonstrates that interventions along the identified faithful direction can mitigate hallucinations, while those along the hallucinatory direction can exacerbate them. Building on these insights, we propose Steering LVLMs via SAE Latent Directions (SSL), a plug-and-play method based on SAE-derived latent directions to mitigate hallucinations in LVLMs. Extensive experiments demonstrate that SSL significantly outperforms existing decoding approaches in mitigating hallucinations, while maintaining transferability across different model architectures with negligible additional time overhead. The code is available at https://github.com/huazhenglin2003/SSL.
comment: Accepted to Findings of EMNLP 2025
♻ ☆ AnySplat: Feed-forward 3D Gaussian Splatting from Unconstrained Views
We introduce AnySplat, a feed forward network for novel view synthesis from uncalibrated image collections. In contrast to traditional neural rendering pipelines that demand known camera poses and per scene optimization, or recent feed forward methods that buckle under the computational weight of dense views, our model predicts everything in one shot. A single forward pass yields a set of 3D Gaussian primitives encoding both scene geometry and appearance, and the corresponding camera intrinsics and extrinsics for each input image. This unified design scales effortlessly to casually captured, multi view datasets without any pose annotations. In extensive zero shot evaluations, AnySplat matches the quality of pose aware baselines in both sparse and dense view scenarios while surpassing existing pose free approaches. Moreover, it greatly reduce rendering latency compared to optimization based neural fields, bringing real time novel view synthesis within reach for unconstrained capture settings.Project page: https://city-super.github.io/anysplat/
comment: Project page: https://city-super.github.io/anysplat/
♻ ☆ UnIRe: Unsupervised Instance Decomposition for Dynamic Urban Scene Reconstruction
Reconstructing and decomposing dynamic urban scenes is crucial for autonomous driving, urban planning, and scene editing. However, existing methods fail to perform instance-aware decomposition without manual annotations, which is crucial for instance-level scene editing.We propose UnIRe, a 3D Gaussian Splatting (3DGS) based approach that decomposes a scene into a static background and individual dynamic instances using only RGB images and LiDAR point clouds. At its core, we introduce 4D superpoints, a novel representation that clusters multi-frame LiDAR points in 4D space, enabling unsupervised instance separation based on spatiotemporal correlations. These 4D superpoints serve as the foundation for our decomposed 4D initialization, i.e., providing spatial and temporal initialization to train a dynamic 3DGS for arbitrary dynamic classes without requiring bounding boxes or object templates.Furthermore, we introduce a smoothness regularization strategy in both 2D and 3D space, further improving the temporal stability.Experiments on benchmark datasets show that our method outperforms existing methods in decomposed dynamic scene reconstruction while enabling accurate and flexible instance-level editing, making it a practical solution for real-world applications.
♻ ☆ Multi-View Slot Attention Using Paraphrased Texts for Face Anti-Spoofing ICCV 2025
Recent face anti-spoofing (FAS) methods have shown remarkable cross-domain performance by employing vision-language models like CLIP. However, existing CLIP-based FAS models do not fully exploit CLIP's patch embedding tokens, failing to detect critical spoofing clues. Moreover, these models rely on a single text prompt per class (e.g., 'live' or 'fake'), which limits generalization. To address these issues, we propose MVP-FAS, a novel framework incorporating two key modules: Multi-View Slot attention (MVS) and Multi-Text Patch Alignment (MTPA). Both modules utilize multiple paraphrased texts to generate generalized features and reduce dependence on domain-specific text. MVS extracts local detailed spatial features and global context from patch embeddings by leveraging diverse texts with multiple perspectives. MTPA aligns patches with multiple text representations to improve semantic robustness. Extensive experiments demonstrate that MVP-FAS achieves superior generalization performance, outperforming previous state-of-the-art methods on cross-domain datasets. Code: https://github.com/Elune001/MVP-FAS.
comment: Accepted to ICCV 2025
♻ ☆ First RAG, Second SEG: A Training-Free Paradigm for Camouflaged Object Detection
Camouflaged object detection (COD) poses a significant challenge in computer vision due to the high similarity between objects and their backgrounds. Existing approaches often rely on heavy training and large computational resources. While foundation models such as the Segment Anything Model (SAM) offer strong generalization, they still struggle to handle COD tasks without fine-tuning and require high-quality prompts to yield good performance. However, generating such prompts manually is costly and inefficient. To address these challenges, we propose \textbf{First RAG, Second SEG (RAG-SEG)}, a training-free paradigm that decouples COD into two stages: Retrieval-Augmented Generation (RAG) for generating coarse masks as prompts, followed by SAM-based segmentation (SEG) for refinement. RAG-SEG constructs a compact retrieval database via unsupervised clustering, enabling fast and effective feature retrieval. During inference, the retrieved features produce pseudo-labels that guide precise mask generation using SAM2. Our method eliminates the need for conventional training while maintaining competitive performance. Extensive experiments on benchmark COD datasets demonstrate that RAG-SEG performs on par with or surpasses state-of-the-art methods. Notably, all experiments are conducted on a \textbf{personal laptop}, highlighting the computational efficiency and practicality of our approach. We present further analysis in the Appendix, covering limitations, salient object detection extension, and possible improvements. \textcolor{blue} {Code: https://github.com/Lwt-diamond/RAG-SEG.}
♻ ☆ IRDFusion: Iterative Relation-Map Difference guided Feature Fusion for Multispectral Object Detection
Current multispectral object detection methods often retain extraneous background or noise during feature fusion, limiting perceptual performance. To address this, we propose an innovative feature fusion framework based on cross-modal feature contrastive and screening strategy, diverging from conventional approaches. The proposed method adaptively enhances salient structures by fusing object-aware complementary cross-modal features while suppressing shared background interference. Our solution centers on two novel, specially designed modules: the Mutual Feature Refinement Module (MFRM) and the Differential Feature Feedback Module (DFFM). The MFRM enhances intra- and inter-modal feature representations by modeling their relationships, thereby improving cross-modal alignment and discriminative power. Inspired by feedback differential amplifiers, the DFFM dynamically computes inter-modal differential features as guidance signals and feeds them back to the MFRM, enabling adaptive fusion of complementary information while suppressing common-mode noise across modalities. To enable robust feature learning, the MFRM and DFFM are integrated into a unified framework, which is formally formulated as an Iterative Relation-Map Differential Guided Feature Fusion mechanism, termed IRDFusion. IRDFusion enables high-quality cross-modal fusion by progressively amplifying salient relational signals through iterative feedback, while suppressing feature noise, leading to significant performance gains. In extensive experiments on FLIR, LLVIP and M$^3$FD datasets, IRDFusion achieves state-of-the-art performance and consistently outperforms existing methods across diverse challenging scenarios, demonstrating its robustness and effectiveness. Code will be available at https://github.com/61s61min/IRDFusion.git.
comment: 31 pages,6 figures, submitted on 3 Sep,2025
♻ ☆ OSDM-MReg: Multimodal Image Registration based One Step Diffusion Model
Multimodal remote sensing image registration aligns images from different sensors for data fusion and analysis. However, existing methods often struggle to extract modality-invariant features when faced with large nonlinear radiometric differences, such as those between SAR and optical images. To address these challenges, we propose OSDM-MReg, a novel multimodal image registration framework that bridges the modality gap through image-to-image translation. Specifically, we introduce a one-step unaligned target-guided conditional diffusion model (UTGOS-CDM) to translate source and target images into a unified representation domain. Unlike traditional conditional DDPM that require hundreds of iterative steps for inference, our model incorporates a novel inverse translation objective during training to enable direct prediction of the translated image in a single step at test time, significantly accelerating the registration process. After translation, we design a multimodal multiscale registration network (MM-Reg) that extracts and fuses both unimodal and translated multimodal images using the proposed multimodal fusion strategy, enhancing the robustness and precision of alignment across scales and modalities. Extensive experiments on the OSdataset demonstrate that OSDM-MReg achieves superior registration accuracy compared to state-of-the-art methods.
comment: This version updates our previous submission. After rerunning the experiments, we found that the proposed high-frequency perceptual loss did not improve the overall performance of the model. Therefore, we removed this component, revised the corresponding ablation studies, and updated the contributions accordingly. This work has been submitted to the IEEE for possible publication
♻ ☆ StableMotion: Training Motion Cleanup Models with Unpaired Corrupted Data SIGGRAPH
Motion capture (mocap) data often exhibits visually jarring artifacts due to inaccurate sensors and post-processing. Cleaning this corrupted data can require substantial manual effort from human experts, which can be a costly and time-consuming process. Previous data-driven motion cleanup methods offer the promise of automating this cleanup process, but often require in-domain paired corrupted-to-clean training data. Constructing such paired datasets requires access to high-quality, relatively artifact-free motion clips, which often necessitates laborious manual cleanup. In this work, we present StableMotion, a simple yet effective method for training motion cleanup models directly from unpaired corrupted datasets that need cleanup. The core component of our method is the introduction of motion quality indicators, which can be easily annotated - through manual labeling or heuristic algorithms - and enable training of quality-aware motion generation models on raw motion data with mixed quality. At test time, the model can be prompted to generate high-quality motions using the quality indicators. Our method can be implemented through a simple diffusion-based framework, leading to a unified motion generate-discriminate model, which can be used to both identify and fix corrupted frames. We demonstrate that our proposed method is effective for training motion cleanup models on raw mocap data in production scenarios by applying StableMotion to SoccerMocap, a 245-hour soccer mocap dataset containing real-world motion artifacts. The trained model effectively corrects a wide range of motion artifacts, reducing motion pops and frozen frames by 68% and 81%, respectively. Results and code are available at https://yxmu.foo/stablemotion-page
comment: Accepted for SIGGRAPH Asia 2025
♻ ☆ SeeDiff: Off-the-Shelf Seeded Mask Generation from Diffusion Models AAAI 2025
Entrusted with the goal of pixel-level object classification, the semantic segmentation networks entail the laborious preparation of pixel-level annotation masks. To obtain pixel-level annotation masks for a given class without human efforts, recent few works have proposed to generate pairs of images and annotation masks by employing image and text relationships modeled by text-to-image generative models, especially Stable Diffusion. However, these works do not fully exploit the capability of text-guided Diffusion models and thus require a pre-trained segmentation network, careful text prompt tuning, or the training of a segmentation network to generate final annotation masks. In this work, we take a closer look at attention mechanisms of Stable Diffusion, from which we draw connections with classical seeded segmentation approaches. In particular, we show that cross-attention alone provides very coarse object localization, which however can provide initial seeds. Then, akin to region expansion in seeded segmentation, we utilize the semantic-correspondence-modeling capability of self-attention to iteratively spread the attention to the whole class from the seeds using multi-scale self-attention maps. We also observe that a simple-text-guided synthetic image often has a uniform background, which is easier to find correspondences, compared to complex-structured objects. Thus, we further refine a mask using a more accurate background mask. Our proposed method, dubbed SeeDiff, generates high-quality masks off-the-shelf from Stable Diffusion, without additional training procedure, prompt tuning, or a pre-trained segmentation network.
comment: AAAI 2025
♻ ☆ Through the Theory of Mind's Eye: Reading Minds with Multimodal Video Large Language Models
Can large multimodal models have a human-like ability for emotional and social reasoning, and if so, how does it work? Recent research has discovered emergent theory-of-mind (ToM) reasoning capabilities in large language models (LLMs). LLMs can reason about people's mental states by solving various text-based ToM tasks that ask questions about the actors' ToM (e.g., human belief, desire, intention). However, human reasoning in the wild is often grounded in dynamic scenes across time. Thus, we consider videos a new medium for examining spatio-temporal ToM reasoning ability. Specifically, we ask explicit probing questions about videos with abundant social and emotional reasoning content. We develop a pipeline for multimodal LLM for ToM reasoning using video and text. We also enable explicit ToM reasoning by retrieving key frames for answering a ToM question, which reveals how multimodal LLMs reason about ToM.
♻ ☆ STADI: Fine-Grained Step-Patch Diffusion Parallelism for Heterogeneous GPUs
The escalating adoption of diffusion models for applications such as image generation demands efficient parallel inference techniques to manage their substantial computational cost. However, existing diffusion parallelism inference schemes often underutilize resources in heterogeneous multi-GPU environments, where varying hardware capabilities or background tasks cause workload imbalance. This paper introduces Spatio-Temporal Adaptive Diffusion Inference (STADI), a novel framework to accelerate diffusion model inference in such settings. At its core is a hybrid scheduler that orchestrates fine-grained parallelism across both temporal and spatial dimensions. Temporally, STADI introduces a novel computation-aware step allocator applied after warmup phases, using a least-common-multiple-minimizing quantization technique to reduce denoising steps on slower GPUs and execution synchronization. To further minimize GPU idle periods, STADI executes an elastic patch parallelism mechanism that allocates variably sized image patches to GPUs according to their computational capability, ensuring balanced workload distribution through a complementary spatial mechanism. Extensive experiments on both load-imbalanced and heterogeneous multi-GPU clusters validate STADI's efficacy, demonstrating improved load balancing and mitigation of performance bottlenecks. Compared to patch parallelism, a state-of-the-art diffusion inference framework, our method significantly reduces end-to-end inference latency by up to 45% and significantly improves resource utilization on heterogeneous GPUs.
♻ ☆ Enhancing Traffic Incident Response through Sub-Second Temporal Localization with HybridMamba
Traffic crash detection in long-form surveillance videos is essential for improving emergency response and infrastructure planning, yet remains difficult due to the brief and infrequent nature of crash events. We present \textbf{HybridMamba}, a novel architecture integrating visual transformers with state-space temporal modeling to achieve high-precision crash time localization. Our approach introduces multi-level token compression and hierarchical temporal processing to maintain computational efficiency without sacrificing temporal resolution. Evaluated on a large-scale dataset from the Iowa Department of Transportation, HybridMamba achieves a mean absolute error of \textbf{1.50 seconds} for 2-minute videos ($p<0.01$ compared to baselines), with \textbf{65.2%} of predictions falling within one second of the ground truth. It outperforms recent video-language models (e.g., TimeChat, VideoLLaMA-2) by up to 3.95 seconds while using significantly fewer parameters (3B vs. 13--72B). Our results demonstrate effective temporal localization across various video durations (2--40 minutes) and diverse environmental conditions, highlighting HybridMamba's potential for fine-grained temporal localization in traffic surveillance while identifying challenges that remain for extended deployment.
♻ ☆ Multilingual Diversity Improves Vision-Language Representations NeurIPS 2024
Massive web-crawled image-text datasets lay the foundation for recent progress in multimodal learning. These datasets are designed with the goal of training a model to do well on standard computer vision benchmarks, many of which, however, have been shown to be English-centric (e.g., ImageNet). Consequently, existing data curation techniques gravitate towards using predominantly English image-text pairs and discard many potentially useful non-English samples. Our work questions this practice. Multilingual data is inherently enriching not only because it provides a gateway to learn about culturally salient concepts, but also because it depicts common concepts differently from monolingual data. We thus conduct a systematic study to explore the performance benefits of using more samples of non-English origins with respect to English vision tasks. By translating all multilingual image-text pairs from a raw web crawl to English and re-filtering them, we increase the prevalence of (translated) multilingual data in the resulting training set. Pre-training on this dataset outperforms using English-only or English-dominated datasets on ImageNet, ImageNet distribution shifts, image-English-text retrieval and on average across 38 tasks from the DataComp benchmark. On a geographically diverse task like GeoDE, we also observe improvements across all regions, with the biggest gain coming from Africa. In addition, we quantitatively show that English and non-English data are significantly different in both image and (translated) text space. We hope that our findings motivate future work to be more intentional about including multicultural and multilingual data, not just when non-English or geographically diverse tasks are involved, but to enhance model capabilities at large. All translated captions and metadata (language, CLIP score, etc.) are available on HuggingFace.
comment: NeurIPS 2024 Spotlight paper
♻ ☆ Semantic Augmentation in Images using Language
Deep Learning models are incredibly data-hungry and require very large labeled datasets for supervised learning. As a consequence, these models often suffer from overfitting, limiting their ability to generalize to real-world examples. Recent advancements in diffusion models have enabled the generation of photorealistic images based on textual inputs. Leveraging the substantial datasets used to train these diffusion models, we propose a technique to utilize generated images to augment existing datasets. This paper explores various strategies for effective data augmentation to improve the out-of-domain generalization capabilities of deep learning models.
Machine Learning 148
☆ Dynamic Relational Priming Improves Transformer in Multivariate Time Series
Standard attention mechanisms in transformers employ static token representations that remain unchanged across all pair-wise computations in each layer. This limits their representational alignment with the potentially diverse relational dynamics of each token-pair interaction. While they excel in domains with relatively homogeneous relationships, standard attention's static relational learning struggles to capture the diverse, heterogeneous inter-channel dependencies of multivariate time series (MTS) data--where different channel-pair interactions within a single system may be governed by entirely different physical laws or temporal dynamics. To better align the attention mechanism for such domain phenomena, we propose attention with dynamic relational priming (prime attention). Unlike standard attention where each token presents an identical representation across all of its pair-wise interactions, prime attention tailors each token dynamically (or per interaction) through learnable modulations to best capture the unique relational dynamics of each token pair, optimizing each pair-wise interaction for that specific relationship. This representational plasticity of prime attention enables effective extraction of relationship-specific information in MTS while maintaining the same asymptotic computational complexity as standard attention. Our results demonstrate that prime attention consistently outperforms standard attention across benchmarks, achieving up to 6.5\% improvement in forecasting accuracy. In addition, we find that prime attention achieves comparable or superior performance using up to 40\% less sequence length compared to standard attention, further demonstrating its superior relational modeling capabilities.
☆ Event2Vec: A Geometric Approach to Learning Composable Representations of Event Sequences
The study of neural representations, both in biological and artificial systems, is increasingly revealing the importance of geometric and topological structures. Inspired by this, we introduce Event2Vec, a novel framework for learning representations of discrete event sequences. Our model leverages a simple, additive recurrent structure to learn composable, interpretable embeddings. We provide a theoretical analysis demonstrating that, under specific training objectives, our model's learned representations in a Euclidean space converge to an ideal additive structure. This ensures that the representation of a sequence is the vector sum of its constituent events, a property we term the linear additive hypothesis. To address the limitations of Euclidean geometry for hierarchical data, we also introduce a variant of our model in hyperbolic space, which is naturally suited to embedding tree-like structures with low distortion. We present experiments to validate our hypothesis and demonstrate the benefits of each geometry, highlighting the improved performance of the hyperbolic model on hierarchical event sequences.
comment: 10 pages, 3 figures, Symmetry and Geometry in Neural Representations Workshop at NeuralIPS (Neurreps) 2025
☆ HoloGarment: 360° Novel View Synthesis of In-the-Wild Garments
Novel view synthesis (NVS) of in-the-wild garments is a challenging task due significant occlusions, complex human poses, and cloth deformations. Prior methods rely on synthetic 3D training data consisting of mostly unoccluded and static objects, leading to poor generalization on real-world clothing. In this paper, we propose HoloGarment (Hologram-Garment), a method that takes 1-3 images or a continuous video of a person wearing a garment and generates 360{\deg} novel views of the garment in a canonical pose. Our key insight is to bridge the domain gap between real and synthetic data with a novel implicit training paradigm leveraging a combination of large-scale real video data and small-scale synthetic 3D data to optimize a shared garment embedding space. During inference, the shared embedding space further enables dynamic video-to-360{\deg} NVS through the construction of a garment "atlas" representation by finetuning a garment embedding on a specific real-world video. The atlas captures garment-specific geometry and texture across all viewpoints, independent of body pose or motion. Extensive experiments show that HoloGarment achieves state-of-the-art performance on NVS of in-the-wild garments from images and videos. Notably, our method robustly handles challenging real-world artifacts -- such as wrinkling, pose variation, and occlusion -- while maintaining photorealism, view consistency, fine texture details, and accurate geometry. Visit our project page for additional results: https://johannakarras.github.io/HoloGarment
☆ The Morgan-Pitman Test of Equality of Variances and its Application to Machine Learning Model Evaluation and Selection
Model selection in non-linear models often prioritizes performance metrics over statistical tests, limiting the ability to account for sampling variability. We propose the use of a statistical test to assess the equality of variances in forecasting errors. The test builds upon the classic Morgan-Pitman approach, incorporating enhancements to ensure robustness against data with heavy-tailed distributions or outliers with high variance, plus a strategy to make residuals from machine learning models statistically independent. Through a series of simulations and real-world data applications, we demonstrate the test's effectiveness and practical utility, offering a reliable tool for model evaluation and selection in diverse contexts.
comment: 29 pages, 4 figures
☆ All that structure matches does not glitter
Generative models for materials, especially inorganic crystals, hold potential to transform the theoretical prediction of novel compounds and structures. Advancement in this field depends critically on robust benchmarks and minimal, information-rich datasets that enable meaningful model evaluation. This paper critically examines common datasets and reported metrics for a crystal structure prediction task$\unicode{x2014}$generating the most likely structures given the chemical composition of a material. We focus on three key issues: First, materials datasets should contain unique crystal structures; for example, we show that the widely-utilized carbon-24 dataset only contains $\approx$40% unique structures. Second, materials datasets should not be split randomly if polymorphs of many different compositions are numerous, which we find to be the case for the perov-5 dataset. Third, benchmarks can mislead if used uncritically, e.g., reporting a match rate metric without considering the structural variety exhibited by identical building blocks. To address these oft-overlooked issues, we introduce several fixes. We provide revised versions of the carbon-24 dataset: one with duplicates removed, one deduplicated and split by number of atoms $N$, and two containing only identical structures but with different unit cells. We also propose a new split for the perov-5 dataset which ensures polymorphs are grouped within each split subset, setting a more sensible standard for benchmarking model performance. Finally, we present METRe and cRMSE, new model evaluation metrics that can correct existing issues with the match rate metric.
☆ From Autoencoders to CycleGAN: Robust Unpaired Face Manipulation via Adversarial Learning
Human face synthesis and manipulation are increasingly important in entertainment and AI, with a growing demand for highly realistic, identity-preserving images even when only unpaired, unaligned datasets are available. We study unpaired face manipulation via adversarial learning, moving from autoencoder baselines to a robust, guided CycleGAN framework. While autoencoders capture coarse identity, they often miss fine details. Our approach integrates spectral normalization for stable training, identity- and perceptual-guided losses to preserve subject identity and high-level structure, and landmark-weighted cycle constraints to maintain facial geometry across pose and illumination changes. Experiments show that our adversarial trained CycleGAN improves realism (FID), perceptual quality (LPIPS), and identity preservation (ID-Sim) over autoencoders, with competitive cycle-reconstruction SSIM and practical inference times, which achieved high quality without paired datasets and approaching pix2pix on curated paired subsets. These results demonstrate that guided, spectrally normalized CycleGANs provide a practical path from autoencoders to robust unpaired face manipulation.
comment: 8 pages, 7 figures
☆ MMM: Clustering Multivariate Longitudinal Mixed-type Data
Multivariate longitudinal data of mixed-type are increasingly collected in many science domains. However, algorithms to cluster this kind of data remain scarce, due to the challenge to simultaneously model the within- and between-time dependence structures for multivariate data of mixed kind. We introduce the Mixture of Mixed-Matrices (MMM) model: reorganizing the data in a three-way structure and assuming that the non-continuous variables are observations of underlying latent continuous variables, the model relies on a mixture of matrix-variate normal distributions to perform clustering in the latent dimension. The MMM model is thus able to handle continuous, ordinal, binary, nominal and count data and to concurrently model the heterogeneity, the association among the responses and the temporal dependence structure in a parsimonious way and without assuming conditional independence. The inference is carried out through an MCMC-EM algorithm, which is detailed. An evaluation of the model through synthetic data shows its inference abilities. A real-world application on financial data is presented.
☆ Learning Neural Networks by Neuron Pursuit
The first part of this paper studies the evolution of gradient flow for homogeneous neural networks near a class of saddle points exhibiting a sparsity structure. The choice of these saddle points is motivated from previous works on homogeneous networks, which identified the first saddle point encountered by gradient flow after escaping the origin. It is shown here that, when initialized sufficiently close to such saddle points, gradient flow remains near the saddle point for a sufficiently long time, during which the set of weights with small norm remain small but converge in direction. Furthermore, important empirical observations are made on the behavior of gradient descent after escaping these saddle points. The second part of the paper, motivated by these results, introduces a greedy algorithm to train deep neural networks called Neuron Pursuit (NP). It is an iterative procedure which alternates between expanding the network by adding neuron(s) with carefully chosen weights, and minimizing the training loss using this augmented network. The efficacy of the proposed algorithm is validated using numerical experiments.
☆ Learning Contact Dynamics for Control with Action-conditioned Face Interaction Graph Networks
We present a learnable physics simulator that provides accurate motion and force-torque prediction of robot end effectors in contact-rich manipulation. The proposed model extends the state-of-the-art GNN-based simulator (FIGNet) with novel node and edge types, enabling action-conditional predictions for control and state estimation tasks. In simulation, the MPC agent using our model matches the performance of the same controller with the ground truth dynamics model in a challenging peg-in-hole task, while in the real-world experiment, our model achieves a 50% improvement in motion prediction accuracy and 3$\times$ increase in force-torque prediction precision over the baseline physics simulator. Source code and data are publicly available.
☆ Do machine learning climate models work in changing climate dynamics?
Climate change is accelerating the frequency and severity of unprecedented events, deviating from established patterns. Predicting these out-of-distribution (OOD) events is critical for assessing risks and guiding climate adaptation. While machine learning (ML) models have shown promise in providing precise, high-speed climate predictions, their ability to generalize under distribution shifts remains a significant limitation that has been underexplored in climate contexts. This research systematically evaluates state-of-the-art ML-based climate models in diverse OOD scenarios by adapting established OOD evaluation methodologies to climate data. Experiments on large-scale datasets reveal notable performance variability across scenarios, shedding light on the strengths and limitations of current models. These findings underscore the importance of robust evaluation frameworks and provide actionable insights to guide the reliable application of ML for climate risk forecasting.
comment: 8 pages, 2 figures
☆ $K$-Level Policy Gradients for Multi-Agent Reinforcement Learning
Actor-critic algorithms for deep multi-agent reinforcement learning (MARL) typically employ a policy update that responds to the current strategies of other agents. While being straightforward, this approach does not account for the updates of other agents at the same update step, resulting in miscoordination. In this paper, we introduce the $K$-Level Policy Gradient (KPG), a method that recursively updates each agent against the updated policies of other agents, speeding up the discovery of effective coordinated policies. We theoretically prove that KPG with finite iterates achieves monotonic convergence to a local Nash equilibrium under certain conditions. We provide principled implementations of KPG by applying it to the deep MARL algorithms MAPPO, MADDPG, and FACMAC. Empirically, we demonstrate superior performance over existing deep MARL algorithms in StarCraft II and multi-agent MuJoCo.
☆ When marine radar target detection meets pretrained large language models
Deep learning (DL) methods are widely used to extract high-dimensional patterns from the sequence features of radar echo signals. However, conventional DL algorithms face challenges such as redundant feature segments, and constraints from restricted model sizes. To address these issues, we propose a framework that integrates feature preprocessing with large language models (LLMs). Our preprocessing module tokenizes radar sequence features, applies a patch selection algorithm to filter out uninformative segments, and projects the selected patches into embeddings compatible with the feature space of pre-trained LLMs. Leveraging these refined embeddings, we incorporate a pre-trained LLM, fine-tuning only the normalization layers to reduce training burdens while enhancing performance. Experiments on measured datasets demonstrate that the proposed method significantly outperforms the state-of-the-art baselines on supervised learning tests.
☆ Draw a Portrait of Your Graph Data: An Instance-Level Profiling Framework for Graph-Structured Data
Graph machine learning models often achieve similar overall performance yet behave differently at the node level, failing on different subsets of nodes with varying reliability. Standard evaluation metrics such as accuracy obscure these fine grained differences, making it difficult to diagnose when and where models fail. We introduce NodePro, a node profiling framework that enables fine-grained diagnosis of model behavior by assigning interpretable profile scores to individual nodes. These scores combine data-centric signals, such as feature dissimilarity, label uncertainty, and structural ambiguity, with model-centric measures of prediction confidence and consistency during training. By aligning model behavior with these profiles, NodePro reveals systematic differences between models, even when aggregate metrics are indistinguishable. We show that node profiles generalize to unseen nodes, supporting prediction reliability without ground-truth labels. Finally, we demonstrate the utility of NodePro in identifying semantically inconsistent or corrupted nodes in a structured knowledge graph, illustrating its effectiveness in real-world settings.
☆ Deceptive Risk Minimization: Out-of-Distribution Generalization by Deceiving Distribution Shift Detectors
This paper proposes deception as a mechanism for out-of-distribution (OOD) generalization: by learning data representations that make training data appear independent and identically distributed (iid) to an observer, we can identify stable features that eliminate spurious correlations and generalize to unseen domains. We refer to this principle as deceptive risk minimization (DRM) and instantiate it with a practical differentiable objective that simultaneously learns features that eliminate distribution shifts from the perspective of a detector based on conformal martingales while minimizing a task-specific loss. In contrast to domain adaptation or prior invariant representation learning methods, DRM does not require access to test data or a partitioning of training data into a finite number of data-generating domains. We demonstrate the efficacy of DRM on numerical experiments with concept shift and a simulated imitation learning setting with covariate shift in environments that a robot is deployed in.
☆ A Time-Series Foundation Model by Universal Delay Embedding
This study introduces Universal Delay Embedding (UDE), a pretrained foundation model designed to revolutionize time-series forecasting through principled integration of delay embedding representation and Koopman operator prediction. Leveraging Takens' embedding theorem, UDE as a dynamical representation of observed data constructs two-dimensional subspace patches from Hankel matrices, theoretically preserving dynamical and topological properties of underlying dynamical systems. Such patches are viewed as images, which can be efficiently processed by exploiting advanced deep learning technologies. Computationally, these patches further serve as tokens for learning a self-attention encoder, thus enabling accurate prediction of nonlinear time-series by a finite-dimensional Koopman operator in a linear manner in a latent space. Extensive evaluations across various benchmarks and real-world climate datasets demonstrate over 20% average reduction in mean squared error versus state-of-the-art foundation models, alongside superior generalization in fine-tuning scenarios. In particular, the learned dynamical representations and Koopman operator prediction forms from the patches exhibit exceptional interpretability, with consistent identification of topologically informative subspaces and robust encoding of domain-invariant dynamics, establishing UDE as a scalable, interpretable framework for universal time-series modeling and forecasting with broad scientific and industrial applicability.
☆ Early Detection of Branched Broomrape (Phelipanche ramosa) Infestation in Tomato Crops Using Leaf Spectral Analysis and Machine Learning
Branched broomrape (Phelipanche ramosa) is a chlorophyll-deficient parasitic weed that threatens tomato production by extracting nutrients from the host. We investigate early detection using leaf-level spectral reflectance (400-2500 nm) and ensemble machine learning. In a field experiment in Woodland, California, we tracked 300 tomato plants across growth stages defined by growing degree days (GDD). Leaf reflectance was acquired with a portable spectrometer and preprocessed (band denoising, 1 nm interpolation, Savitzky-Golay smoothing, correlation-based band reduction). Clear class differences were observed near 1500 nm and 2000 nm water absorption features, consistent with reduced leaf water content in infected plants at early stages. An ensemble combining Random Forest, XGBoost, SVM with RBF kernel, and Naive Bayes achieved 89% accuracy at 585 GDD, with recalls of 0.86 (infected) and 0.93 (noninfected). Accuracy declined at later stages (e.g., 69% at 1568 GDD), likely due to senescence and weed interference. Despite the small number of infected plants and environmental confounders, results show that proximal sensing with ensemble learning enables timely detection of broomrape before canopy symptoms are visible, supporting targeted interventions and reduced yield losses.
comment: Author-accepted version. Accepted and presented at AGRICONTROL 2025 (8th IFAC Conference on Sensing, Control and Automation Technologies for Agriculture), UC Davis, USA. To appear in IFAC-PapersOnLine (Elsevier)
☆ Foundational theory for optimal decision tree problems. II. Optimal hypersurface decision tree algorithm
Decision trees are a ubiquitous model for classification and regression tasks due to their interpretability and efficiency. However, solving the optimal decision tree (ODT) problem remains a challenging combinatorial optimization task. Even for the simplest splitting rules--axis-parallel hyperplanes--it is NP-hard to optimize. In Part I of this series, we rigorously defined the proper decision tree model through four axioms and, based on these, introduced four formal definitions of the ODT problem. From these definitions, we derived four generic algorithms capable of solving ODT problems for arbitrary decision trees satisfying the axioms. We also analyzed the combinatorial geometric properties of hypersurfaces, showing that decision trees defined by polynomial hypersurface splitting rules satisfy the proper axioms that we proposed. In this second paper (Part II) of this two-part series, building on the algorithmic and geometric foundations established in Part I, we introduce the first hypersurface decision tree (HODT) algorithm. To the best of our knowledge, existing optimal decision tree methods are, to date, limited to hyperplane splitting rules--a special case of hypersurfaces--and rely on general-purpose solvers. In contrast, our HODT algorithm addresses the general hypersurface decision tree model without requiring external solvers. Using synthetic datasets generated from ground-truth hyperplane decision trees, we vary tree size, data size, dimensionality, and label and feature noise. Results showing that our algorithm recovers the ground truth more accurately than axis-parallel trees and exhibits greater robustness to noise. We also analyzed generalization performance across 30 real-world datasets, showing that HODT can achieve up to 30% higher accuracy than the state-of-the-art optimal axis-parallel decision tree algorithm when tree complexity is properly controlled.
☆ LEGO: Spatial Accelerator Generation and Optimization for Tensor Applications HPCA 2025
Modern tensor applications, especially foundation models and generative AI applications require multiple input modalities (both vision and language), which increases the demand for flexible accelerator architecture. Existing frameworks suffer from the trade-off between design flexibility and productivity of RTL generation: either limited to very few hand-written templates or cannot automatically generate the RTL. To address this challenge, we propose the LEGO framework, which targets tensor applications and automatically generates spatial architecture design and outputs synthesizable RTL code without handwritten RTL design templates. Leveraging the affine-transformation-based architecture representation, LEGO front end finds interconnections between function units, synthesizes the memory system, and fuses different spatial dataflow designs based on data reuse analysis. LEGO back end then translates the hardware in a primitive-level graph to perform lower-level optimizations, and applies a set of linear-programming algorithms to optimally insert pipeline registers and reduce the overhead of unused logic when switching spatial dataflows. Our evaluation demonstrates that LEGO can achieve 3.2x speedup and 2.4x energy efficiency compared to previous work Gemmini, and can generate one architecture for diverse modern foundation models in generative AI applications.
comment: The first two authors have equal contributions; Published as a conference paper in HPCA 2025; 13 pages, 14 figures
☆ Hi-DARTS: Hierarchical Dynamically Adapting Reinforcement Trading System
Conventional autonomous trading systems struggle to balance computational efficiency and market responsiveness due to their fixed operating frequency. We propose Hi-DARTS, a hierarchical multi-agent reinforcement learning framework that addresses this trade-off. Hi-DARTS utilizes a meta-agent to analyze market volatility and dynamically activate specialized Time Frame Agents for high-frequency or low-frequency trading as needed. During back-testing on AAPL stock from January 2024 to May 2025, Hi-DARTS yielded a cumulative return of 25.17% with a Sharpe Ratio of 0.75. This performance surpasses standard benchmarks, including a passive buy-and-hold strategy on AAPL (12.19% return) and the S&P 500 ETF (SPY) (20.01% return). Our work demonstrates that dynamic, hierarchical agents can achieve superior risk-adjusted returns while maintaining high computational efficiency.
comment: Accepted paper at International Conference on ICT Convergence 2025
☆ Travel Time and Weather-Aware Traffic Forecasting in a Conformal Graph Neural Network Framework
Traffic flow forecasting is essential for managing congestion, improving safety, and optimizing various transportation systems. However, it remains a prevailing challenge due to the stochastic nature of urban traffic and environmental factors. Better predictions require models capable of accommodating the traffic variability influenced by multiple dynamic and complex interdependent factors. In this work, we propose a Graph Neural Network (GNN) framework to address the stochasticity by leveraging adaptive adjacency matrices using log-normal distributions and Coefficient of Variation (CV) values to reflect real-world travel time variability. Additionally, weather factors such as temperature, wind speed, and precipitation adjust edge weights and enable GNN to capture evolving spatio-temporal dependencies across traffic stations. This enhancement over the static adjacency matrix allows the model to adapt effectively to traffic stochasticity and changing environmental conditions. Furthermore, we utilize the Adaptive Conformal Prediction (ACP) framework to provide reliable uncertainty quantification, achieving target coverage while maintaining acceptable prediction intervals. Experimental results demonstrate that the proposed model, in comparison with baseline methods, showed better prediction accuracy and uncertainty bounds. We, then, validate this method by constructing traffic scenarios in SUMO and applying Monte-Carlo simulation to derive a travel time distribution for a Vehicle Under Test (VUT) to reflect real-world variability. The simulated mean travel time of the VUT falls within the intervals defined by INRIX historical data, verifying the model's robustness.
comment: This manuscript has been accepted as a REGULAR PAPER in the Transactions on Intelligent Transportation Systems 2025
☆ Imitation Learning as Return Distribution Matching
We study the problem of training a risk-sensitive reinforcement learning (RL) agent through imitation learning (IL). Unlike standard IL, our goal is not only to train an agent that matches the expert's expected return (i.e., its average performance) but also its risk attitude (i.e., other features of the return distribution, such as variance). We propose a general formulation of the risk-sensitive IL problem in which the objective is to match the expert's return distribution in Wasserstein distance. We focus on the tabular setting and assume the expert's reward is known. After demonstrating the limited expressivity of Markovian policies for this task, we introduce an efficient and sufficiently expressive subclass of non-Markovian policies tailored to it. Building on this subclass, we develop two provably efficient algorithms, RS-BC and RS-KT, for solving the problem when the transition model is unknown and known, respectively. We show that RS-KT achieves substantially lower sample complexity than RS-BC by exploiting dynamics information. We further demonstrate the sample efficiency of return distribution matching in the setting where the expert's reward is unknown by designing an oracle-based variant of RS-KT. Finally, we complement our theoretical analysis of RS-KT and RS-BC with numerical simulations, highlighting both their sample efficiency and the advantages of non-Markovian policies over standard sample-efficient IL algorithms.
☆ Learning non-Markovian Dynamical Systems with Signature-based Encoders ECAI 2025
Neural ordinary differential equations offer an effective framework for modeling dynamical systems by learning a continuous-time vector field. However, they rely on the Markovian assumption - that future states depend only on the current state - which is often untrue in real-world scenarios where the dynamics may depend on the history of past states. This limitation becomes especially evident in settings involving the continuous control of complex systems with delays and memory effects. To capture historical dependencies, existing approaches often rely on recurrent neural network (RNN)-based encoders, which are inherently discrete and struggle with continuous modeling. In addition, they may exhibit poor training behavior. In this work, we investigate the use of the signature transform as an encoder for learning non-Markovian dynamics in a continuous-time setting. The signature transform offers a continuous-time alternative with strong theoretical foundations and proven efficiency in summarizing multidimensional information in time. We integrate a signature-based encoding scheme into encoder-decoder dynamics models and demonstrate that it outperforms RNN-based alternatives in test performance on synthetic benchmarks.
comment: Accepted at [ML-DE] Machine Learning Meets Differential Equations 2025 (ECAI 2025). To appear in Proceedings of Machine Learning Research (PMLR)
☆ AMQ: Enabling AutoML for Mixed-precision Weight-Only Quantization of Large Language Models EMNLP 2025
To enable broader deployment of Large Language Models (LLMs), it is essential to identify the best-performing model under strict memory constraints. We present AMQ, Automated Mixed-Precision Weight-Only Quantization, a framework that assigns layer-wise quantization bit-widths to optimally balance model quality and memory usage. However, the combinatorial search space, with over 10^{100} possible configurations, makes conventional black-box optimization infeasible. AMQ overcomes this challenge through four key innovations:(1) search space pruning using prior knowledge to exclude unpromising configurations, (2) quantization proxy to bypass costly format conversions during search, (3) quality predictor to minimize evaluation overhead, and (4) iterative search-and-update strategy for fast and stable convergence. By integrating these components, AMQ efficiently explores the quality-efficiency landscape, reaching the Pareto frontier and yielding LLMs that are both compact and high-performing. Our code is available at https://github.com/dlwns147/amq.
comment: EMNLP 2025 Main Conference, Long Paper (Oral)
☆ Generalizing Behavior via Inverse Reinforcement Learning with Closed-Form Reward Centroids
We study the problem of generalizing an expert agent's behavior, provided through demonstrations, to new environments and/or additional constraints. Inverse Reinforcement Learning (IRL) offers a promising solution by seeking to recover the expert's underlying reward function, which, if used for planning in the new settings, would reproduce the desired behavior. However, IRL is inherently ill-posed: multiple reward functions, forming the so-called feasible set, can explain the same observed behavior. Since these rewards may induce different policies in the new setting, in the absence of additional information, a decision criterion is needed to select which policy to deploy. In this paper, we propose a novel, principled criterion that selects the "average" policy among those induced by the rewards in a certain bounded subset of the feasible set. Remarkably, we show that this policy can be obtained by planning with the reward centroid of that subset, for which we derive a closed-form expression. We then present a provably efficient algorithm for estimating this centroid using an offline dataset of expert demonstrations only. Finally, we conduct numerical simulations that illustrate the relationship between the expert's behavior and the behavior produced by our method.
☆ Improving Out-of-Domain Audio Deepfake Detection via Layer Selection and Fusion of SSL-Based Countermeasures
Audio deepfake detection systems based on frozen pre-trained self-supervised learning (SSL) encoders show a high level of performance when combined with layer-weighted pooling methods, such as multi-head factorized attentive pooling (MHFA). However, they still struggle to generalize to out-of-domain (OOD) conditions. We tackle this problem by studying the behavior of six different pre-trained SSLs, on four different test corpora. We perform a layer-by-layer analysis to determine which layers contribute most. Next, we study the pooling head, comparing a strategy based on a single layer with automatic selection via MHFA. We observed that selecting the best layer gave very good results, while reducing system parameters by up to 80%. A wide variation in performance as a function of test corpus and SSL model is also observed, showing that the pre-training strategy of the encoder plays a role. Finally, score-level fusion of several encoders improved generalization to OOD attacks.
☆ Query-Focused Extractive Summarization for Sentiment Explanation
Constructive analysis of feedback from clients often requires determining the cause of their sentiment from a substantial amount of text documents. To assist and improve the productivity of such endeavors, we leverage the task of Query-Focused Summarization (QFS). Models of this task are often impeded by the linguistic dissonance between the query and the source documents. We propose and substantiate a multi-bias framework to help bridge this gap at a domain-agnostic, generic level; we then formulate specialized approaches for the problem of sentiment explanation through sentiment-based biases and query expansion. We achieve experimental results outperforming baseline models on a real-world proprietary sentiment-aware QFS dataset.
☆ Learning from Uncertain Similarity and Unlabeled Data
Existing similarity-based weakly supervised learning approaches often rely on precise similarity annotations between data pairs, which may inadvertently expose sensitive label information and raise privacy risks. To mitigate this issue, we propose Uncertain Similarity and Unlabeled Learning (USimUL), a novel framework where each similarity pair is embedded with an uncertainty component to reduce label leakage. In this paper, we propose an unbiased risk estimator that learns from uncertain similarity and unlabeled data. Additionally, we theoretically prove that the estimator achieves statistically optimal parametric convergence rates. Extensive experiments on both benchmark and real-world datasets show that our method achieves superior classification performance compared to conventional similarity-based approaches.
☆ Low-rank Orthogonalization for Large-scale Matrix Optimization with Applications to Foundation Model Training
Neural network (NN) training is inherently a large-scale matrix optimization problem, yet the matrix structure of NN parameters has long been overlooked. Recently, the optimizer Muon \cite{jordanmuon}, which explicitly exploits this structure, has gained significant attention for its strong performance in foundation model training. A key component contributing to Muon's success is matrix orthogonalization. In this paper, we propose {\it low-rank orthogonalization}, which explicitly leverages the low-rank nature of gradients during NN training. Building on this, we propose low-rank matrix-signed gradient descent and a low-rank variant of Muon. Our numerical experiments demonstrate the superior performance of low-rank orthogonalization, with the low-rank Muon achieving promising results in GPT-2 and LLaMA pretraining -- surpassing the performance of the carefully tuned vanilla Muon. Theoretically, we establish the iteration complexity of the low-rank matrix-signed gradient descent for finding an approximate stationary solution, as well as that of low-rank Muon for finding an approximate stochastic stationary solution under heavy-tailed noise.
comment: 27 pages
☆ Examining the Relationship between Scientific Publishing Activity and Hype-Driven Financial Bubbles: A Comparison of the Dot-Com and AI Eras
Financial bubbles often arrive without much warning, but create long-lasting economic effects. For example, during the dot-com bubble, innovative technologies created market disruptions through excitement for a promised bright future. Such technologies originated from research where scientists had developed them for years prior to their entry into the markets. That raises a question on the possibility of analyzing scientific publishing data (e.g. citation networks) leading up to a bubble for signals that may forecast the rise and fall of similar future bubbles. To that end, we utilized temporal SNAs to detect possible relationships between the publication citation networks of scientists and financial market data during two modern eras of rapidly shifting technology: 1) dot-com era from 1994 to 2001 and 2) AI era from 2017 to 2024. Results showed that the patterns from the dot-com era (which did end in a bubble) did not definitively predict the rise and fall of an AI bubble. While yearly citation networks reflected possible changes in publishing behavior of scientists between the two eras, there was a subset of AI era scientists whose publication influence patterns mirrored those during the dot-com era. Upon further analysis using multiple analysis techniques (LSTM, KNN, AR X/GARCH), the data seems to suggest two possibilities for the AI era: unprecedented form of financial bubble unseen or that no bubble exists. In conclusion, our findings imply that the patterns present in the dot-com era do not effectively translate in such a manner to apply them to the AI market.
☆ Deep operator network for surrogate modeling of poroelasticity with random permeability fields
Poroelasticity -- coupled fluid flow and elastic deformation in porous media -- often involves spatially variable permeability, especially in subsurface systems. In such cases, simulations with random permeability fields are widely used for probabilistic analysis, uncertainty quantification, and inverse problems. These simulations require repeated forward solves that are often prohibitively expensive, motivating the development of efficient surrogate models. However, efficient surrogate modeling techniques for poroelasticity with random permeability fields remain scarce. In this study, we propose a surrogate modeling framework based on the deep operator network (DeepONet), a neural architecture designed to learn mappings between infinite-dimensional function spaces. The proposed surrogate model approximates the solution operator that maps random permeability fields to transient poroelastic responses. To enhance predictive accuracy and stability, we integrate three strategies: nondimensionalization of the governing equations, input dimensionality reduction via Karhunen--Lo\'eve expansion, and a two-step training procedure that decouples the optimization of branch and trunk networks. The methodology is evaluated on two benchmark problems in poroelasticity: soil consolidation and ground subsidence induced by groundwater extraction. In both cases, the DeepONet achieves substantial speedup in inference while maintaining high predictive accuracy across a wide range of permeability statistics. These results highlight the potential of the proposed approach as a scalable and efficient surrogate modeling technique for poroelastic systems with random permeability fields.
☆ Identifiable Autoregressive Variational Autoencoders for Nonlinear and Nonstationary Spatio-Temporal Blind Source Separation
The modeling and prediction of multivariate spatio-temporal data involve numerous challenges. Dimension reduction methods can significantly simplify this process, provided that they account for the complex dependencies between variables and across time and space. Nonlinear blind source separation has emerged as a promising approach, particularly following recent advances in identifiability results. Building on these developments, we introduce the identifiable autoregressive variational autoencoder, which ensures the identifiability of latent components consisting of nonstationary autoregressive processes. The blind source separation efficacy of the proposed method is showcased through a simulation study, where it is compared against state-of-the-art methods, and the spatio-temporal prediction performance is evaluated against several competitors on air pollution and weather datasets.
☆ TabStruct: Measuring Structural Fidelity of Tabular Data
Evaluating tabular generators remains a challenging problem, as the unique causal structural prior of heterogeneous tabular data does not lend itself to intuitive human inspection. Recent work has introduced structural fidelity as a tabular-specific evaluation dimension to assess whether synthetic data complies with the causal structures of real data. However, existing benchmarks often neglect the interplay between structural fidelity and conventional evaluation dimensions, thus failing to provide a holistic understanding of model performance. Moreover, they are typically limited to toy datasets, as quantifying existing structural fidelity metrics requires access to ground-truth causal structures, which are rarely available for real-world datasets. In this paper, we propose a novel evaluation framework that jointly considers structural fidelity and conventional evaluation dimensions. We introduce a new evaluation metric, $\textbf{global utility}$, which enables the assessment of structural fidelity even in the absence of ground-truth causal structures. In addition, we present $\textbf{TabStruct}$, a comprehensive evaluation benchmark offering large-scale quantitative analysis on 13 tabular generators from nine distinct categories, across 29 datasets. Our results demonstrate that global utility provides a task-independent, domain-agnostic lens for tabular generator performance. We release the TabStruct benchmark suite, including all datasets, evaluation pipelines, and raw results. Code is available at https://github.com/SilenceX12138/TabStruct.
comment: 55 pages, 60 tables, 7 figures
☆ Neuro-Symbolic Agents with Modal Logic for Autonomous Diagnostics
The development of intelligent agents, particularly those powered by language models (LMs), has shown the critical role in various environments that require intelligent and autonomous decision. Environments are not passive testing grounds and they represent the data required for agents to learn and exhibit very challenging conditions that require adaptive, complex and autonomous capacity to make decisions. While the paradigm of scaling models and datasets has led to remarkable emergent capabilities, we argue that scaling the structure, fidelity, and logical consistency of agent reasoning within these environments is a crucial, yet underexplored, dimension of AI research. This paper introduces a neuro-symbolic multi-agent architecture where the belief states of individual agents are formally represented as Kripke models. This foundational choice enables them to reason about known concepts of \emph{possibility} and \emph{necessity} using the formal language of modal logic. In this work, we use of immutable, domain-specific knowledge to make infere information, which is encoded as logical constraints essential for proper diagnosis. In the proposed model, we show constraints that actively guide the hypothesis generation of LMs, effectively preventing them from reaching physically or logically untenable conclusions. In a high-fidelity simulated particle accelerator environment, our system successfully diagnoses complex, cascading failures by combining the powerful semantic intuition of LMs with the rigorous, verifiable validation of modal logic and a factual world model and showcasing a viable path toward more robust, reliable, and verifiable autonomous agents.
comment: 10 pages, 1 figure, Scaling Environments for Agents (SEA) Workshop at NeuralIPS
☆ Quantum Noise Tomography with Physics-Informed Neural Networks NeurIPS
Characterizing the environmental interactions of quantum systems is a critical bottleneck in the development of robust quantum technologies. Traditional tomographic methods are often data-intensive and struggle with scalability. In this work, we introduce a novel framework for performing Lindblad tomography using Physics-Informed Neural Networks (PINNs). By embedding the Lindblad master equation directly into the neural network's loss function, our approach simultaneously learns the quantum state's evolution and infers the underlying dissipation parameters from sparse, time-series measurement data. Our results show that PINNs can reconstruct both the system dynamics and the functional form of unknown noise parameters, presenting a sample-efficient and scalable solution for quantum device characterization. Ultimately, our method produces a fully-differentiable digital twin of a noisy quantum system by learning its governing master equation.
comment: 6 pages, 3 figures, Machine Learning and the Physical Sciences Workshop at the 39th conference on Neural Information Processing Systems (NeurIPS)
☆ High Effort, Low Gain: Fundamental Limits of Active Learning for Linear Dynamical Systems
In this work, we consider the problem of identifying an unknown linear dynamical system given a finite hypothesis class. In particular, we analyze the effect of the excitation input on the sample complexity of identifying the true system with high probability. To this end, we present sample complexity lower bounds that capture the choice of the selected excitation input. The sample complexity lower bound gives rise to a system theoretic condition to determine the potential benefit of experiment design. Informed by the analysis of the sample complexity lower bound, we propose a persistent excitation (PE) condition tailored to the considered setting, which we then use to establish sample complexity upper bounds. Notably, the \acs{PE} condition is weaker than in the case of an infinite hypothesis class and allows analyzing different excitation inputs modularly. Crucially, the lower and upper bounds share the same dependency on key problem parameters. Finally, we leverage these insights to propose an active learning algorithm that sequentially excites the system optimally with respect to the current estimate, and provide sample complexity guarantees for the presented algorithm. Concluding simulations showcase the effectiveness of the proposed algorithm.
☆ Wavelet-SARIMA-Transformer: A Hybrid Model for Rainfall Forecasting
This study develops and evaluates a novel hybridWavelet SARIMA Transformer, WST framework to forecast using monthly rainfall across five meteorological subdivisions of Northeast India over the 1971 to 2023 period. The approach employs the Maximal Overlap Discrete Wavelet Transform, MODWT with four wavelet families such as, Haar, Daubechies, Symlet, Coiflet etc. to achieve shift invariant, multiresolution decomposition of the rainfall series. Linear and seasonal components are modeled using Seasonal ARIMA, SARIMA, while nonlinear components are modeled by a Transformer network, and forecasts are reconstructed via inverse MODWT. Comprehensive validation using an 80 is to 20 train test split and multiple performance indices such as, RMSE, MAE, SMAPE, Willmotts d, Skill Score, Percent Bias, Explained Variance, and Legates McCabes E1 demonstrates the superiority of the Haar-based hybrid model, WHST. Across all subdivisions, WHST consistently achieved lower forecast errors, stronger agreement with observed rainfall, and unbiased predictions compared with stand alone SARIMA, stand-alone Transformer, and two-stage wavelet hybrids. Residual adequacy was confirmed through the Ljung Box test, while Taylor diagrams provided an integrated assessment of correlation, variance fidelity, and RMSE, further reinforcing the robustness of the proposed approach. The results highlight the effectiveness of integrating multiresolution signal decomposition with complementary linear and deep learning models for hydroclimatic forecasting. Beyond rainfall, the proposed WST framework offers a scalable methodology for forecasting complex environmental time series, with direct implications for flood risk management, water resources planning, and climate adaptation strategies in data-sparse and climate-sensitive regions.
☆ Learning Representations in Video Game Agents with Supervised Contrastive Imitation Learning
This paper introduces a novel application of Supervised Contrastive Learning (SupCon) to Imitation Learning (IL), with a focus on learning more effective state representations for agents in video game environments. The goal is to obtain latent representations of the observations that capture better the action-relevant factors, thereby modeling better the cause-effect relationship from the observations that are mapped to the actions performed by the demonstrator, for example, the player jumps whenever an obstacle appears ahead. We propose an approach to integrate the SupCon loss with continuous output spaces, enabling SupCon to operate without constraints regarding the type of actions of the environment. Experiments on the 3D games Astro Bot and Returnal, and multiple 2D Atari games show improved representation quality, faster learning convergence, and better generalization compared to baseline models trained only with supervised action prediction loss functions.
☆ Bridging Vision Language Models and Symbolic Grounding for Video Question Answering
Video Question Answering (VQA) requires models to reason over spatial, temporal, and causal cues in videos. Recent vision language models (VLMs) achieve strong results but often rely on shallow correlations, leading to weak temporal grounding and limited interpretability. We study symbolic scene graphs (SGs) as intermediate grounding signals for VQA. SGs provide structured object-relation representations that complement VLMs holistic reasoning. We introduce SG-VLM, a modular framework that integrates frozen VLMs with scene graph grounding via prompting and visual localization. Across three benchmarks (NExT-QA, iVQA, ActivityNet-QA) and multiple VLMs (QwenVL, InternVL), SG-VLM improves causal and temporal reasoning and outperforms prior baselines, though gains over strong VLMs are limited. These findings highlight both the promise and current limitations of symbolic grounding, and offer guidance for future hybrid VLM-symbolic approaches in video understanding.
☆ Transparent and Fair Profiling in Employment Services: Evidence from Switzerland
Long-term unemployment (LTU) is a challenge for both jobseekers and public employment services. Statistical profiling tools are increasingly used to predict LTU risk. Some profiling tools are opaque, black-box machine learning models, which raise issues of transparency and fairness. This paper investigates whether interpretable models could serve as an alternative, using administrative data from Switzerland. Traditional statistical, interpretable, and black-box models are compared in terms of predictive performance, interpretability, and fairness. It is shown that explainable boosting machines, a recent interpretable model, perform nearly as well as the best black-box models. It is also shown how model sparsity, feature smoothing, and fairness mitigation can enhance transparency and fairness with only minor losses in performance. These findings suggest that interpretable profiling provides an accountable and trustworthy alternative to black-box models without compromising performance.
comment: 35 pages including appendix
☆ Data-Driven Analysis of Text-Conditioned AI-Generated Music: A Case Study with Suno and Udio
Online AI platforms for creating music from text prompts (AI music), such as Suno and Udio, are now being used by hundreds of thousands of users. Some AI music is appearing in advertising, and even charting, in multiple countries. How are these platforms being used? What subjects are inspiring their users? This article answers these questions for Suno and Udio using a large collection of songs generated by users of these platforms from May to October 2024. Using a combination of state-of-the-art text embedding models, dimensionality reduction and clustering methods, we analyze the prompts, tags and lyrics, and automatically annotate and display the processed data in interactive plots. Our results reveal prominent themes in lyrics, language preference, prompting strategies, as well as peculiar attempts at steering models through the use of metatags. To promote the musicological study of the developing cultural practice of AI-generated music we share our code and resources.
comment: Submitted for review to TISMIR Digital Musicology special issue
☆ FedDAF: Federated Domain Adaptation Using Model Functional Distance WACV 2026
Federated Domain Adaptation (FDA) is a federated learning (FL) approach that improves model performance at the target client by collaborating with source clients while preserving data privacy. FDA faces two primary challenges: domain shifts between source and target data and limited labeled data at the target. Most existing FDA methods focus on domain shifts, assuming ample target data, yet often neglect the combined challenges of both domain shifts and data scarcity. Moreover, approaches that address both challenges fail to prioritize sharing relevant information from source clients according to the target's objective. In this paper, we propose FedDAF, a novel approach addressing both challenges in FDA. FedDAF uses similarity-based aggregation of the global source model and target model by calculating model functional distance from their mean gradient fields computed on target data. This enables effective model aggregation based on the target objective, constructed using target data, even with limited data. While computing model functional distance between these two models, FedDAF computes the angle between their mean gradient fields and then normalizes with the Gompertz function. To construct the global source model, all the local source models are aggregated using simple average in the server. Experiments on real-world datasets demonstrate FedDAF's superiority over existing FL, PFL, and FDA methods in terms of achieving better test accuracy.
comment: 9 pages, 2 figures, 3 tables. Submitted to WACV 2026
☆ Collapse of Irrelevant Representations (CIR) Ensures Robust and Non-Disruptive LLM Unlearning
Current unlearning techniques and safety training consistently fail to remove dangerous knowledge from language models. We analyze the root causes and propose a highly selective technique which unlearns robustly and without disrupting general performance. We perform PCA on activations and module output gradients to identify subspaces containing common representations, and collapse them before calculating unlearning updates. This way we avoid unlearning general representations, and only target those specific to the unlearned facts. When unlearning WMDP dataset facts from Llama-3.1-8B, we drop post-attack accuracy 80x more than our best baseline (Circuit Breakers) on biohazardous facts and 30x more on cyberhazardous facts. Despite this, we disrupt general performance 30x less (only 0.1% WikiText loss increase), while requiring less than 3 GPU-seconds per fact.
☆ Visualization and Analysis of the Loss Landscape in Graph Neural Networks
Graph Neural Networks (GNNs) are powerful models for graph-structured data, with broad applications. However, the interplay between GNN parameter optimization, expressivity, and generalization remains poorly understood. We address this by introducing an efficient learnable dimensionality reduction method for visualizing GNN loss landscapes, and by analyzing the effects of over-smoothing, jumping knowledge, quantization, sparsification, and preconditioner on GNN optimization. Our learnable projection method surpasses the state-of-the-art PCA-based approach, enabling accurate reconstruction of high-dimensional parameters with lower memory usage. We further show that architecture, sparsification, and optimizer's preconditioning significantly impact the GNN optimization landscape and their training process and final prediction performance. These insights contribute to developing more efficient designs of GNN architectures and training strategies.
☆ Synthetic vs. Real Training Data for Visual Navigation
This paper investigates how the performance of visual navigation policies trained in simulation compares to policies trained with real-world data. Performance degradation of simulator-trained policies is often significant when they are evaluated in the real world. However, despite this well-known sim-to-real gap, we demonstrate that simulator-trained policies can match the performance of their real-world-trained counterparts. Central to our approach is a navigation policy architecture that bridges the sim-to-real appearance gap by leveraging pretrained visual representations and runs real-time on robot hardware. Evaluations on a wheeled mobile robot show that the proposed policy, when trained in simulation, outperforms its real-world-trained version by 31% and the prior state-of-the-art methods by 50% in navigation success rate. Policy generalization is verified by deploying the same model onboard a drone. Our results highlight the importance of diverse image encoder pretraining for sim-to-real generalization, and identify on-policy learning as a key advantage of simulated training over training with real data.
comment: Presented at CoRL 2025 workshop on "Making Sense of Data in Robotics"
☆ Watch Your Step: A Cost-Sensitive Framework for Accelerometer-Based Fall Detection in Real-World Streaming Scenarios
Real-time fall detection is crucial for enabling timely interventions and mitigating the severe health consequences of falls, particularly in older adults. However, existing methods often rely on simulated data or assumptions such as prior knowledge of fall events, limiting their real-world applicability. Practical deployment also requires efficient computation and robust evaluation metrics tailored to continuous monitoring. This paper presents a real-time fall detection framework for continuous monitoring without prior knowledge of fall events. Using over 60 hours of inertial measurement unit (IMU) data from the FARSEEING real-world falls dataset, we employ recent efficient classifiers to compute fall probabilities in streaming mode. To enhance robustness, we introduce a cost-sensitive learning strategy that tunes the decision threshold using a cost function reflecting the higher risk of missed falls compared to false alarms. Unlike many methods that achieve high recall only at the cost of precision, our framework achieved Recall of 1.00, Precision of 0.84, and an F1 score of 0.91 on FARSEEING, detecting all falls while keeping false alarms low, with average inference time below 5 ms per sample. These results demonstrate that cost-sensitive threshold tuning enhances the robustness of accelerometer-based fall detection. They also highlight the potential of our computationally efficient framework for deployment in real-time wearable sensor systems for continuous monitoring.
☆ Multimodal Regression for Enzyme Turnover Rates Prediction IJCAI 2025
The enzyme turnover rate is a fundamental parameter in enzyme kinetics, reflecting the catalytic efficiency of enzymes. However, enzyme turnover rates remain scarce across most organisms due to the high cost and complexity of experimental measurements. To address this gap, we propose a multimodal framework for predicting the enzyme turnover rate by integrating enzyme sequences, substrate structures, and environmental factors. Our model combines a pre-trained language model and a convolutional neural network to extract features from protein sequences, while a graph neural network captures informative representations from substrate molecules. An attention mechanism is incorporated to enhance interactions between enzyme and substrate representations. Furthermore, we leverage symbolic regression via Kolmogorov-Arnold Networks to explicitly learn mathematical formulas that govern the enzyme turnover rate, enabling interpretable and accurate predictions. Extensive experiments demonstrate that our framework outperforms both traditional and state-of-the-art deep learning approaches. This work provides a robust tool for studying enzyme kinetics and holds promise for applications in enzyme engineering, biotechnology, and industrial biocatalysis.
comment: 9 pages, 5 figures. This paper was withdrawn from the IJCAI 2025 proceedings due to the lack of participation in the conference and presentation
☆ User eXperience Perception Insights Dataset (UXPID): Synthetic User Feedback from Public Industrial Forums
Customer feedback in industrial forums reflect a rich but underexplored source of insight into real-world product experience. These publicly shared discussions offer an organic view of user expectations, frustrations, and success stories shaped by the specific contexts of use. Yet, harnessing this information for systematic analysis remains challenging due to the unstructured and domain-specific nature of the content. The lack of structure and specialized vocabulary makes it difficult for traditional data analysis techniques to accurately interpret, categorize, and quantify the feedback, thereby limiting its potential to inform product development and support strategies. To address these challenges, this paper presents the User eXperience Perception Insights Dataset (UXPID), a collection of 7130 artificially synthesized and anonymized user feedback branches extracted from a public industrial automation forum. Each JavaScript object notation (JSON) record contains multi-post comments related to specific hardware and software products, enriched with metadata and contextual conversation data. Leveraging a large language model (LLM), each branch is systematically analyzed and annotated for UX insights, user expectations, severity and sentiment ratings, and topic classifications. The UXPID dataset is designed to facilitate research in user requirements, user experience (UX) analysis, and AI-driven feedback processing, particularly where privacy and licensing restrictions limit access to real-world data. UXPID supports the training and evaluation of transformer-based models for tasks such as issue detection, sentiment analysis, and requirements extraction in the context of technical forums.
☆ Stabilizing PINNs: A regularization scheme for PINN training to avoid unstable fixed points of dynamical systems
It was recently shown that the loss function used for training physics-informed neural networks (PINNs) exhibits local minima at solutions corresponding to fixed points of dynamical systems. In the forward setting, where the PINN is trained to solve initial value problems, these local minima can interfere with training and potentially leading to physically incorrect solutions. Building on stability theory, this paper proposes a regularization scheme that penalizes solutions corresponding to unstable fixed points. Experimental results on four dynamical systems, including the Lotka-Volterra model and the van der Pol oscillator, show that our scheme helps avoiding physically incorrect solutions and substantially improves the training success rate of PINNs.
comment: 8 pages, 3 figures
☆ Data Fusion and Machine Learning for Ship Fuel Consumption Modelling -- A Case of Bulk Carrier Vessel
There is an increasing push for operational measures to reduce ships' bunker fuel consumption and carbon emissions, driven by the International Maritime Organization (IMO) mandates. Key performance indicators such as the Energy Efficiency Operational Indicator (EEOI) focus on fuel efficiency. Strategies like trim optimization, virtual arrival, and green routing have emerged. The theoretical basis for these approaches lies in accurate prediction of fuel consumption as a function of sailing speed, displacement, trim, climate, and sea state. This study utilized 296 voyage reports from a bulk carrier vessel over one year (November 16, 2021 to November 21, 2022) and 28 parameters, integrating hydrometeorological big data from the Copernicus Marine Environment Monitoring Service (CMEMS) with 19 parameters and the European Centre for Medium-Range Weather Forecasts (ECMWF) with 61 parameters. The objective was to evaluate whether fusing external public data sources enhances modeling accuracy and to highlight the most influential parameters affecting fuel consumption. The results reveal a strong potential for machine learning techniques to predict ship fuel consumption accurately by combining voyage reports with climate and sea data. However, validation on similar classes of vessels remains necessary to confirm generalizability.
comment: 44 pages, 6 figures, preprint version
☆ Analysing Python Machine Learning Notebooks with Moose
Machine Learning (ML) code, particularly within notebooks, often exhibits lower quality compared to traditional software. Bad practices arise at three distinct levels: general Python coding conventions, the organizational structure of the notebook itself, and ML-specific aspects such as reproducibility and correct API usage. However, existing analysis tools typically focus on only one of these levels and struggle to capture ML-specific semantics, limiting their ability to detect issues. This paper introduces Vespucci Linter, a static analysis tool with multi-level capabilities, built on Moose and designed to address this challenge. Leveraging a metamodeling approach that unifies the notebook's structural elements with Python code entities, our linter enables a more contextualized analysis to identify issues across all three levels. We implemented 22 linting rules derived from the literature and applied our tool to a corpus of 5,000 notebooks from the Kaggle platform. The results reveal violations at all levels, validating the relevance of our multi-level approach and demonstrating Vespucci Linter's potential to improve the quality and reliability of ML development in notebook environments.
☆ Fast and Interpretable Machine Learning Modelling of Atmospheric Molecular Clusters
Understanding how atmospheric molecular clusters form and grow is key to resolving one of the biggest uncertainties in climate modelling: the formation of new aerosol particles. While quantum chemistry offers accurate insights into these early-stage clusters, its steep computational costs limit large-scale exploration. In this work, we present a fast, interpretable, and surprisingly powerful alternative: $k$-nearest neighbour ($k$-NN) regression model. By leveraging chemically informed distance metrics, including a kernel-induced metric and one learned via metric learning for kernel regression (MLKR), we show that simple $k$-NN models can rival more complex kernel ridge regression (KRR) models in accuracy, while reducing computational time by orders of magnitude. We perform this comparison with the well-established Faber-Christensen-Huang-Lilienfeld (FCHL19) molecular descriptor, but other descriptors (e.g., FCHL18, MBDF, and CM) can be shown to have similar performance. Applied to both simple organic molecules in the QM9 benchmark set and large datasets of atmospheric molecular clusters (sulphuric acid-water and sulphuric-multibase -base systems), our $k$-NN models achieve near-chemical accuracy, scale seamlessly to datasets with over 250,000 entries, and even appears to extrapolate to larger unseen clusters with minimal error (often nearing 1 kcal/mol). With built-in interpretability and straightforward uncertainty estimation, this work positions $k$-NN as a potent tool for accelerating discovery in atmospheric chemistry and beyond.
comment: 38 pages with 2 page appendix, 9 figures. The source code used in the paper are available at https://github.com/edahelsinki/JK-kNN/
☆ DRAG: Data Reconstruction Attack using Guided Diffusion ICML 2025
With the rise of large foundation models, split inference (SI) has emerged as a popular computational paradigm for deploying models across lightweight edge devices and cloud servers, addressing data privacy and computational cost concerns. However, most existing data reconstruction attacks have focused on smaller CNN classification models, leaving the privacy risks of foundation models in SI settings largely unexplored. To address this gap, we propose a novel data reconstruction attack based on guided diffusion, which leverages the rich prior knowledge embedded in a latent diffusion model (LDM) pre-trained on a large-scale dataset. Our method performs iterative reconstruction on the LDM's learned image prior, effectively generating high-fidelity images resembling the original data from their intermediate representations (IR). Extensive experiments demonstrate that our approach significantly outperforms state-of-the-art methods, both qualitatively and quantitatively, in reconstructing data from deep-layer IRs of the vision foundation model. The results highlight the urgent need for more robust privacy protection mechanisms for large models in SI scenarios. Code is available at: https://github.com/ntuaislab/DRAG.
comment: ICML 2025
☆ Neural Audio Codecs for Prompt-Driven Universal Source Separation
Text-guided source separation supports flexible audio editing across media and assistive applications, but existing models like AudioSep are too compute-heavy for edge deployment. Neural audio codec (NAC) models such as CodecFormer and SDCodec are compute-efficient but limited to fixed-class separation. We introduce CodecSep, the first NAC-based model for on-device universal, text-driven separation. CodecSep combines DAC compression with a Transformer masker modulated by CLAP-derived FiLM parameters. Across six open-domain benchmarks under matched training/prompt protocols, \textbf{CodecSep} surpasses \textbf{AudioSep} in separation fidelity (SI-SDR) while remaining competitive in perceptual quality (ViSQOL) and matching or exceeding fixed-stem baselines (TDANet, CodecFormer, SDCodec). In code-stream deployments, it needs just 1.35~GMACs end-to-end -- approximately $54\times$ less compute ($25\times$ architecture-only) than spectrogram-domain separators like AudioSep -- while remaining fully bitstream-compatible.
comment: 21 pages, 1 figure, pre-print, under review
☆ EMeRALDS: Electronic Medical Record Driven Automated Lung Nodule Detection and Classification in Thoracic CT Images
Objective: Lung cancer is a leading cause of cancer-related mortality worldwide, primarily due to delayed diagnosis and poor early detection. This study aims to develop a computer-aided diagnosis (CAD) system that leverages large vision-language models (VLMs) for the accurate detection and classification of pulmonary nodules in computed tomography (CT) scans. Methods: We propose an end-to-end CAD pipeline consisting of two modules: (i) a detection module (CADe) based on the Segment Anything Model 2 (SAM2), in which the standard visual prompt is replaced with a text prompt encoded by CLIP (Contrastive Language-Image Pretraining), and (ii) a diagnosis module (CADx) that calculates similarity scores between segmented nodules and radiomic features. To add clinical context, synthetic electronic medical records (EMRs) were generated using radiomic assessments by expert radiologists and combined with similarity scores for final classification. The method was tested on the publicly available LIDC-IDRI dataset (1,018 CT scans). Results: The proposed approach demonstrated strong performance in zero-shot lung nodule analysis. The CADe module achieved a Dice score of 0.92 and an IoU of 0.85 for nodule segmentation. The CADx module attained a specificity of 0.97 for malignancy classification, surpassing existing fully supervised methods. Conclusions: The integration of VLMs with radiomics and synthetic EMRs allows for accurate and clinically relevant CAD of pulmonary nodules in CT scans. The proposed system shows strong potential to enhance early lung cancer detection, increase diagnostic confidence, and improve patient management in routine clinical workflows.
☆ Beyond Regularity: Modeling Chaotic Mobility Patterns for Next Location Prediction
Next location prediction is a key task in human mobility analysis, crucial for applications like smart city resource allocation and personalized navigation services. However, existing methods face two significant challenges: first, they fail to address the dynamic imbalance between periodic and chaotic mobile patterns, leading to inadequate adaptation over sparse trajectories; second, they underutilize contextual cues, such as temporal regularities in arrival times, which persist even in chaotic patterns and offer stronger predictability than spatial forecasts due to reduced search spaces. To tackle these challenges, we propose \textbf{\method}, a \underline{\textbf{C}}h\underline{\textbf{A}}otic \underline{\textbf{N}}eural \underline{\textbf{O}}scillator n\underline{\textbf{E}}twork for next location prediction, which introduces a biologically inspired Chaotic Neural Oscillatory Attention mechanism to inject adaptive variability into traditional attention, enabling balanced representation of evolving mobility behaviors, and employs a Tri-Pair Interaction Encoder along with a Cross Context Attentive Decoder to fuse multimodal ``who-when-where'' contexts in a joint framework for enhanced prediction performance. Extensive experiments on two real-world datasets demonstrate that CANOE consistently and significantly outperforms a sizeable collection of state-of-the-art baselines, yielding 3.17\%-13.11\% improvement over the best-performing baselines across different cases. In particular, CANOE can make robust predictions over mobility trajectories of different mobility chaotic levels. A series of ablation studies also supports our key design choices. Our code is available at: https://github.com/yuqian2003/CANOE.
comment: 12 pages, 5 figures
☆ CoachMe: Decoding Sport Elements with a Reference-Based Coaching Instruction Generation Model ACL 2025
Motion instruction is a crucial task that helps athletes refine their technique by analyzing movements and providing corrective guidance. Although recent advances in multimodal models have improved motion understanding, generating precise and sport-specific instruction remains challenging due to the highly domain-specific nature of sports and the need for informative guidance. We propose CoachMe, a reference-based model that analyzes the differences between a learner's motion and a reference under temporal and physical aspects. This approach enables both domain-knowledge learning and the acquisition of a coach-like thinking process that identifies movement errors effectively and provides feedback to explain how to improve. In this paper, we illustrate how CoachMe adapts well to specific sports such as skating and boxing by learning from general movements and then leveraging limited data. Experiments show that CoachMe provides high-quality instructions instead of directions merely in the tone of a coach but without critical information. CoachMe outperforms GPT-4o by 31.6% in G-Eval on figure skating and by 58.3% on boxing. Analysis further confirms that it elaborates on errors and their corresponding improvement methods in the generated instructions. You can find CoachMe here: https://motionxperts.github.io/
comment: Published in Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2025. Official version: https://doi.org/10.18653/v1/2025.acl-long.1413
☆ An Interventional Approach to Real-Time Disaster Assessment via Causal Attribution
Traditional disaster analysis and modelling tools for assessing the severity of a disaster are predictive in nature. Based on the past observational data, these tools prescribe how the current input state (e.g., environmental conditions, situation reports) results in a severity assessment. However, these systems are not meant to be interventional in the causal sense, where the user can modify the current input state to simulate counterfactual "what-if" scenarios. In this work, we provide an alternative interventional tool that complements traditional disaster modelling tools by leveraging real-time data sources like satellite imagery, news, and social media. Our tool also helps understand the causal attribution of different factors on the estimated severity, over any given region of interest. In addition, we provide actionable recourses that would enable easier mitigation planning. Our source code is publicly available.
☆ SpaPool: Soft Partition Assignment Pooling for__Graph Neural Networks
This paper introduces SpaPool, a novel pooling method that combines the strengths of both dense and sparse techniques for a graph neural network. SpaPool groups vertices into an adaptive number of clusters, leveraging the benefits of both dense and sparse approaches. It aims to maintain the structural integrity of the graph while reducing its size efficiently. Experimental results on several datasets demonstrate that SpaPool achieves competitive performance compared to existing pooling techniques and excels particularly on small-scale graphs. This makes SpaPool a promising method for applications requiring efficient and effective graph processing.
☆ Measuring Visual Understanding in Telecom domain: Performance Metrics for Image-to-UML conversion using VLMs
Telecom domain 3GPP documents are replete with images containing sequence diagrams. Advances in Vision-Language Large Models (VLMs) have eased conversion of such images to machine-readable PlantUML (puml) formats. However, there is a gap in evaluation of such conversions - existing works do not compare puml scripts for various components. In this work, we propose performance metrics to measure the effectiveness of such conversions. A dataset of sequence diagrams from 3GPP documents is chosen to be representative of domain-specific actual scenarios. We compare puml outputs from two VLMs - Claude Sonnet and GPT-4V - against manually created ground truth representations. We use version control tools to capture differences and introduce standard performance metrics to measure accuracies along various components: participant identification, message flow accuracy, sequence ordering, and grouping construct preservation. We demonstrate effectiveness of proposed metrics in quantifying conversion errors across various components of puml scripts. The results show that nodes, edges and messages are accurately captured. However, we observe that VLMs do not necessarily perform well on complex structures such as notes, box, groups. Our experiments and performance metrics indicates a need for better representation of these components in training data for fine-tuned VLMs.
☆ Assessing On-the-Ground Disaster Impact Using Online Data Sources
Assessing the impact of a disaster in terms of asset losses and human casualties is essential for preparing effective response plans. Traditional methods include offline assessments conducted on the ground, where volunteers and first responders work together to collect the estimate of losses through windshield surveys or on-ground inspection. However, these methods have a time delay and are prone to different biases. Recently, various online data sources, including social media, news reports, aerial imagery, and satellite data, have been utilized to evaluate the impact of disasters. Online data sources provide real-time data streams for estimating the offline impact. Limited research exists on how different online sources help estimate disaster impact at a given administrative unit. In our work, we curate a comprehensive dataset by collecting data from multiple online sources for a few billion-dollar disasters at the county level. We also analyze how online estimates compare with traditional offline-based impact estimates for the disaster. Our findings provide insight into how different sources can provide complementary information to assess the disaster.
☆ Adaptive-GraphSketch: Real-Time Edge Anomaly Detection via Multi-Layer Tensor Sketching and Temporal Decay
Anomaly detection in dynamic graphs is essential for identifying malicious activities, fraud, and unexpected behaviors in real-world systems such as cybersecurity and power grids. However, existing approaches struggle with scalability, probabilistic interpretability, and adaptability to evolving traffic patterns. In this paper, we propose ADAPTIVE-GRAPHSKETCH, a lightweight and scalable framework for real-time anomaly detection in streaming edge data. Our method integrates temporal multi-tensor sketching with Count-Min Sketch using Conservative Update (CMS-CU) to compactly track edge frequency patterns with bounded memory, while mitigating hash collision issues. We incorporate Bayesian inference for probabilistic anomaly scoring and apply Exponentially Weighted Moving Average (EWMA) for adaptive thresholding tuned to burst intensity. Extensive experiments on four real-world intrusion detection datasets demonstrate that ADAPTIVE-GRAPHSKETCH outperforms state-of-the-art baselines such as ANOEDGE-G/L, MIDAS-R, and F-FADE, achieving up to 6.5% AUC gain on CIC-IDS2018 and up to 15.6% on CIC-DDoS2019, while processing 20 million edges in under 3.4 seconds using only 10 hash functions. Our results show that ADAPTIVE-GRAPHSKETCH is practical and effective for fast, accurate anomaly detection in large-scale streaming graphs. Keywords: Anomaly Detection, Streaming, Real-time, Dynamic Graphs, Edge Streams, Tensor Sketching
comment: 10 pages, 6 figures. Accepted for presentation at the IEEE International Conference on Knowledge Graphs (ICKG 2025). This is the authors accepted version; the final published paper will be available via IEEE Xplore
☆ Reasoned Safety Alignment: Ensuring Jailbreak Defense via Answer-Then-Check
As large language models (LLMs) continue to advance in capabilities, ensuring their safety against jailbreak attacks remains a critical challenge. In this paper, we introduce a novel safety alignment approach called Answer-Then-Check, which enhances LLM robustness against malicious prompts by applying thinking ability to mitigate jailbreaking problems before producing a final answer to the user. Our method enables models to directly answer the question in their thought and then critically evaluate its safety before deciding whether to provide it. To implement this approach, we construct the Reasoned Safety Alignment (ReSA) dataset, comprising 80K examples that teach models to reason through direct responses and then analyze their safety. Experimental results demonstrate that our approach achieves the Pareto frontier with superior safety capability while decreasing over-refusal rates on over-refusal benchmarks. Notably, the model fine-tuned with ReSA maintains general reasoning capabilities on benchmarks like MMLU, MATH500, and HumanEval. Besides, our method equips models with the ability to perform safe completion. Unlike post-hoc methods that can only reject harmful queries, our model can provide helpful and safe alternative responses for sensitive topics (e.g., self-harm). Furthermore, we discover that training on a small subset of just 500 examples can achieve comparable performance to using the full dataset, suggesting that safety alignment may require less data than previously assumed.
☆ SpeCa: Accelerating Diffusion Transformers with Speculative Feature Caching
Diffusion models have revolutionized high-fidelity image and video synthesis, yet their computational demands remain prohibitive for real-time applications. These models face two fundamental challenges: strict temporal dependencies preventing parallelization, and computationally intensive forward passes required at each denoising step. Drawing inspiration from speculative decoding in large language models, we present SpeCa, a novel 'Forecast-then-verify' acceleration framework that effectively addresses both limitations. SpeCa's core innovation lies in introducing Speculative Sampling to diffusion models, predicting intermediate features for subsequent timesteps based on fully computed reference timesteps. Our approach implements a parameter-free verification mechanism that efficiently evaluates prediction reliability, enabling real-time decisions to accept or reject each prediction while incurring negligible computational overhead. Furthermore, SpeCa introduces sample-adaptive computation allocation that dynamically modulates resources based on generation complexity, allocating reduced computation for simpler samples while preserving intensive processing for complex instances. Experiments demonstrate 6.34x acceleration on FLUX with minimal quality degradation (5.5% drop), 7.3x speedup on DiT while preserving generation fidelity, and 79.84% VBench score at 6.1x acceleration for HunyuanVideo. The verification mechanism incurs minimal overhead (1.67%-3.5% of full inference costs), establishing a new paradigm for efficient diffusion model inference while maintaining generation quality even at aggressive acceleration ratios. Our codes have been released in Github: \textbf{https://github.com/Shenyi-Z/Cache4Diffusion}
comment: 15 pages, 9 figures, ACM Multimedia 2025
☆ Inducing Uncertainty for Test-Time Privacy
Unlearning is the predominant method for removing the influence of data in machine learning models. However, even after unlearning, models often continue to produce the same predictions on the unlearned data with high confidence. This persistent behavior can be exploited by adversaries using confident model predictions on incorrect or obsolete data to harm users. We call this threat model, which unlearning fails to protect against, *test-time privacy*. In particular, an adversary with full model access can bypass any naive defenses which ensure test-time privacy. To address this threat, we introduce an algorithm which perturbs model weights to induce maximal uncertainty on protected instances while preserving accuracy on the rest of the instances. Our core algorithm is based on finetuning with a Pareto optimal objective that explicitly balances test-time privacy against utility. We also provide a certifiable approximation algorithm which achieves $(\varepsilon, \delta)$ guarantees without convexity assumptions. We then prove a tight, non-vacuous bound that characterizes the privacy-utility tradeoff that our algorithms incur. Empirically, our method obtains $>3\times$ stronger uncertainty than pretraining with $<0.2\%$ drops in accuracy on various image recognition benchmarks. Altogether, this framework provides a tool to guarantee additional protection to end users.
☆ A Controllable 3D Deepfake Generation Framework with Gaussian Splatting
We propose a novel 3D deepfake generation framework based on 3D Gaussian Splatting that enables realistic, identity-preserving face swapping and reenactment in a fully controllable 3D space. Compared to conventional 2D deepfake approaches that suffer from geometric inconsistencies and limited generalization to novel view, our method combines a parametric head model with dynamic Gaussian representations to support multi-view consistent rendering, precise expression control, and seamless background integration. To address editing challenges in point-based representations, we explicitly separate the head and background Gaussians and use pre-trained 2D guidance to optimize the facial region across views. We further introduce a repair module to enhance visual consistency under extreme poses and expressions. Experiments on NeRSemble and additional evaluation videos demonstrate that our method achieves comparable performance to state-of-the-art 2D approaches in identity preservation, as well as pose and expression consistency, while significantly outperforming them in multi-view rendering quality and 3D consistency. Our approach bridges the gap between 3D modeling and deepfake synthesis, enabling new directions for scene-aware, controllable, and immersive visual forgeries, revealing the threat that emerging 3D Gaussian Splatting technique could be used for manipulation attacks.
☆ Topology Structure Optimization of Reservoirs Using GLMY Homology
Reservoir is an efficient network for time series processing. It is well known that network structure is one of the determinants of its performance. However, the topology structure of reservoirs, as well as their performance, is hard to analyzed, due to the lack of suitable mathematical tools. In this paper, we study the topology structure of reservoirs using persistent GLMY homology theory, and develop a method to improve its performance. Specifically, it is found that the reservoir performance is closely related to the one-dimensional GLMY homology groups. Then, we develop a reservoir structure optimization method by modifying the minimal representative cycles of one-dimensional GLMY homology groups. Finally, by experiments, it is validated that the performance of reservoirs is jointly influenced by the reservoir structure and the periodicity of the dataset.
☆ Scaling to Multimodal and Multichannel Heart Sound Classification: Fine-Tuning Wav2Vec 2.0 with Synthetic and Augmented Biosignals
Cardiovascular diseases (CVDs) are the leading cause of death worldwide, accounting for approximately 17.9 million deaths each year. Early detection is critical, creating a demand for accurate and inexpensive pre-screening methods. Deep learning has recently been applied to classify abnormal heart sounds indicative of CVDs using synchronised phonocardiogram (PCG) and electrocardiogram (ECG) signals, as well as multichannel PCG (mPCG). However, state-of-the-art architectures remain underutilised due to the limited availability of synchronised and multichannel datasets. Augmented datasets and pre-trained models provide a pathway to overcome these limitations, enabling transformer-based architectures to be trained effectively. This work combines traditional signal processing with denoising diffusion models, WaveGrad and DiffWave, to create an augmented dataset to fine-tune a Wav2Vec 2.0-based classifier on multimodal and multichannel heart sound datasets. The approach achieves state-of-the-art performance. On the Computing in Cardiology (CinC) 2016 dataset of single channel PCG, accuracy, unweighted average recall (UAR), sensitivity, specificity and Matthew's correlation coefficient (MCC) reach 92.48\%, 93.05\%, 93.63\%, 92.48\%, 94.93\% and 0.8283, respectively. Using the synchronised PCG and ECG signals of the training-a dataset from CinC, 93.14\%, 92.21\%, 94.35\%, 90.10\%, 95.12\% and 0.8380 are achieved for accuracy, UAR, sensitivity, specificity and MCC, respectively. Using a wearable vest dataset consisting of mPCG data, the model achieves 77.13\% accuracy, 74.25\% UAR, 86.47\% sensitivity, 62.04\% specificity, and 0.5082 MCC. These results demonstrate the effectiveness of transformer-based models for CVD detection when supported by augmented datasets, highlighting their potential to advance multimodal and multichannel heart sound classification.
comment: 35 pages, 37 figures, 19 tables
☆ Dynamic Adaptive Parsing of Temporal and Cross-Variable Patterns for Network State Classification
Effective network state classification is a primary task for ensuring network security and optimizing performance. Existing deep learning models have shown considerable progress in this area. Some methods excel at analyzing the complex temporal periodicities found in traffic data, while graph-based approaches are adept at modeling the dynamic dependencies between different variables. However, a key trade-off remains, as these methods struggle to capture both characteristics simultaneously. Models focused on temporal patterns often overlook crucial variable dependencies, whereas those centered on dependencies may fail to capture fine-grained temporal details. To address this trade-off, we introduce DAPNet, a framework based on a Mixture-of-Experts architecture. DAPNet integrates three specialized networks for periodic analysis, dynamic cross-variable correlation modeling, and hybrid temporal feature extraction. A learnable gating network dynamically assigns weights to experts based on the input sample and computes a weighted fusion of their outputs. Furthermore, a hybrid regularization loss function ensures stable training and addresses the common issue of class imbalance. Extensive experiments on two large-scale network intrusion detection datasets (CICIDS2017/2018) validate DAPNet's higher accuracy for its target application. The generalizability of the architectural design is evaluated across ten public UEA benchmark datasets, positioning DAPNet as a specialized framework for network state classification.
☆ AMLNet: A Knowledge-Based Multi-Agent Framework to Generate and Detect Realistic Money Laundering Transactions
Anti-money laundering (AML) research is constrained by the lack of publicly shareable, regulation-aligned transaction datasets. We present AMLNet, a knowledge-based multi-agent framework with two coordinated units: a regulation-aware transaction generator and an ensemble detection pipeline. The generator produces 1,090,173 synthetic transactions (approximately 0.16\% laundering-positive) spanning core laundering phases (placement, layering, integration) and advanced typologies (e.g., structuring, adaptive threshold behavior). Regulatory alignment reaches 75\% based on AUSTRAC rule coverage (Section 4.2), while a composite technical fidelity score of 0.75 summarizes temporal, structural, and behavioral realism components (Section 4.4). The detection ensemble achieves F1 0.90 (precision 0.84, recall 0.97) on the internal test partitions of AMLNet and adapts to the external SynthAML dataset, indicating architectural generalizability across different synthetic generation paradigms. We provide multi-dimensional evaluation (regulatory, temporal, network, behavioral) and release the dataset (Version 1.0, https://doi.org/10.5281/zenodo.16736515), to advance reproducible and regulation-conscious AML experimentation.
☆ Learning Singularity-Encoded Green's Functions with Application to Iterative Methods
Green's function provides an inherent connection between theoretical analysis and numerical methods for elliptic partial differential equations, and general absence of its closed-form expression necessitates surrogate modeling to guide the design of effective solvers. Unfortunately, numerical computation of Green's function remains challenging due to its doubled dimensionality and intrinsic singularity. In this paper, we present a novel singularity-encoded learning approach to resolve these problems in an unsupervised fashion. Our method embeds the Green's function within a one-order higher-dimensional space by encoding its prior estimate as an augmented variable, followed by a neural network parametrization to manage the increased dimensionality. By projecting the trained neural network solution back onto the original domain, our deep surrogate model exploits its spectral bias to accelerate conventional iterative schemes, serving either as a preconditioner or as part of a hybrid solver. The effectiveness of our proposed method is empirically verified through numerical experiments with two and four dimensional Green's functions, achieving satisfactory resolution of singularities and acceleration of iterative solvers.
☆ Compressed Sensing: Mathematical Foundations, Implementation, and Advanced Optimization Techniques
Compressed sensing is a signal processing technique that allows for the reconstruction of a signal from a small set of measurements. The key idea behind compressed sensing is that many real-world signals are inherently sparse, meaning that they can be efficiently represented in a different space with only a few components compared to their original space representation. In this paper we will explore the mathematical formulation behind compressed sensing, its logic and pathologies, and apply compressed sensing to real world signals.
☆ UI-S1: Advancing GUI Automation via Semi-online Reinforcement Learning
Graphical User Interface (GUI) agents have demonstrated remarkable progress in automating complex user interface interactions through reinforcement learning. However, current approaches face a fundamental dilemma: offline RL enables stable training on pre-collected trajectories, but struggles with multi-step task execution for lack of trajectory-level reward signals; online RL captures these signals through environment interaction, but suffers from sparse rewards and prohibitive deployment costs. To address it, we present Semi-online Reinforcement Learning, a novel paradigm that simulates online RL on offline trajectories. During each rollout process, we preserve the original model output within the multi-turn dialogue, where a Patch Module adaptively recovers the divergence between rollout and expert trajectories. To capture long-term training signals, Semi-online RL introduces discounted future returns into the reward computation and optimizes the policy with weighted step-level and episode-level advantages. We further introduce Semi-Online Performance (SOP), a metric that aligns better with true online performance, serving as a practical and effective proxy for real-world evaluation. Experiments show that ours Semi-online RL achieves SOTA performance among 7B models across four dynamic benchmarks, with significant gains over the base model (e.g., +12.0% on AndroidWorld, +23.8% on AITW), demonstrating significant progress in bridging the gap between offline training efficiency and online multi-turn reasoning. The code is available at https://github.com/X-PLUG/MobileAgent/tree/main/UI-S1.
comment: 22 pages, 17 figures
☆ E-ROBOT: a dimension-free method for robust statistics and machine learning via Schrödinger bridge
We propose the Entropic-regularized Robust Optimal Transport (E-ROBOT) framework, a novel method that combines the robustness of ROBOT with the computational and statistical benefits of entropic regularization. We show that, rooted in the Schr\"{o}dinger bridge problem theory, E-ROBOT defines the robust Sinkhorn divergence $\overline{W}_{\varepsilon,\lambda}$, where the parameter $\lambda$ controls robustness and $\varepsilon$ governs the regularization strength. Letting $n\in \mathbb{N}$ denote the sample size, a central theoretical contribution is establishing that the sample complexity of $\overline{W}_{\varepsilon,\lambda}$ is $\mathcal{O}(n^{-1/2})$, thereby avoiding the curse of dimensionality that plagues standard ROBOT. This dimension-free property unlocks the use of $\overline{W}_{\varepsilon,\lambda}$ as a loss function in large-dimensional statistical and machine learning tasks. With this regard, we demonstrate its utility through four applications: goodness-of-fit testing; computation of barycenters for corrupted 2D and 3D shapes; definition of gradient flows; and image colour transfer. From the computation standpoint, a perk of our novel method is that it can be easily implemented by modifying existing (\texttt{Python}) routines. From the theoretical standpoint, our work opens the door to many research directions in statistics and machine learning: we discuss some of them.
☆ DARD: Dice Adversarial Robustness Distillation against Adversarial Attacks
Deep learning models are vulnerable to adversarial examples, posing critical security challenges in real-world applications. While Adversarial Training (AT ) is a widely adopted defense mechanism to enhance robustness, it often incurs a trade-off by degrading performance on unperturbed, natural data. Recent efforts have highlighted that larger models exhibit enhanced robustness over their smaller counterparts. In this paper, we empirically demonstrate that such robustness can be systematically distilled from large teacher models into compact student models. To achieve better performance, we introduce Dice Adversarial Robustness Distillation (DARD), a novel method designed to transfer robustness through a tailored knowledge distillation paradigm. Additionally, we propose Dice Projected Gradient Descent (DPGD), an adversarial example generalization method optimized for effective attack. Our extensive experiments demonstrate that the DARD approach consistently outperforms adversarially trained networks with the same architecture, achieving superior robustness and standard accuracy.
comment: Accepted at SecureComm 2025, 15 pages, 4 figures
☆ Know What You Don't Know: Selective Prediction for Early Exit DNNs
Inference latency and trustworthiness of Deep Neural Networks (DNNs) are the bottlenecks in deploying them in critical applications like sensitive tasks. Early Exit (EE) DNNs overcome the latency issues by allowing samples to exit from intermediary layers if they attain `high' confidence scores on the predicted class. However, the DNNs are known to exhibit overconfidence, which can lead to many samples exiting early and render EE strategies untrustworthy. We use Selective Prediction (SP) to overcome this issue by checking the `hardness' of the samples rather than just relying on the confidence score alone. We propose SPEED, a novel approach that uses Deferral Classifiers (DCs) at each layer to check the hardness of samples before performing EEs. Specifically, the DCs identify if a sample is hard to predict at an intermediary layer, leading to hallucination, and defer it to an expert. Early detection of hard samples for inference prevents the wastage of computational resources and improves trust by deferring the hard samples to the expert. We demonstrate that EE aided with SP improves both accuracy and latency. Our method minimizes the risk of wrong prediction by $50\%$ with a speedup of $2.05\times$ as compared to the final layer. The anonymized source code is available at https://github.com/Div290/SPEED
comment: To appear in the the Fifth International Conference on AI ML Systems
☆ PeruMedQA: Benchmarking Large Language Models (LLMs) on Peruvian Medical Exams -- Dataset Construction and Evaluation
BACKGROUND: Medical large language models (LLMS) have demonstrated remarkable performance in answering medical examinations. However, the extent to which this high performance is transferable to medical questions in Spanish and from a Latin American country remains unexplored. This knowledge is crucial as LLM-based medical applications gain traction in Latin America. AIMS: to build a dataset of questions from medical examinations taken by Peruvian physicians pursuing specialty training; to fine-tune a LLM on this dataset; to evaluate and compare the performance in terms of accuracy between vanilla LLMs and the fine-tuned LLM. METHODS: We curated PeruMedQA, a multiple-choice question-answering (MCQA) datasets containing 8,380 questions spanning 12 medical domains (2018-2025). We selected eight medical LLMs including medgemma-4b-it and medgemma-27b-text-it, and developed zero-shot task-specific prompts to answer the questions appropriately. We employed parameter-efficient fine tuning (PEFT)and low-rant adaptation (LoRA) to fine-tune medgemma-4b-it utilizing all questions except those from 2025 (test set). RESULTS: medgemma-27b-text-it outperformed all other models, achieving a proportion of correct answers exceeding 90% in several instances. LLMs with <10 billion parameters exhibited <60% of correct answers, while some exams yielded results <50%. The fine-tuned version of medgemma-4b-it emerged victorious agains all LLMs with <10 billion parameters and rivaled a LLM with 70 billion parameters across various examinations. CONCLUSIONS: For medical AI application and research that require knowledge bases from Spanish-speaking countries and those exhibiting similar epidemiological profiles to Peru's, interested parties should utilize medgemma-27b-text-it or a fine-tuned version of medgemma-4b-it.
comment: https://github.com/rodrigo-carrillo/PeruMedQA
☆ Machine Learning-Driven Predictive Resource Management in Complex Science Workflows
The collaborative efforts of large communities in science experiments, often comprising thousands of global members, reflect a monumental commitment to exploration and discovery. Recently, advanced and complex data processing has gained increasing importance in science experiments. Data processing workflows typically consist of multiple intricate steps, and the precise specification of resource requirements is crucial for each step to allocate optimal resources for effective processing. Estimating resource requirements in advance is challenging due to a wide range of analysis scenarios, varying skill levels among community members, and the continuously increasing spectrum of computing options. One practical approach to mitigate these challenges involves initially processing a subset of each step to measure precise resource utilization from actual processing profiles before completing the entire step. While this two-staged approach enables processing on optimal resources for most of the workflow, it has drawbacks such as initial inaccuracies leading to potential failures and suboptimal resource usage, along with overhead from waiting for initial processing completion, which is critical for fast-turnaround analyses. In this context, our study introduces a novel pipeline of machine learning models within a comprehensive workflow management system, the Production and Distributed Analysis (PanDA) system. These models employ advanced machine learning techniques to predict key resource requirements, overcoming challenges posed by limited upfront knowledge of characteristics at each step. Accurate forecasts of resource requirements enable informed and proactive decision-making in workflow management, enhancing the efficiency of handling diverse, complex workflows across heterogeneous resources.
☆ Learning Majority-to-Minority Transformations with MMD and Triplet Loss for Imbalanced Classification
Class imbalance in supervised classification often degrades model performance by biasing predictions toward the majority class, particularly in critical applications such as medical diagnosis and fraud detection. Traditional oversampling techniques, including SMOTE and its variants, generate synthetic minority samples via local interpolation but fail to capture global data distributions in high-dimensional spaces. Deep generative models based on GANs offer richer distribution modeling yet suffer from training instability and mode collapse under severe imbalance. To overcome these limitations, we introduce an oversampling framework that learns a parametric transformation to map majority samples into the minority distribution. Our approach minimizes the maximum mean discrepancy (MMD) between transformed and true minority samples for global alignment, and incorporates a triplet loss regularizer to enforce boundary awareness by guiding synthesized samples toward challenging borderline regions. We evaluate our method on 29 synthetic and real-world datasets, demonstrating consistent improvements over classical and generative baselines in AUROC, G-mean, F1-score, and MCC. These results confirm the robustness, computational efficiency, and practical utility of the proposed framework for imbalanced classification tasks.
comment: .19 pages, 6 figures
☆ SafeDiver: Cooperative AUV-USV Assisted Diver Communication via Multi-agent Reinforcement Learning Approach
As underwater human activities are increasing, the demand for underwater communication service presents a significant challenge. Existing underwater diver communication methods face hurdles due to inherent disadvantages and complex underwater environments. To address this issue, we propose a scheme that utilizes maritime unmanned systems to assist divers with reliable and high-speed communication. Multiple AUVs are equipped with optical and acoustic multimodal communication devices as relay nodes, providing adaptive communication services based on changes in the diver's activity area. By using a multi-agent reinforcement learning (MARL) approach to control the cooperative movement of AUVs, high-speed and reliable data transmission between divers can be achieved. At the same time, utilizing the advantages of on-demand deployment and wide coverage of unmanned surface vehicles (USVs) as surface relay nodes to coordinate and forward information from AUVs, and controlling AUVs to adaptively select relay USV nodes for data transmission, high-quality communication between divers and surface platform can be achieved. Through simulation verification, the proposed scheme can effectively achieve reliable and high-speed communication for divers.
☆ OASIS: A Deep Learning Framework for Universal Spectroscopic Analysis Driven by Novel Loss Functions
The proliferation of spectroscopic data across various scientific and engineering fields necessitates automated processing. We introduce OASIS (Omni-purpose Analysis of Spectra via Intelligent Systems), a machine learning (ML) framework for technique-independent, automated spectral analysis, encompassing denoising, baseline correction, and comprehensive peak parameter (location, intensity, FWHM) retrieval without human intervention. OASIS achieves its versatility through models trained on a strategically designed synthetic dataset incorporating features from numerous spectroscopy techniques. Critically, the development of innovative, task-specific loss functions-such as the vicinity peak response (ViPeR) for peak localization-enabled the creation of compact yet highly accurate models from this dataset, validated with experimental data from Raman, UV-vis, and fluorescence spectroscopy. OASIS demonstrates significant potential for applications including in situ experiments, high-throughput optimization, and online monitoring. This study underscores the optimization of the loss function as a key resource-efficient strategy to develop high-performance ML models.
♻ ☆ Is In-Context Learning Learning?
In-context learning (ICL) allows some autoregressive models to solve tasks via next-token prediction and without needing further training. This has led to claims about these model's ability to solve (learn) unseen tasks with only a few shots (exemplars) in the prompt. However, deduction does not always imply learning, as ICL does not explicitly encode a given observation. Instead, the models rely on their prior knowledge and the exemplars given, if any. We argue that, mathematically, ICL does constitute learning, but its full characterisation requires empirical work. We then carry out a large-scale analysis of ICL ablating out or accounting for memorisation, pretraining, distributional shifts, and prompting style and phrasing. We find that ICL is an effective learning paradigm, but limited in its ability to learn and generalise to unseen tasks. We note that, in the limit where exemplars become more numerous, accuracy is insensitive to exemplar distribution, model, prompt style, and the input's linguistic features. Instead, it deduces patterns from regularities in the prompt, which leads to distributional sensitivity, especially in prompting styles such as chain-of-thought. Given the varied accuracies on formally similar tasks, we conclude that autoregression's ad-hoc encoding is not a robust mechanism, and suggests limited all-purpose generalisability.
comment: Director's cut
♻ ☆ Multipole Semantic Attention: A Fast Approximation of Softmax Attention for Pretraining
We present Multipole Semantic Attention (MuSe), an efficient approximation of softmax attention that combines semantic clustering with multipole expansions from computational physics. Our method addresses the quadratic computational complexity of transformers in the context length by clustering queries and keys separately in their learned representation spaces, enabling a hierarchical two-stage attention mechanism. Unlike prior clustering approaches that group only keys or use unified clustering, we maintain separate clusterings that respect attention's asymmetric treatment of these spaces. We augment centroid-based (monopole) approximations with dipole corrections that capture directional variance within clusters, preserving richer information during training. The method operates as a drop-in replacement for standard attention, requiring only hyperparameter specification without architectural modifications. Our approach achieves $\mathcal{O}(NCD)$ complexity for acausal attention with $C$ clusters and $\mathcal{O}(NCD \log N)$ for causal attention. On isolated attention layers, we demonstrate $3\times$ speedup over CUDNN Flash Attention at 8k context length, with relative squared errors below 20%. For causal attention, we develop a hierarchical block decomposition that combines exact local computation with efficient long-range approximation. In end-to-end pretraining of a 30M parameter model on book-length texts with 16k context, we achieve 12.2% runtime reduction with only 0.36% loss degradation, establishing the viability of multipole approximations for efficient transformer pretraining.
♻ ☆ Vendi Information Gain for Active Learning and its Application to Ecology
While monitoring biodiversity through camera traps has become an important endeavor for ecological research, identifying species in the captured image data remains a major bottleneck due to limited labeling resources. Active learning -- a machine learning paradigm that selects the most informative data to label and train a predictive model -- offers a promising solution, but typically focuses on uncertainty in the individual predictions without considering uncertainty across the entire dataset. We introduce a new active learning policy, Vendi information gain (VIG), that selects images based on their impact on dataset-wide prediction uncertainty, capturing both informativeness and diversity. We applied VIG to the Snapshot Serengeti dataset and compared it against common active learning methods. VIG needs only 3% of the available data to reach 75\% accuracy, a level that baselines require more than 10% of the data to achieve. With 10% of the data, VIG attains 88\% predictive accuracy, 12% higher than the best of the baselines. This improvement in performance is consistent across metrics and batch sizes, and we show that VIG also collects more diverse data in the feature space. VIG has broad applicability beyond ecology, and our results highlight its value for biodiversity monitoring in data-limited environments.
♻ ☆ Prompt Injection Attacks on LLM Generated Reviews of Scientific Publications
The ongoing intense discussion on rising LLM usage in the scientific peer-review process has recently been mingled by reports of authors using hidden prompt injections to manipulate review scores. Since the existence of such "attacks" - although seen by some commentators as "self-defense" - would have a great impact on the further debate, this paper investigates the practicability and technical success of the described manipulations. Our systematic evaluation uses 1k reviews of 2024 ICLR papers generated by a wide range of LLMs shows two distinct results: I) very simple prompt injections are indeed highly effective, reaching up to 100% acceptance scores. II) LLM reviews are generally biased toward acceptance (>95% in many models). Both results have great impact on the ongoing discussions on LLM usage in peer-review.
♻ ☆ Similarity-based Outlier Detection for Noisy Object Re-Identification Using Beta Mixtures
Object re-identification (Re-ID) methods are highly sensitive to label noise, which typically leads to significant performance degradation. We address this challenge by reframing Re-ID as a supervised image similarity task and adopting a Siamese network architecture trained to capture discriminative pairwise relationships. Central to our approach is a novel statistical outlier detection (OD) framework, termed Beta-SOD (Beta mixture Similarity-based Outlier Detection), which models the distribution of cosine similarities between embedding pairs using a two-component Beta distribution mixture model. We establish a novel identifiability result for mixtures of two Beta distributions, ensuring that our learning task is well-posed. The proposed OD step complements the Re-ID architecture combining binary cross-entropy, contrastive, and cosine embedding losses that jointly optimize feature-level similarity learning. We demonstrate the effectiveness of Beta-SOD in de-noising and Re-ID tasks for person Re-ID, on CUHK03 and Market-1501 datasets, and vehicle Re-ID, on VeRi-776 dataset. Our method shows superior performance compared to the state-of-the-art methods across various noise levels (10-30\%), demonstrating both robustness and broad applicability in noisy Re-ID scenarios. The implementation of Beta-SOD is available at: github.com/waqar3411/Beta-SOD
♻ ☆ Intrinsic Dimension Estimating Autoencoder (IDEA) Using CancelOut Layer and a Projected Loss
This paper introduces the Intrinsic Dimension Estimating Autoencoder (IDEA), which identifies the underlying intrinsic dimension of a wide range of datasets whose samples lie on either linear or nonlinear manifolds. Beyond estimating the intrinsic dimension, IDEA is also able to reconstruct the original dataset after projecting it onto the corresponding latent space, which is structured using re-weighted double CancelOut layers. Our key contribution is the introduction of the projected reconstruction loss term, guiding the training of the model by continuously assessing the reconstruction quality under the removal of an additional latent dimension. We first assess the performance of IDEA on a series of theoretical benchmarks to validate its robustness. These experiments allow us to test its reconstruction ability and compare its performance with state-of-the-art intrinsic dimension estimators. The benchmarks show good accuracy and high versatility of our approach. Subsequently, we apply our model to data generated from the numerical solution of a vertically resolved one-dimensional free-surface flow, following a pointwise discretization of the vertical velocity profile in the horizontal direction, vertical direction, and time. IDEA succeeds in estimating the dataset's intrinsic dimension and then reconstructs the original solution by working directly within the projection space identified by the network.
comment: Preprint with 12 pages and 12 figures
♻ ☆ K2-Think: A Parameter-Efficient Reasoning System
K2-Think is a reasoning system that achieves state-of-the-art performance with a 32B parameter model, matching or surpassing much larger models like GPT-OSS 120B and DeepSeek v3.1. Built on the Qwen2.5 base model, our system shows that smaller models can compete at the highest levels by combining advanced post-training and test-time computation techniques. The approach is based on six key technical pillars: Long Chain-of-thought Supervised Finetuning, Reinforcement Learning with Verifiable Rewards (RLVR), Agentic planning prior to reasoning, Test-time Scaling, Speculative Decoding, and Inference-optimized Hardware, all using publicly available open-source datasets. K2-Think excels in mathematical reasoning, achieving state-of-the-art scores on public benchmarks for open-source models, while also performing strongly in other areas such as Code and Science. Our results confirm that a more parameter-efficient model like K2-Think 32B can compete with state-of-the-art systems through an integrated post-training recipe that includes long chain-of-thought training and strategic inference-time enhancements, making open-source reasoning systems more accessible and affordable. K2-Think is freely available at k2think.ai, offering best-in-class inference speeds of over 2,000 tokens per second per request via the Cerebras Wafer-Scale Engine.
comment: To access the K2-Think reasoning system, please visit www.k2think.ai
♻ ☆ Safety Pretraining: Toward the Next Generation of Safe AI
As large language models (LLMs) are increasingly deployed in high-stakes settings, the risk of generating harmful or toxic content remains a central challenge. Post-hoc alignment methods are brittle: once unsafe patterns are learned during pretraining, they are hard to remove. In this work, we present a data-centric pretraining framework that builds safety into the model from the start. Our framework consists of four key steps: (i) Safety Filtering: building a safety classifier to classify webdata into safe and unsafe categories; (ii) Safety Rephrasing: we recontextualize unsafe webdata into safer narratives; (iii) Native Refusal: we develop RefuseWeb and Moral Education pretraining datasets that actively teach model to refuse on unsafe content and the moral reasoning behind it, and (iv) Harmfulness-Tag annotated pretraining: we flag unsafe content during pretraining using a special token, and use it to steer model away from unsafe generations at inference. Our safety-pretrained models reduce attack success rates from 38.8\% to 8.4\% on standard LLM safety benchmarks with no performance degradation on general tasks.
♻ ☆ Active Layer-Contrastive Decoding Reduces Hallucination in Large Language Model Generation EMNLP 2025
Recent decoding methods improve the factuality of large language models (LLMs) by refining how the next token is selected during generation. These methods typically operate at the token level, leveraging internal representations to suppress superficial patterns. Nevertheless, LLMs remain prone to hallucinations, especially over longer contexts. In this paper, we propose Active Layer-Contrastive Decoding (ActLCD), a novel decoding strategy that actively decides when to apply contrasting layers during generation. By casting decoding as a sequential decision-making problem, ActLCD employs a reinforcement learning policy guided by a reward-aware classifier to optimize factuality beyond the token level. Our experiments demonstrate that ActLCD surpasses state-of-the-art methods across five benchmarks, showcasing its effectiveness in mitigating hallucinations in diverse generation scenarios.
comment: 19 pages, 3 figures, EMNLP 2025
♻ ☆ On the Generalization of Representation Uncertainty in Earth Observation ICCV 2025
Recent advances in Computer Vision have introduced the concept of pretrained representation uncertainty, enabling zero-shot uncertainty estimation. This holds significant potential for Earth Observation (EO), where trustworthiness is critical, yet the complexity of EO data poses challenges to uncertainty-aware methods. In this work, we investigate the generalization of representation uncertainty in EO, considering the domain's unique semantic characteristics. We pretrain uncertainties on large EO datasets and propose an evaluation framework to assess their zero-shot performance in multi-label classification and segmentation EO tasks. Our findings reveal that, unlike uncertainties pretrained on natural images, EO-pretraining exhibits strong generalization across unseen EO domains, geographic locations, and target granularities, while maintaining sensitivity to variations in ground sampling distance. We demonstrate the practical utility of pretrained uncertainties showcasing their alignment with task-specific uncertainties in downstream tasks, their sensitivity to real-world EO image noise, and their ability to generate spatial uncertainty estimates out-of-the-box. Initiating the discussion on representation uncertainty in EO, our study provides insights into its strengths and limitations, paving the way for future research in the field. Code and weights are available at: https://github.com/Orion-AI-Lab/EOUncertaintyGeneralization.
comment: Accepted to ICCV 2025
♻ ☆ A learning-driven automatic planning framework for proton PBS treatments of H&N cancers
Proton pencil beam scanning (PBS) treatment planning for head & neck (H&N) cancers involves numerous conflicting objectives, requiring iterative objective parameter adjustments to balance multiple clinical goals. We propose a learning-driven inverse optimizer and integrate it into a proximal policy optimization (PPO)-based planning framework to automatically generate high-quality plans for patients with diverse treatment requirements. The inverse optimizer is a learning-to-optimize (L2O) method that predicts update steps by learning from task-specific data distributions. For the first time, long-context processing techniques developed for large language models (LLMs) are utilized to address the scalability limitations of existing L2O methods, enabling simultaneous optimization over a substantially large set of variables. The PPO framework functions as an outer-loop virtual planner, autonomously adjusting objective parameters through a policy network, and the inner-loop L2O inverse optimizer computes machine-deliverable spot monitor unit (MU) values based on the PPO-refined objectives. Moreover, a Swin UnetR dose predictor is trained with prescription- and beam-specific information to estimate the initial objective parameters. In our experiments, total 97 patients with bilateral or ipsilateral H&N cancers are collected for training and testing. Compared with the second-order gradient-based methods, our L2O optimizer improves the effectiveness and efficiency of the time-consuming inverse optimization by 22.97% and 36.41%, respectively, and in conjunction with the PPO-based virtual planner, plans are generated within clinically acceptable times, i.e. 2.55 hours in average, and shows improved or comparable organs-at-risk sparing with superior target coverage compared with human-generated plans.
comment: 27 pages, 4 figures
♻ ☆ All Optical Echo State Network Reservoir Computing
We propose an innovative design for an all-optical Echo State Network (ESN), an advanced type of reservoir computer known for its universal computational capabilities. Our design enables fully optical implementation of arbitrary ESNs, featuring flexibility in optical matrix multiplication and nonlinear activation. Leveraging the nonlinear characteristics of stimulated Brillouin scattering (SBS), the architecture efficiently realizes measurement-free nonlinear activation. The approach significantly reduces computational overhead and energy consumption compared to traditional software-based methods. Comprehensive simulations validate the system's memory capacity, nonlinear processing strength, and polynomial algebra capabilities, showcasing performance comparable to software ESNs across key benchmark tasks. Our design establishes a feasible, scalable, and universally applicable framework for optical reservoir computing, suitable for diverse machine learning applications.
comment: 14 pages, 11 figures
♻ ☆ CogGuide: Human-Like Guidance for Zero-Shot Omni-Modal Reasoning
Targeting the issues of "shortcuts" and insufficient contextual understanding in complex cross-modal reasoning of multimodal large models, this paper proposes a zero-shot multimodal reasoning component guided by human-like cognitive strategies centered on an "intent sketch". The component comprises a plug-and-play three-module pipeline-Intent Perceiver, Strategy Generator, and Strategy Selector-that explicitly constructs a "understand-plan-select" cognitive process. By generating and filtering "intent sketch" strategies to guide the final reasoning, it requires no parameter fine-tuning and achieves cross-model transfer solely through in-context engineering. Information-theoretic analysis shows that this process can reduce conditional entropy and improve information utilization efficiency, thereby suppressing unintended shortcut reasoning. Experiments on IntentBench, WorldSense, and Daily-Omni validate the method's generality and robust gains; compared with their respective baselines, the complete "three-module" scheme yields consistent improvements across different reasoning engines and pipeline combinations, with gains up to approximately 9.51 percentage points, demonstrating the practical value and portability of the "intent sketch" reasoning component in zero-shot scenarios.
♻ ☆ Graceful forgetting: Memory as a process
A rational framework is proposed to explain how we accommodate unbounded sensory input within bounded memory. Memory is stored as statistics organized into structures that are repeatedly summarized and compressed to make room for new input. Repeated summarization requires an intensive ongoing process guided by heuristics that help optimize the memory for future needs. Sensory input is rapidly encoded as simple statistics that are progressively elaborated into more abstract constructs. This framework differs from previous accounts of memory by its emphasis on a process that is intensive, complex, and expensive, its reliance on statistics as a representation of memory, and the use of heuristics to guide the choice of statistics at each summarization step. The framework is intended as an aid to make sense of our extensive knowledge of memory, and bring us closer to an understanding of memory in functional and mechanistic terms.
♻ ☆ SafeSwitch: Steering Unsafe LLM Behavior via Internal Activation Signals
Large language models (LLMs) exhibit exceptional capabilities across various tasks but also pose risks by generating harmful content. Existing safety mechanisms, while improving model safety, often lead to overly cautious behavior and fail to fully leverage LLMs' internal cognitive processes. Inspired by humans' reflective thinking capability, we first show that LLMs can similarly perform internal assessments about safety in their internal states. Building on this insight, we propose SafeSwitch, a dynamic framework that regulates unsafe outputs by utilizing the prober-based internal state monitor that actively detects harmful intentions, and activates a safety head that leads to safer and more conservative responses only when necessary. SafeSwitch reduces harmful outputs by approximately 80% on harmful queries while maintaining strong utility, reaching a Pareto optimal among several methods. Our method is also advantageous over traditional methods in offering more informative, context-aware refusals, and achieves these benefits while only tuning less than 6% of the original parameters. SafeSwitch demonstrates large language models' capacity for self-awareness and reflection regarding safety, offering a promising approach to more nuanced and effective safety controls. Codes for this work are available at https://github.com/Hanpx20/SafeSwitch.
♻ ☆ MODIS: Multi-Omics Data Integration for Small and unpaired datasets
An important objective in computational biology is the efficient integration of multi-omics data. The task of integration comes with challenges: multi-omics data are most often unpaired (requiring diagonal integration), partially labeled with information about biological conditions, and in some situations such as rare diseases, only very small datasets are available. We present MODIS, a semi supervised framework designed to account for these particular challenges. To address the challenge of very small datasets, we propose to exploit information contained in larger multi-omics databases by training our model on a large reference database and a small target dataset simultaneously, effectively turning the problem of transfer learning into a problem of learning with class imbalance. MODIS performs diagonal integration on unpaired samples, leveraging class-labels to align modalities despite class imbalance and data scarcity. The architecture combines multiple variational auto-encoders, a class classifier and an adversarially trained modality classifier. To ensure training stability, we adapted a regularized relativistic GAN loss to this setting. We first validate MODIS on a synthetic dataset to assess the level of supervision needed for accurate alignment and to quantify the impact of class imbalance on predictive performance. We then apply our approach to the large public TCGA database, considering between 10 and 34 classes (cancer types and normal tissue). MODIS demonstrates high prediction accuracy, robust performance with limited supervision, and stability to class imbalance. These results position MODIS as a promising solution for challenging integration scenarios, particularly diagonal integration with a small number of samples, typical of rare diseases studies. The code is available at https://github.com/VILLOUTREIXLab/MODIS.
♻ ☆ Social Perception of Faces in a Vision-Language Model
We explore social perception of human faces in CLIP, a widely used open-source vision-language model. To this end, we compare the similarity in CLIP embeddings between different textual prompts and a set of face images. Our textual prompts are constructed from well-validated social psychology terms denoting social perception. The face images are synthetic and are systematically and independently varied along six dimensions: the legally protected attributes of age, gender, and race, as well as facial expression, lighting, and pose. Independently and systematically manipulating face attributes allows us to study the effect of each on social perception and avoids confounds that can occur in wild-collected data due to uncontrolled systematic correlations between attributes. Thus, our findings are experimental rather than observational. Our main findings are three. First, while CLIP is trained on the widest variety of images and texts, it is able to make fine-grained human-like social judgments on face images. Second, age, gender, and race do systematically impact CLIP's social perception of faces, suggesting an undesirable bias in CLIP vis-a-vis legally protected attributes. Most strikingly, we find a strong pattern of bias concerning the faces of Black women, where CLIP produces extreme values of social perception across different ages and facial expressions. Third, facial expression impacts social perception more than age and lighting as much as age. The last finding predicts that studies that do not control for unprotected visual attributes may reach the wrong conclusions on bias. Our novel method of investigation, which is founded on the social psychology literature and on the experiments involving the manipulation of individual attributes, yields sharper and more reliable observations than previous observational methods and may be applied to study biases in any vision-language model.
♻ ☆ RISE: Enhancing VLM Image Annotation with Self-Supervised Reasoning
Vision-Language Models (VLMs) struggle with complex image annotation tasks, such as emotion classification and context-driven object detection, which demand sophisticated reasoning. Standard Supervised Fine-Tuning (SFT) focuses solely on annotation outcomes, ignoring underlying rationales, while Visual Reinforcement Fine-Tuning (Visual-RFT) produces inconsistent Chains of Thought (CoTs) due to the absence of high-quality, verified CoTs during pre-training. We introduce RISE (Reason-Inspire-Strengthen-Expertise), a two-stage framework to overcome these limitations. In the Reason stage (RISE-CoT), a reinforcement learning-driven "annotation-reasoning-annotation" closed-loop generates visually grounded, logically consistent CoTs by verifying their ability to reconstruct original annotations without direct leakage. The Inspire and Strengthen stage (RISE-R1) leverages a high-quality CoT subset, filtered by RISE-CoT rewards, for supervised fine-tuning, followed by reinforcement fine-tuning to produce interpretable reasoning and accurate annotations, achieving Expertise in complex visual tasks. Evaluated on complex and simple image annotation tasks, RISE-trained Qwen2-VL-2B outperforms SFT and Visual-RFT, achieving robust performance and enhanced explainability. RISE offers a self-supervised solution for advancing VLM reasoning without requiring manually annotated CoTs.Code and resources are available at: https://github.com/HSH55/RISE.
♻ ☆ Operator learning for hyperbolic partial differential equations
We construct the first rigorously justified probabilistic algorithm for recovering the solution operator of a hyperbolic partial differential equation (PDE) in two variables from input-output training pairs. The primary challenge of recovering the solution operator of hyperbolic PDEs is the presence of characteristics, along which the associated Green's function is discontinuous. Therefore, a central component of our algorithm is a rank detection scheme that identifies the approximate location of the characteristics. By combining the randomized singular value decomposition with an adaptive hierarchical partition of the domain, we construct an approximant to the solution operator using $O(\Psi_\epsilon^{-1}\epsilon^{-7}\log(\Xi_\epsilon^{-1}\epsilon^{-1}))$ input-output pairs with relative error $O(\Xi_\epsilon^{-1}\epsilon)$ in the operator norm as $\epsilon\to0$, with high probability. Here, $\Psi_\epsilon$ represents the existence of degenerate singular values of the solution operator, and $\Xi_\epsilon$ measures the quality of the training data. Our assumptions on the regularity of the coefficients of the hyperbolic PDE are relatively weak given that hyperbolic PDEs do not have the ``instantaneous smoothing effect'' of elliptic and parabolic PDEs, and our recovery rate improves as the regularity of the coefficients increases.
comment: 44 pages, 8 figures
♻ ☆ Dion: Distributed Orthonormalized Updates
Orthonormalized updates accelerate training, improve stability, and enable robust hyperparameter transfer, but existing methods like Muon rely on dense matrix operations that clash with sharded weights in large-scale LLM training, causing high compute and communication cost. We introduce Dion (Distributed Orthonormalization), a scalable and efficient update rule that replaces Newton-Schulz iteration with amortized power iteration on a momentum buffer, avoiding full-matrix reconstruction and integrating cleanly with weight sharding. The rank-fraction parameter with error feedback enables low-rank updates that balance quality with significant cost savings. On language models from 160M to 3B parameters, Dion retains the benefits of orthonormalized updates, while markedly reducing wall-clock time at scale, making it a practical optimizer for next-generation foundation models. Code is available at: https://github.com/microsoft/dion/
comment: "Version 3" with various new updates
♻ ☆ The Whole Is Bigger Than the Sum of Its Parts: Modeling Individual Annotators to Capture Emotional Variability
Emotion expression and perception are nuanced, complex, and highly subjective processes. When multiple annotators label emotional data, the resulting labels contain high variability. Most speech emotion recognition tasks address this by averaging annotator labels as ground truth. However, this process omits the nuance of emotion and inter-annotator variability, which are important signals to capture. Previous work has attempted to learn distributions to capture emotion variability, but these methods also lose information about the individual annotators. We address these limitations by learning to predict individual annotators and by introducing a novel method to create distributions from continuous model outputs that permit the learning of emotion distributions during model training. We show that this combined approach can result in emotion distributions that are more accurate than those seen in prior work, in both within- and cross-corpus settings.
comment: Accepted to Interspeech 2024 Conference
♻ ☆ Kolb-Based Experiential Learning for Generalist Agents with Human-Level Kaggle Data Science Performance
Human expertise emerges through iterative cycles of interaction, reflection, and internal model updating, which are central to cognitive theories such as Kolb's experiential learning and Vygotsky's zone of proximal development. In contrast, current AI systems, particularly LLM agents, rely on static pre-training or rigid workflows, lacking mechanisms for continual adaptation. Recent studies identified early cognitive traits in LLM agents (reflection, revision, and self-correction) suggesting foundational elements of human-like experiential learning. Thus the key question: Can we design LLM agents capable of structured, cognitively grounded learning similar to human processes? In response, we propose a computational framework of Kolb's learning cycle with Vygotsky's ZPD for autonomous agents. Our architecture separates extrinsic (environment interaction) and intrinsic (internal reflection/abstraction) functions, enabling cognitively grounded scaffolded learning, where the agent initially learns within structured environments, followed by open-ended generalisation. This approach empowers agents to master complex tasks ; domains that traditional fine-tuning or simple reflective methods could not tackle effectively. Its potential is powerfully demonstrated via direct comparison with humans in real-world Kaggle data science competitions. Learning fully automated data science code generation across 81 tasks, our system, Agent K, demonstrated the ability to perform the entire workflow autonomously, achieving an Elo-MMR score of 1694, beyond median score of the Kaggle Masters (the top 2% among 200,000 users) of our study. With 9 gold, 8 silver, and 12 bronze medals level performance - including 4 gold and 4 silver on prize-awarding competitions - Agent K is the 1st AI system to successfully integrate Kolb- and Vygotsky-inspired human cognitive learning, marking a major step toward generalist AI.
♻ ☆ Hopscotch: Discovering and Skipping Redundancies in Language Models
Modern causal language models stack many attention blocks to improve performance, but not all blocks are necessary for every task. We propose Hopscotch, a simple yet effective method that identifies and skips attention blocks with least contributions to a task and adapts to preserve output quality. Hopscotch jointly optimizes which blocks to skip and how to scale the outputs of the remaining layers. By introducing lightweight, trainable scaling parameters to attention and MLP blocks, it mitigates distribution shifts in hidden states caused by removing attention blocks. Hopscotch does not modify model weights or require access to pretraining or instruction-tuning data, and is compatible with existing model compression techniques. When applied to $\texttt{Llama-3.1-8B}$ and $\texttt{Qwen2.5-7B}$, Hopscotch achieves less than a 2% drop in performance even after skipping four attention blocks.
comment: 10 pages, 4 figures, 9 tables
♻ ☆ Decision-Theoretic Approaches for Improved Learning-Augmented Algorithms
We initiate the systematic study of decision-theoretic metrics in the design and analysis of algorithms with machine-learned predictions. We introduce approaches based on both deterministic measures such as distance-based evaluation, that help us quantify how close the algorithm is to an ideal solution, and stochastic measures that balance the trade-off between the algorithm's performance and the risk associated with the imperfect oracle. These approaches allow us to quantify the algorithm's performance across the full spectrum of the prediction error, and thus choose the best algorithm within an entire class of otherwise incomparable ones. We apply our framework to three well-known problems from online decision making, namely ski-rental, one-max search, and contract scheduling.
♻ ☆ Scalable extensions to given-data Sobol' index estimators
Given-data methods for variance-based sensitivity analysis have significantly advanced the feasibility of Sobol' index computation for computationally expensive models and models with many inputs. However, the limitations of existing methods still preclude their application to models with an extremely large number of inputs. In this work, we present practical extensions to the existing given-data Sobol' index method, which allow variance-based sensitivity analysis to be efficiently performed on large models such as neural networks, which have $>10^4$ parameterizable inputs. For models of this size, holding all input-output evaluations simultaneously in memory -- as required by existing methods -- can quickly become impractical. These extensions also support nonstandard input distributions with many repeated values, which are not amenable to equiprobable partitions employed by existing given-data methods. Our extensions include a general definition of the given-data Sobol' index estimator with arbitrary partition, a streaming algorithm to process input-output samples in batches, and a heuristic to filter out small indices that are indistinguishable from zero indices due to statistical noise. We show that the equiprobable partition employed in existing given-data methods can introduce significant bias into Sobol' index estimates even at large sample sizes and provide numerical analyses that demonstrate why this can occur. We also show that our streaming algorithm can achieve comparable accuracy and runtimes with lower memory requirements, relative to current methods which process all samples at once. We demonstrate our novel developments on two application problems in neural network modeling.
♻ ☆ Task-Focused Consolidation with Spaced Recall: Making Neural Networks Learn like College Students
Deep neural networks often suffer from a critical limitation known as catastrophic forgetting, where performance on past tasks degrades after learning new ones. This paper introduces a novel continual learning approach inspired by human learning strategies like Active Recall, Deliberate Practice, and Spaced Repetition, named Task-Focused Consolidation with Spaced Recall (TFC-SR). TFC-SR enhances the standard experience replay framework with a mechanism we term the Active Recall Probe. It is a periodic, task-aware evaluation of the model's memory that stabilizes the representations of past knowledge. We test TFC-SR on the Split MNIST and the Split CIFAR-100 benchmarks against leading regularization-based and replay-based baselines. Our results show that TFC-SR performs significantly better than these methods. For instance, on the Split CIFAR-100, it achieves a final accuracy of 13.17% compared to Standard Experience Replay's 7.40%. We demonstrate that this advantage comes from the stabilizing effect of the probe itself, and not from the difference in replay volume. Additionally, we analyze the trade-off between memory size and performance and show that while TFC-SR performs better in memory-constrained environments, higher replay volume is still more effective when available memory is abundant. We conclude that TFC-SR is a robust and efficient approach, highlighting the importance of integrating active memory retrieval mechanisms into continual learning systems.
comment: Improved Grammar, consistency and flow. Some sections like the Discussion Section have been rewritten for improvement. Figures and Tables have improved formatting, while the algorithm pseudocode is now consistent with the experiments and less ambiguous
♻ ☆ MAYA: Addressing Inconsistencies in Generative Password Guessing through a Unified Benchmark
Recent advances in generative models have led to their application in password guessing, with the aim of replicating the complexity, structure, and patterns of human-created passwords. Despite their potential, inconsistencies and inadequate evaluation methodologies in prior research have hindered meaningful comparisons and a comprehensive, unbiased understanding of their capabilities. This paper introduces MAYA, a unified, customizable, plug-and-play benchmarking framework designed to facilitate the systematic characterization and benchmarking of generative password-guessing models in the context of trawling attacks. Using MAYA, we conduct a comprehensive assessment of six state-of-the-art approaches, which we re-implemented and adapted to ensure standardization. Our evaluation spans eight real-world password datasets and covers an exhaustive set of advanced testing scenarios, totaling over 15,000 compute hours. Our findings indicate that these models effectively capture different aspects of human password distribution and exhibit strong generalization capabilities. However, their effectiveness varies significantly with long and complex passwords. Through our evaluation, sequential models consistently outperform other generative architectures and traditional password-guessing tools, demonstrating unique capabilities in generating accurate and complex guesses. Moreover, the diverse password distributions learned by the models enable a multi-model attack that outperforms the best individual model. By releasing MAYA, we aim to foster further research, providing the community with a new tool to consistently and reliably benchmark generative password-guessing models. Our framework is publicly available at https://github.com/williamcorrias/MAYA-Password-Benchmarking.
comment: Paper accepted at the 47th IEEE Symposium on Security and Privacy (S&P 2026)
♻ ☆ Robustness in the Face of Partial Identifiability in Reward Learning
In Reward Learning (ReL), we are given feedback on an unknown target reward, and the goal is to use this information to recover it in order to carry out some downstream application, e.g., planning. When the feedback is not informative enough, the target reward is only partially identifiable, i.e., there exists a set of rewards, called the feasible set, that are equally plausible candidates for the target reward. In these cases, the ReL algorithm might recover a reward function different from the target reward, possibly leading to a failure in the application. In this paper, we introduce a general ReL framework that permits to quantify the drop in "performance" suffered in the considered application because of identifiability issues. Building on this, we propose a robust approach to address the identifiability problem in a principled way, by maximizing the "performance" with respect to the worst-case reward in the feasible set. We then develop Rob-ReL, a ReL algorithm that applies this robust approach to the subset of ReL problems aimed at assessing a preference between two policies, and we provide theoretical guarantees on sample and iteration complexity for Rob-ReL. We conclude with a proof-of-concept experiment to illustrate the considered setting.
♻ ☆ Deep learning joint extremes of metocean variables using the SPAR model
This paper presents a novel deep learning framework for estimating multivariate joint extremes of metocean variables, based on the Semi-Parametric Angular-Radial (SPAR) model. When considered in polar coordinates, the problem of modelling multivariate extremes is transformed to one of modelling an angular density, and the tail of a univariate radial variable conditioned on angle. In the SPAR approach, the tail of the radial variable is modelled using a generalised Pareto (GP) distribution, providing a natural extension of univariate extreme value theory to the multivariate setting. In this work, we show how the method can be applied in higher dimensions, using a case study for five metocean variables: wind speed, wind direction, wave height, wave period, and wave direction. The angular variable is modelled using a kernel density method, while the parameters of the GP model are approximated using fully-connected deep neural networks. Our approach provides great flexibility in the dependence structures that can be represented, together with computationally efficient routines for training the model. Furthermore, the application of the method requires fewer assumptions about the underlying distribution(s) compared to existing approaches, and an asymptotically justified means for extrapolating outside the range of observations. Using various diagnostic plots, we show that the fitted models provide a good description of the joint extremes of the metocean variables considered.
♻ ☆ Learned Controllers for Agile Quadrotors in Pursuit-Evasion Games
We address the problem of agile 1v1 quadrotor pursuit-evasion, where a pursuer and an evader learn to outmaneuver each other through reinforcement learning (RL). Such settings face two major challenges: non-stationarity, since each agent's evolving policy alters the environment dynamics and destabilizes training, and catastrophic forgetting, where a policy overfits to the current adversary and loses effectiveness against previously encountered strategies. To tackle these issues, we propose an Asynchronous Multi-Stage Population-Based (AMSPB) algorithm. At each stage, the pursuer and evader are trained asynchronously against a frozen pool of opponents sampled from a growing population of past and current policies, stabilizing training and ensuring exposure to diverse behaviors. Within this framework, we train neural network controllers that output either velocity commands or body rates with collective thrust. Experiments in a high-fidelity simulator show that: (i) AMSPB-trained RL policies outperform RL and geometric baselines; (ii) body-rate-and-thrust controllers achieve more agile flight than velocity-based controllers, leading to better pursuit-evasion performance; (iii) AMSPB yields stable, monotonic gains across stages; and (iv) trained policies in one arena size generalize fairly well to other sizes without retraining.
comment: Under review
♻ ☆ Unearthing Gems from Stones: Policy Optimization with Negative Sample Augmentation for LLM Reasoning
Recent advances in reasoning language models have witnessed a paradigm shift from short to long CoT pattern. Given the substantial computational cost of rollouts in long CoT models, maximizing the utility of fixed training datasets becomes crucial. Our analysis reveals that negative responses contain valuable components such as self-reflection and error-correction steps, yet primary existing methods either completely discard negative samples (RFT) or apply equal penalization across all tokens (RL), failing to leverage these potential learning signals. In light of this, we propose Behavior Constrained Policy Gradient with Negative Sample Augmentation (BCPG-NSA), a fine-grained offline RL framework that encompasses three stages: 1) sample segmentation, 2) consensus-based step correctness assessment combining LLM and PRM judgers, and 3) policy optimization with NSA designed to effectively mine positive steps within negative samples. Experimental results show that BCPG-NSA outperforms baselines on several challenging math/coding reasoning benchmarks using the same training dataset, achieving improved sample efficiency and demonstrating robustness and scalability when extended to multiple iterations.
♻ ☆ Learning from Scratch: Structurally-masked Transformer for Next Generation Lib-free Simulation
This paper proposes a neural framework for power and timing prediction of multi-stage data path, distinguishing itself from traditional lib-based analytical methods dependent on driver characterization and load simplifications. To the best of our knowledge, this is the first language-based, netlist-aware neural network designed explicitly for standard cells. Our approach employs two pre-trained neural models of waveform prediction and delay estimation that directly infer transient waveforms and propagation delays from SPICE netlists, conditioned on critical physical parameters such as load capacitance, input slew, and gate size. This method accurately captures both intrinsic and coupling-induced delay effects without requiring simplification or interpolation. For multi-stage timing prediction, we implement a recursive propagation strategy where predicted waveforms from each stage feed into subsequent stages, cumulatively capturing delays across the logic chain. This approach ensures precise timing alignment and complete waveform visibility throughout complex signal pathways. The waveform prediction utilizes a hybrid CNN-Transformer architecture with netlist-aware node-level encoding, addressing traditional Transformers' fixed input dimensionality constraints. Additionally, specialized subnetworks separately handle primary delay estimation and crosstalk correction. Experimental results demonstrate SPICE-level accuracy, consistently achieving RMSE below 0.0098 across diverse industrial circuits. The proposed framework provides a scalable, structurally adaptable neural alternative to conventional power and timing engines, demonstrating high fidelity to physical circuit behaviors.
comment: Prepare for complementary experiments
♻ ☆ Predicting Stock Prices using Permutation Decision Trees and Strategic Trailing
In this paper, we explore the application of Permutation Decision Trees (PDT) and strategic trailing for predicting stock market movements and executing profitable trades in the Indian stock market. We focus on high-frequency data using 5-minute candlesticks for the top 50 stocks listed in the NIFTY 50 index and Forex pairs such as XAUUSD and EURUSD. We implement a trading strategy that aims to buy stocks at lower prices and sell them at higher prices, capitalizing on short-term market fluctuations. Due to regulatory constraints in India, short selling is not considered in our strategy. The model incorporates various technical indicators and employs hyperparameters such as the trailing stop-loss value and support thresholds to manage risk effectively. We trained and tested data on a 3 month dataset provided by Yahoo Finance. Our bot based on Permutation Decision Tree achieved a profit of 1.1802\% over the testing period, where as a bot based on LSTM gave a return of 0.557\% over the testing period and a bot based on RNN gave a return of 0.5896\% over the testing period. All of the bots outperform the buy-and-hold strategy, which resulted in a loss of 2.29\%.
comment: 27 pages
♻ ☆ Early alignment in two-layer networks training is a two-edged sword
Training neural networks with first order optimisation methods is at the core of the empirical success of deep learning. The scale of initialisation is a crucial factor, as small initialisations are generally associated to a feature learning regime, for which gradient descent is implicitly biased towards simple solutions. This work provides a general and quantitative description of the early alignment phase, originally introduced by Maennel et al. (2018). For small initialisation and one hidden ReLU layer networks, the early stage of the training dynamics leads to an alignment of the neurons towards key directions. This alignment induces a sparse representation of the network, which is directly related to the implicit bias of gradient flow at convergence. This sparsity inducing alignment however comes at the expense of difficulties in minimising the training objective: we also provide a simple data example for which overparameterised networks fail to converge towards global minima and only converge to a spurious stationary point instead.
comment: Official JMLR version
♻ ☆ Transformer-Based Multimodal Knowledge Graph Completion with Link-Aware Contexts
Multimodal knowledge graph completion (MMKGC) aims to predict missing links in multimodal knowledge graphs (MMKGs) by leveraging information from various modalities alongside structural data. Existing MMKGC approaches primarily extend traditional knowledge graph embedding (KGE) models, which often require creating an embedding for every entity. This results in large model sizes and inefficiencies in integrating multimodal information, particularly for real-world graphs. Meanwhile, Transformer-based models have demonstrated competitive performance in knowledge graph completion (KGC). However, their focus on single-modal knowledge limits their capacity to utilize cross-modal information. Recently, Large vision-language models (VLMs) have shown potential in cross-modal tasks but are constrained by the high cost of training. In this work, we propose a novel approach that integrates Transformer-based KGE models with cross-modal context generated by pre-trained VLMs, thereby extending their applicability to MMKGC. Specifically, we employ a pre-trained VLM to transform relevant visual information from entities and their neighbors into textual sequences. We then frame KGC as a sequence-to-sequence task, fine-tuning the model with the generated cross-modal context. This simple yet effective method significantly reduces model size compared to traditional KGE approaches while achieving competitive performance across multiple large-scale datasets with minimal hyperparameter tuning.
♻ ☆ Low-rank variational dropout: Uncertainty and rank selection in adapters
Parameter-efficient fine-tuning (PEFT) methods such as LoRA adapt large language models by inserting low-rank adapters, but they leave open two key questions: how to give the adapted model calibrated uncertainty, and how to choose the adapter rank. Existing approaches to uncertainty are typically post-hoc, while rank selection is manual and task-specific. BayesLoRA revisits variational dropout in the LoRA setting and shows that the natural unit of stochasticity is not individual weights but entire ranks of the adapter. By placing rank-wise variational distributions over adapter components, BayesLoRA defines a posterior that (i) yields calibrated predictions through adapter-only Monte Carlo sampling and (ii) prunes redundant ranks automatically via an ARD-style KL term. Theoretical analysis shows that this rank-parameterized posterior localizes uncertainty to the adapted subspace and explains amplification under distribution shift. Empirically, BayesLoRA improves calibration while at the same time producing lighter, faster adapters, removing the need to tune ranks by hand. This dual role of uncertainty estimation and uncertainty-driven pruning suggests BayesLoRA may offer a practical default for reliable and efficient PEFT.
comment: 5 pages, 2 figures
♻ ☆ Greedy Low-Rank Gradient Compression for Distributed Learning with Convergence Guarantees
Distributed optimization is pivotal for large-scale signal processing and machine learning, yet communication overhead remains a major bottleneck. Low-rank gradient compression, in which the transmitted gradients are approximated by low-rank matrices to reduce communication, offers a promising remedy. Existing methods typically adopt either randomized or greedy compression strategies: randomized approaches project gradients onto randomly chosen subspaces, introducing high variance and degrading empirical performance; greedy methods select the most informative subspaces, achieving strong empirical results but lacking convergence guarantees. To address this gap, we propose GreedyLore--the first Greedy Low-Rank gradient compression algorithm for distributed learning with rigorous convergence guarantees. GreedyLore incorporates error feedback to correct the bias introduced by greedy compression and introduces a semi-lazy subspace update that ensures the compression operator remains contractive throughout all iterations. With these techniques, we prove that GreedyLore achieves a convergence rate of $\mathcal{O}(\sigma/\sqrt{NT} + 1/T)$ under standard optimizers such as MSGD and Adam--marking the first linear speedup convergence rate for low-rank gradient compression. Extensive experiments are conducted to validate our theoretical findings.
comment: 17 pages, 5 figures
♻ ☆ Industrial Energy Disaggregation with Digital Twin-generated Dataset and Efficient Data Augmentation
Industrial Non-Intrusive Load Monitoring (NILM) is limited by the scarcity of high-quality datasets and the complex variability of industrial energy consumption patterns. To address data scarcity and privacy issues, we introduce the Synthetic Industrial Dataset for Energy Disaggregation (SIDED), an open-source dataset generated using Digital Twin simulations. SIDED includes three types of industrial facilities across three different geographic locations, capturing diverse appliance behaviors, weather conditions, and load profiles. We also propose the Appliance-Modulated Data Augmentation (AMDA) method, a computationally efficient technique that enhances NILM model generalization by intelligently scaling appliance power contributions based on their relative impact. We show in experiments that NILM models trained with AMDA-augmented data significantly improve the disaggregation of energy consumption of complex industrial appliances like combined heat and power systems. Specifically, in our out-of-sample scenarios, models trained with AMDA achieved a Normalized Disaggregation Error of 0.093, outperforming models trained without data augmentation (0.451) and those trained with random data augmentation (0.290). Data distribution analyses confirm that AMDA effectively aligns training and test data distributions, enhancing model generalization.
♻ ☆ Intrinsic Training Signals for Federated Learning Aggregation
Federated Learning (FL) enables collaborative model training across distributed clients while preserving data privacy. While existing approaches for aggregating client-specific classification heads and adapted backbone parameters require architectural modifications or loss function changes, our method uniquely leverages intrinsic training signals already available during standard optimization. We present LIVAR (Layer Importance and VARiance-based merging), which introduces: i) a variance-weighted classifier aggregation scheme using naturally emergent feature statistics, and ii) an explainability-driven LoRA merging technique based on SHAP analysis of existing update parameter patterns. Without any architectural overhead, LIVAR achieves state-of-the-art performance on multiple benchmarks while maintaining seamless integration with existing FL methods. This work demonstrates that effective model merging can be achieved solely through existing training signals, establishing a new paradigm for efficient federated model aggregation. The code is available at https://github.com/aimagelab/fed-mammoth.
♻ ☆ Quantized Neural Networks for Microcontrollers: A Comprehensive Review of Methods, Platforms, and Applications
The deployment of Quantized Neural Networks (QNNs) on resource-constrained devices, such as microcontrollers, has introduced significant challenges in balancing model performance, computational complexity, and memory constraints. Tiny Machine Learning (TinyML) addresses these issues by integrating advancements across machine learning algorithms, hardware acceleration, and software optimization to efficiently run deep neural networks on embedded systems. This survey presents a hardware-centric introduction to quantization, systematically reviewing essential quantization techniques employed to accelerate deep learning models for embedded applications. In particular, further emphasis is placed on the critical trade-offs between model performance and hardware capabilities. The survey further evaluates existing software frameworks and hardware platforms designed specifically for supporting QNN execution on microcontrollers. Moreover, we provide an analysis of the current challenges and an outline of promising future directions in the rapidly evolving domain of QNN deployment.
comment: 39 pages, 16 figures, 8 Tables, submitted to the Proceedings of the IEEE
♻ ☆ Likelihood Ratio Tests by Kernel Gaussian Embedding
We propose a novel kernel-based nonparametric two-sample test, employing the combined use of kernel mean and kernel covariance embedding. Our test builds on recent results showing how such combined embeddings map distinct probability measures to mutually singular Gaussian measures on the kernel's RKHS. Leveraging this ``separation of measure phenomenon", we construct a test statistic based on the relative entropy between the Gaussian embeddings, in effect the likelihood ratio. The likelihood ratio is specifically tailored to detect equality versus singularity of two Gaussians, and satisfies a ``$0/\infty$" law, in that it vanishes under the null and diverges under the alternative. To implement the test in finite samples, we introduce a regularised version, calibrated by way of permutation. We prove consistency, establish uniform power guarantees under mild conditions, and discuss how our framework unifies and extends prior approaches based on spectrally regularized MMD. Empirical results on synthetic and real data demonstrate remarkable gains in power compared to state-of-the-art methods, particularly in high-dimensional and weak-signal regimes.
♻ ☆ Lean Formalization of Generalization Error Bound by Rademacher Complexity
We formalize the generalization error bound using the Rademacher complexity for the Lean 4 theorem prover based on the probability theory in the Mathlib 4 library. Generalization error quantifies the gap between a learning machine's performance on given training data versus unseen test data, and the Rademacher complexity is a powerful tool to upper-bound the generalization error of a variety of modern learning problems. Previous studies have only formalized extremely simple cases such as bounds by parameter counts and analyses for very simple models (decision stumps). Formalizing the Rademacher complexity bound, also known as the uniform law of large numbers, requires substantial development and is achieved for the first time in this study. In the course of development, we formalize the Rademacher complexity and its unique arguments such as symmetrization, and clarify the topological assumptions on hypothesis classes under which the bound holds. As an application, we also present the formalization of generalization error bound for $L^2$-regularization models.
comment: major updated
♻ ☆ Kernel Embeddings and the Separation of Measure Phenomenon
We prove that kernel covariance embeddings lead to information-theoretically perfect separation of distinct probability distributions. In statistical terms, we establish that testing for the equality of two probability measures on a compact and separable metric space is equivalent to testing for the singularity between two centered Gaussian measures on a reproducing kernel Hilbert Space. The corresponding Gaussians are defined via the notion of kernel covariance embedding of a probability measure, and the Hilbert space is that generated by the embedding kernel. Distinguishing singular Gaussians is fundamentally simpler from an information-theoretic perspective than non-parametric two-sample testing, particularly in complex or high-dimensional domains. This is because singular Gaussians are supported on essentially separate and affine subspaces. Our proof leverages the classical Feldman-Hajek dichotomy, and shows that even a small perturbation of a distribution will be maximally magnified through its Gaussian embedding. This ``separation of measure phenomenon'' appears to be a blessing of infinite dimensionality, by means of embedding, with the potential to inform the design of efficient inference tools in considerable generality. The elicitation of this phenomenon also appears to crystallize, in a precise and simple mathematical statement, the outstanding empirical effectiveness of the so-called ``kernel trick".
♻ ☆ Group Expectation Policy Optimization for Heterogeneous Reinforcement Learning
As single-center computing approaches power constraints, decentralized training is becoming essential. Reinforcement Learning (RL) post-training enhances Large Language Models (LLMs) but faces challenges in heterogeneous distributed environments due to its tightly-coupled sampling-learning alternation. We propose HeteroRL, an asynchronous RL architecture that decouples rollout sampling from parameter learning, enabling robust deployment across geographically distributed nodes under network delays. We identify that latency-induced KL divergence causes importance sampling failure due to high variance. To address this, we propose Group Expectation Policy Optimization (GEPO), which reduces importance weight variance through a refined sampling mechanism. Theoretically, GEPO achieves exponential variance reduction. Experiments show it maintains superior stability over methods like GRPO, with less than 3% performance degradation under 1800-second delays, demonstrating strong potential for decentralized RL in heterogeneous networks.
♻ ☆ One Goal, Many Challenges: Robust Preference Optimization Amid Content-Aware and Multi-Source Noise
Large Language Models (LLMs) have made significant strides in generating human-like responses, largely due to preference alignment techniques. However, these methods often assume unbiased human feedback, which is rarely the case in real-world scenarios. This paper introduces Content-Aware Noise-Resilient Preference Optimization (CNRPO), a novel framework that addresses multiple sources of content-dependent noise in preference learning. CNRPO employs a multi-objective optimization approach to separate true preferences from content-aware noises, effectively mitigating their impact. We leverage backdoor attack mechanisms to efficiently learn and control various noise sources within a single model. Theoretical analysis and extensive experiments on different synthetic noisy datasets demonstrate that CNRPO significantly improves alignment with primary human preferences while controlling for secondary noises and biases, such as response length and harmfulness.
♻ ☆ Feasibility of In-Ear Single-Channel ExG for Wearable Sleep Monitoring in Real-World Settings
Automatic sleep staging typically relies on gold-standard EEG setups, which are accurate but obtrusive and impractical for everyday use outside sleep laboratories. This limits applicability in real-world settings, such as home environments, where continuous, long-term monitoring is needed. Detecting sleep onset is particularly relevant, enabling consumer applications (e.g. automatically pausing media playback when the user falls asleep). Recent research has shown correlations between in-ear EEG and full-scalp EEG for various phenomena, suggesting wearable, in-ear devices could allow unobtrusive sleep monitoring. We investigated the feasibility of using single-channel in-ear electrophysiological (ExG) signals for automatic sleep staging in a wearable device by conducting a sleep study with 11 participants (mean age: 24), using a custom earpiece with a dry eartip electrode (D\"atwyler SoftPulse) as a measurement electrode in one ear and a reference in the other. Ground truth sleep stages were obtained from an Apple Watch Ultra, validated for sleep staging. Our system achieved 90.5% accuracy for binary sleep detection (Awake vs. Asleep) and 65.1% accuracy for four-class staging (Awake, REM, Core, Deep) using leave-one-subject-out validation. These findings demonstrate the potential of in-ear electrodes as a low-effort, comfortable approach to sleep monitoring, with applications such as stopping podcasts when users fall asleep.
♻ ☆ Two Sides of the Same Optimization Coin: Model Degradation and Representation Collapse in Graph Foundation Models
Graph foundation models, inspired by the success of LLMs, are designed to learn the optimal embedding from multi-domain TAGs for the downstream cross-task generalization capability. During our investigation, graph VQ-MAE stands out among the increasingly diverse landscape of GFM architectures. This is attributed to its ability to jointly encode topology and textual attributes from multiple domains into discrete embedding spaces with clear semantic boundaries. Despite its potential, domain generalization conflicts cause imperceptible pitfalls. In this paper, we instantiate two of them, and they are just like two sides of the same GFM optimization coin - Side 1 Model Degradation: The encoder and codebook fail to capture the diversity of inputs; Side 2 Representation Collapse: The hidden embedding and codebook vector fail to preserve semantic separability due to constraints from narrow representation subspaces. These two pitfalls (sides) collectively impair the decoder and generate the low-quality reconstructed supervision, causing the GFM optimization dilemma during pre-training (coin). Through empirical investigation, we attribute the above challenges to Information Bottleneck and Regularization Deficit. To address them, we propose MoT (Mixture-of-Tinkers) - (1) Information Tinker for Two Pitfalls, which utilizes an edge-wise semantic fusion strategy and a mixture-of-codebooks with domain-aware routing to improve information capacity. (2) Regularization Tinker for Optimization Coin, which utilizes two additional regularizations to further improve gradient supervision in our proposed Information Tinker. Notably, as a flexible architecture, MoT adheres to the scaling laws of GFM, offering a controllable model scale. Compared to SOTA baselines, experiments on 22 datasets across 6 domains demonstrate that MoT achieves significant improvements in supervised, few-shot, and zero-shot scenarios.
♻ ☆ Mechanistic Interpretability of LoRA-Adapted Language Models for Nuclear Reactor Safety Applications
The integration of Large Language Models (LLMs) into safety-critical domains, such as nuclear engineering, necessitates a deep understanding of their internal reasoning processes. This paper presents a novel methodology for interpreting how an LLM encodes and utilizes domain-specific knowledge, using a Boiling Water Reactor system as a case study. We adapted a general-purpose LLM (Gemma-3-1b-it) to the nuclear domain using a parameter-efficient fine-tuning technique known as Low-Rank Adaptation. By comparing the neuron activation patterns of the base model to those of the fine-tuned model, we identified a sparse set of neurons whose behavior was significantly altered during the adaptation process. To probe the causal role of these specialized neurons, we employed a neuron silencing technique. Our results demonstrate that while silencing most of these specialized neurons individually did not produce a statistically significant effect, deactivating the entire group collectively led to a statistically significant degradation in task performance. Qualitative analysis further revealed that silencing these neurons impaired the model's ability to generate detailed, contextually accurate technical information. This paper provides a concrete methodology for enhancing the transparency of an opaque black-box model, allowing domain expertise to be traced to verifiable neural circuits. This offers a pathway towards achieving nuclear-grade artificial intelligence (AI) assurance, addressing the verification and validation challenges mandated by nuclear regulatory frameworks (e.g., 10 CFR 50 Appendix B), which have limited AI deployment in safety-critical nuclear operations.
comment: Accepted for publication in Nuclear Technology. 24 pages, 2 tables, 4 figures
♻ ☆ FOCUS on Contamination: A Geospatial Deep Learning Framework with a Noise-Aware Loss for Surface Water PFAS Prediction
Per- and polyfluoroalkyl substances (PFAS), chemicals found in products like non-stick cookware, are unfortunately persistent environmental pollutants with severe health risks. Accurately mapping PFAS contamination is crucial for guiding targeted remediation efforts and protecting public and environmental health, yet detection across large regions remains challenging due to the cost of testing and the difficulty of simulating their spread. In this work, we introduce FOCUS, a geospatial deep learning framework with a label noise-aware loss function, to predict PFAS contamination in surface water over large regions. By integrating hydrological flow data, land cover information, and proximity to known PFAS sources, our approach leverages both spatial and environmental context to improve prediction accuracy. We evaluate the performance of our approach through extensive ablation studies, robustness analysis, real-world validation, and comparative analyses against baselines like sparse segmentation, as well as existing scientific methods, including Kriging and pollutant transport simulations. Results and expert feedback highlight our framework's potential for scalable PFAS monitoring.
♻ ☆ 'Hello, World!': Making GNNs Talk with LLMs EMNLP 2025
While graph neural networks (GNNs) have shown remarkable performance across diverse graph-related tasks, their high-dimensional hidden representations render them black boxes. In this work, we propose Graph Lingual Network (GLN), a GNN built on large language models (LLMs), with hidden representations in the form of human-readable text. Through careful prompt design, GLN incorporates not only the message passing module of GNNs but also advanced GNN techniques, including graph attention and initial residual connection. The comprehensibility of GLN's hidden representations enables an intuitive analysis of how node representations change (1) across layers and (2) under advanced GNN techniques, shedding light on the inner workings of GNNs. Furthermore, we demonstrate that GLN achieves strong zero-shot performance on node classification and link prediction, outperforming existing LLM-based baseline methods.
comment: Published as a conference paper at EMNLP 2025 Findings. Code and datasets are in https://github.com/kswoo97/GLN-Code
♻ ☆ Steering LVLMs via Sparse Autoencoder for Hallucination Mitigation EMNLP 2025
Large vision-language models (LVLMs) have achieved remarkable performance on multimodal tasks. However, they still suffer from hallucinations, generating text inconsistent with visual input, posing significant risks in real-world applications. Existing approaches to address this issue focus on incorporating external knowledge bases, alignment training, or decoding strategies, all of which require substantial computational cost and time. Recent works try to explore more efficient alternatives by adjusting LVLMs' internal representations. Although promising, these methods may cause hallucinations to be insufficiently suppressed or lead to excessive interventions that negatively affect normal semantics. In this work, we leverage sparse autoencoders (SAEs) to identify semantic directions closely associated with faithfulness or hallucination, extracting more precise and disentangled hallucination-related representations. Our analysis demonstrates that interventions along the identified faithful direction can mitigate hallucinations, while those along the hallucinatory direction can exacerbate them. Building on these insights, we propose Steering LVLMs via SAE Latent Directions (SSL), a plug-and-play method based on SAE-derived latent directions to mitigate hallucinations in LVLMs. Extensive experiments demonstrate that SSL significantly outperforms existing decoding approaches in mitigating hallucinations, while maintaining transferability across different model architectures with negligible additional time overhead. The code is available at https://github.com/huazhenglin2003/SSL.
comment: Accepted to Findings of EMNLP 2025
♻ ☆ TeleRAG: Efficient Retrieval-Augmented Generation Inference with Lookahead Retrieval
Retrieval-augmented generation (RAG) extends large language models (LLMs) with external data sources to enhance factual correctness and domain coverage. Modern RAG pipelines rely on large datastores, leading to system challenges in latency-sensitive deployments, especially when GPU memory is limited. To address these challenges, we propose TeleRAG, an efficient inference system that reduces RAG latency with minimal GPU memory requirements. The core innovation of TeleRAG is lookahead retrieval, a prefetching mechanism that anticipates required data and transfers it from CPU to GPU in parallel with LLM generation. By leveraging the modularity of RAG pipelines, the inverted file index (IVF) search algorithm and similarities between queries, TeleRAG optimally overlaps data movement and computation. Experimental results demonstrate that TeleRAG achieves up to a 1.53x average reduction in end-to-end latency for single-query inference and up to 1.83x average improvement in throughput for batch-query scenarios compared to state-of-the-art systems. This confirms the practical utility of TeleRAG for faster and more memory-efficient deployments of advanced RAG applications.
♻ ☆ Murphys Laws of AI Alignment: Why the Gap Always Wins
We study reinforcement learning from human feedback under misspecification. Sometimes human feedback is systematically wrong on certain types of inputs, like a broken compass that points the wrong way in specific regions. We prove that when feedback is biased on a fraction alpha of contexts with bias strength epsilon, any learning algorithm needs exponentially many samples exp(n*alpha*epsilon^2) to distinguish between two possible "true" reward functions that differ only on these problematic contexts. However, if you can identify where feedback is unreliable (a "calibration oracle"), you can focus your limited questions there and overcome the exponential barrier with just O(1/(alpha*epsilon^2)) queries. This quantifies why alignment is hard: rare edge cases with subtly biased feedback create an exponentially hard learning problem unless you know where to look. The gap between what we optimize (proxy from human feedback) and what we want (true objective) is fundamentally limited by how common the problematic contexts are (alpha), how wrong the feedback is there (epsilon), and how much the true objectives disagree there (gamma). Murphy's Law for AI alignment: the gap always wins unless you actively route around misspecification.
comment: Provides a formal impossibility theorem (Murphys Gap) and welcomes collaboration on large-scale experiments and benchmark design
♻ ☆ Binary Quantization For LLMs Through Dynamic Grouping
Large Language Models (LLMs) have demonstrated remarkable performance across a wide range of Natural Language Processing (NLP) tasks, but require substantial memory and computational resources. Binary quantization, which compresses model weights from 16-bit Brain Float to 1-bit representations in {-1, 1}, offers significant reductions in storage and inference costs. However, such aggressive quantization often leads to notable performance degradation compared to more conservative 4-bit quantization methods. In this research, we propose a novel optimization objective tailored for binary quantization, along with three algorithms designed to realize it effectively. Our method enhances blocked quantization by dynamically identifying optimal unstructured sub-matrices through adaptive grouping strategies. Experimental results demonstrate that our approach achieves an average bit length of just 1.007 bits, while maintaining high model quality. Specifically, our quantized LLaMA 3.2 3B model attains a perplexity of 8.23, remarkably close to the original 7.81, and surpasses previous SOTA BiLLM with a perplexity of only 123.90. Furthermore, our method is competitive with SOTA 4-bit approaches such as GPTQ in both performance and efficiency. The compression process is highly efficient, requiring only 14 seconds to quantize the full LLaMA 3.2 3B weights on a single CPU core, with the entire process completing in under 100 minutes and exhibiting embarrassingly parallel properties. Code - https://github.com/johnnyzheng0636/WGM_bi_quan
comment: An error was identified in the quantization bit width; it is not binary
♻ ☆ Timing Matters: Enhancing User Experience through Temporal Prediction in Smart Homes
The proliferation of IoT devices generates vast interaction data, offering insights into user behaviour. While prior work predicts what actions users perform, the timing of these actions -- critical for enabling proactive and efficient smart systems -- remains relatively underexplored. Addressing this gap, we focus on predicting the time of the next user action in smart environments. Due to the lack of public datasets with fine-grained timestamps suitable for this task and associated privacy concerns, we contribute a dataset of 11.6k sequences synthesized based on human annotations of interaction patterns, pairing actions with precise timestamps. To this end, we introduce Timing-Matters, a Transformer-Encoder based method that predicts action timing, achieving 38.30% accuracy on the synthesized dataset, outperforming the best baseline by 6%, and showing 1--6% improvements on other open datasets. Our code and dataset will be publicly released.
comment: 7 pages + 1 reference, 5 figures, 6 tables
♻ ☆ Piecewise Deterministic Markov Processes for Bayesian Neural Networks
Inference on modern Bayesian Neural Networks (BNNs) often relies on a variational inference treatment, imposing violated assumptions of independence and the form of the posterior. Traditional MCMC approaches avoid these assumptions at the cost of increased computation due to its incompatibility to subsampling of the likelihood. New Piecewise Deterministic Markov Process (PDMP) samplers permit subsampling, though introduce a model specific inhomogenous Poisson Process (IPPs) which is difficult to sample from. This work introduces a new generic and adaptive thinning scheme for sampling from these IPPs, and demonstrates how this approach can accelerate the application of PDMPs for inference in BNNs. Experimentation illustrates how inference with these methods is computationally feasible, can improve predictive accuracy, MCMC mixing performance, and provide informative uncertainty measurements when compared against other approximate inference schemes.
comment: Includes correction to software and corrigendum note (fix supplementary references)
♻ ☆ The Domain Mixed Unit: A New Neural Arithmetic Layer
The Domain Mixed Unit (DMU) is a new neural arithmetic unit that learns a single parameter gate that mixes between log-space and linear-space representations while performing either addition (DMU add) or subtraction (DMU sub). Two initializations are proposed for the DMU: one covering addition and multiplication, and another covering subtraction and division. The DMU achieves state-of-the-art performance on the NALM Benchmark, a dataset designed to test the ability of neural arithmetic units to generalize arithmetic operations, specifically performing with the highest percentage solved over all seeds on multiplication and division. The DMU will be submitted as a pull request to the open-source NALM benchmark, and its code is available on GitHub at https://github.com/marict/nalm-benchmark
comment: Includes results on the NALM benchmark
♻ ☆ Hallucinated Span Detection with Multi-View Attention Features
This study addresses the problem of hallucinated span detection in the outputs of large language models. It has received less attention than output-level hallucination detection despite its practical importance. Prior work has shown that attentions often exhibit irregular patterns when hallucinations occur. Motivated by these findings, we extract features from the attention matrix that provide complementary views capturing (a) whether certain tokens are influential or ignored, (b) whether attention is biased toward specific subsets, and (c) whether a token is generated referring to a narrow or broad context, in the generation. These features are input to a Transformer-based classifier to conduct sequential labelling to identify hallucinated spans. Experimental results indicate that the proposed method outperforms strong baselines on hallucinated span detection with longer input contexts, such as data-to-text and summarisation tasks.
♻ ☆ STRIDE: Subset-Free Functional Decomposition for XAI in Tabular Settings ICLR 2026
Most explainable AI (XAI) frameworks are limited in their expressiveness, summarizing complex feature effects as single scalar values \phi_i. This approach answers "what" features are important but fails to reveal "how" they interact. Furthermore, methods that attempt to capture interactions, like those based on Shapley values, often face an exponential computational cost. We present STRIDE, a scalable framework that addresses both limitations by reframing explanation as a subset-enumeration-free, orthogonal "functional decomposition" in a Reproducing Kernel Hilbert Space (RKHS). In the tabular setups we study, STRIDE analytically computes functional components f_S(x_S) via a recursive kernel-centering procedure. The approach is model-agnostic and theoretically grounded with results on orthogonality and L^2 convergence. In tabular benchmarks (10 datasets, median over 10 seeds), STRIDE attains a 3.0 times median speedup over TreeSHAP and a mean R^2=0.93 for reconstruction. We also introduce "component surgery", a diagnostic that isolates a learned interaction and quantifies its contribution; on California Housing, removing a single interaction reduces test R^2 from 0.019 to 0.027.
comment: Major revision for submission to ICLR 2026. Substantially revised abstract, introduction, and discussion. Added new 'component surgery' analysis and updated benchmark results for clarity. (12 pages, 2 figures)
♻ ☆ Enhancing Prompt Injection Attacks to LLMs via Poisoning Alignment
Prompt injection attack, where an attacker injects a prompt into the original one, aiming to make an Large Language Model (LLM) follow the injected prompt to perform an attacker-chosen task, represent a critical security threat. Existing attacks primarily focus on crafting these injections at inference time, treating the LLM itself as a static target. Our experiments show that these attacks achieve some success, but there is still significant room for improvement. In this work, we introduces a more foundational attack vector: poisoning the LLM's alignment process to amplify the success of future prompt injection attacks. Specifically, we propose PoisonedAlign, a method that strategically creates poisoned alignment samples to poison an LLM's alignment dataset. Our experiments across five LLMs and two alignment datasets show that when even a small fraction of the alignment data is poisoned, the resulting model becomes substantially more vulnerable to a wide range of prompt injection attacks. Crucially, this vulnerability is instilled while the LLM's performance on standard capability benchmarks remains largely unchanged, making the manipulation difficult to detect through automated, general-purpose performance evaluations. The code for implementing the attack is available at https://github.com/Sadcardation/PoisonedAlign.
♻ ☆ Solved in Unit Domain: JacobiNet for Differentiable Coordinate-Transformed PINNs
Physics-Informed Neural Networks offer a powerful framework for solving PDEs by embedding physical laws into the learning process. However, when applied to domains with irregular boundaries, PINNs often suffer from instability and slow convergence, which stems from (1) inconsistent normalization due to geometric anisotropy, (2) inaccurate boundary enforcements, and (3) imbalanced loss term competition. A common workaround is to map the domain to a regular space. Yet, conventional mapping methods rely on case-specific meshes, define Jacobians at pre-specified fixed nodes, reformulate PDEs via the chain rule-making them incompatible with modern automatic differentiation, tensor-based frameworks. To bridge this gap, we propose JacobiNet, a learning-based coordinate-transformed PINN framework that unifies domain mapping and PDE solving within an end-to-end differentiable architecture. Leveraging lightweight MLPs, JacobiNet learns continuous, differentiable mappings, enables direct Jacobian computation via autograd, shares computation graph with downstream PINNs. Its continuous nature and built-in Jacobian eliminate the need for meshing, explicit Jacobians computation/ storage, and PDE reformulation, while unlocking geometric-editing operations, reducing the mapping cost. Separating physical modeling from geometric complexity, JacobiNet (1) addresses normalization challenges in the original anisotropic coordinates, (2) facilitates hard constraints of boundary conditions, and (3) mitigates the long-standing imbalance among loss terms. Evaluated on various PDEs, JacobiNet reduces the L2 error from 0.11-0.73 to 0.01-0.09. In vessel-like domains with varying shapes, JacobiNet enables millisecond-level mapping inference for unseen geometries, improves prediction accuracy by an average of 3.65*, while delivering over 10* speed up-demonstrating strong generalization, accuracy, and efficiency.
comment: Submitted to CMAME, revision in progress
Self-Evolving Curriculum for LLM Reasoning
Reinforcement learning (RL) has proven effective for fine-tuning large language models (LLMs), significantly enhancing their reasoning abilities in domains such as mathematics and code generation. A crucial factor influencing RL fine-tuning success is the training curriculum: the order in which training problems are presented. While random curricula serve as common baselines, they remain suboptimal; manually designed curricula often rely heavily on heuristics, and online filtering methods can be computationally prohibitive. To address these limitations, we propose Self-Evolving Curriculum (SEC), an automatic curriculum learning method that learns a curriculum policy concurrently with the RL fine-tuning process. Our approach formulates curriculum selection as a non-stationary Multi-Armed Bandit problem, treating each problem category (e.g., difficulty level or problem type) as an individual arm. We leverage the absolute advantage from policy gradient methods as a proxy measure for immediate learning gain. At each training step, the curriculum policy selects categories to maximize this reward signal and is updated using the TD(0) method. Across three distinct reasoning domains: planning, inductive reasoning, and mathematics, our experiments demonstrate that SEC significantly improves models' reasoning capabilities, enabling better generalization to harder, out-of-distribution test problems. Additionally, our approach achieves better skill balance when fine-tuning simultaneously on multiple reasoning domains. These findings highlight SEC as a promising strategy for RL fine-tuning of LLMs.
♻ ☆ Expressive Power of Deep Networks on Manifolds: Simultaneous Approximation
A key challenge in scientific machine learning is solving partial differential equations (PDEs) on complex domains, where the curved geometry complicates the approximation of functions and their derivatives required by differential operators. This paper establishes the first simultaneous approximation theory for deep neural networks on manifolds. We prove that a constant-depth $\mathrm{ReLU}^{k-1}$ network with bounded weights--a property that plays a crucial role in controlling generalization error--can approximate any function in the Sobolev space $\mathcal{W}_p^{k}(\mathcal{M}^d)$ to an error of $\varepsilon$ in the $\mathcal{W}_p^{s}(\mathcal{M}^d)$ norm, for $k\geq 3$ and $s
♻ ☆ High-Fidelity Scientific Simulation Surrogates via Adaptive Implicit Neural Representations
Effective surrogate models are critical for accelerating scientific simulations. Implicit neural representations (INRs) offer a compact and continuous framework for modeling spatially structured data, but they often struggle with complex scientific fields exhibiting localized, high-frequency variations. Recent approaches address this by introducing additional features along rigid geometric structures (e.g., grids), but at the cost of flexibility and increased model size. In this paper, we propose a simple yet effective alternative: Feature-Adaptive INR (FA-INR). FA-INR leverages cross-attention to an augmented memory bank to learn flexible feature representations, enabling adaptive allocation of model capacity based on data characteristics, rather than rigid structural assumptions. To further improve scalability, we introduce a coordinate-guided mixture of experts (MoE) that enhances the specialization and efficiency of feature representations. Experiments on three large-scale ensemble simulation datasets show that FA-INR achieves state-of-the-art fidelity while significantly reducing model size, establishing a new trade-off frontier between accuracy and compactness for INR-based surrogates.
♻ ☆ TED: Accelerate Model Training by Internal Generalization ECAI 2024
Large language models have demonstrated strong performance in recent years, but the high cost of training drives the need for efficient methods to compress dataset sizes. We propose TED pruning, a method that addresses the challenge of overfitting under high pruning ratios by quantifying the model's ability to improve performance on pruned data while fitting retained data, known as Internal Generalization (IG). TED uses an optimization objective based on Internal Generalization Distance (IGD), measuring changes in IG before and after pruning to align with true generalization performance and achieve implicit regularization. The IGD optimization objective was verified to allow the model to achieve the smallest upper bound on generalization error. The impact of small mask fluctuations on IG is studied through masks and Taylor approximation, and fast estimation of IGD is enabled. In analyzing continuous training dynamics, the prior effect of IGD is validated, and a progressive pruning strategy is proposed. Experiments on image classification, natural language understanding, and large language model fine-tuning show TED achieves lossless performance with 60-70\% of the data. Upon acceptance, our code will be made publicly available.
comment: ECAI 2024
♻ ☆ LNPT: Label-free Network Pruning and Training IJCNN 2024
Pruning before training enables the deployment of neural networks on smart devices. By retaining weights conducive to generalization, pruned networks can be accommodated on resource-constrained smart devices. It is commonly held that the distance on weight norms between the initialized and the fully-trained networks correlates with generalization performance. However, as we have uncovered, inconsistency between this metric and generalization during training processes, which poses an obstacle to determine the pruned structures on smart devices in advance. In this paper, we introduce the concept of the learning gap, emphasizing its accurate correlation with generalization. Experiments show that the learning gap, in the form of feature maps from the penultimate layer of networks, aligns with variations of generalization performance. We propose a novel learning framework, LNPT, which enables mature networks on the cloud to provide online guidance for network pruning and learning on smart devices with unlabeled data. Our results demonstrate the superiority of this approach over supervised training.
comment: IJCNN 2024
♻ ☆ SEVEN: Pruning Transformer Model by Reserving Sentinels IJCNN 2024
Large-scale Transformer models (TM) have demonstrated outstanding performance across various tasks. However, their considerable parameter size restricts their applicability, particularly on mobile devices. Due to the dynamic and intricate nature of gradients on TM compared to Convolutional Neural Networks, commonly used pruning methods tend to retain weights with larger gradient noise. This results in pruned models that are sensitive to sparsity and datasets, exhibiting suboptimal performance. Symbolic Descent (SD) is a general approach for training and fine-tuning TM. In this paper, we attempt to describe the noisy batch gradient sequences on TM through the cumulative process of SD. We utilize this design to dynamically assess the importance scores of weights.SEVEN is introduced by us, which particularly favors weights with consistently high sensitivity, i.e., weights with small gradient noise. These weights are tended to be preserved by SEVEN. Extensive experiments on various TM in natural language, question-answering, and image classification domains are conducted to validate the effectiveness of SEVEN. The results demonstrate significant improvements of SEVEN in multiple pruning scenarios and across different sparsity levels. Additionally, SEVEN exhibits robust performance under various fine-tuning strategies. The code is publicly available at https://github.com/xiaojinying/SEVEN.
comment: IJCNN 2024
♻ ☆ LogicTree: Structured Proof Exploration for Coherent and Rigorous Logical Reasoning with Large Language Models EMNLP 2025
Large language models (LLMs) have achieved remarkable multi-step reasoning capabilities across various domains. However, LLMs still face distinct challenges in complex logical reasoning, as (1) proof-finding requires systematic exploration and the maintenance of logical coherence and (2) searching the right combination of premises at each reasoning step is inherently challenging in tasks with large premise space. To address this, we propose LogicTree, an inference-time modular framework employing algorithm-guided search to automate structured proof exploration and ensure logical coherence. Advancing beyond tree-of-thought (ToT), we incorporate caching mechanism into LogicTree to enable effective utilization of historical knowledge, preventing reasoning stagnation and minimizing redundancy. Furthermore, we address the combinatorial complexity of premise search by decomposing it into a linear process. The refined premise selection restricts subsequent inference to at most one derivation per step, enhancing reasoning granularity and enforcing strict step-by-step reasoning. Additionally, we introduce two LLM-free heuristics for premise prioritization, enabling strategic proof search. Experimental results on five datasets demonstrate that LogicTree optimally scales inference-time computation to achieve higher proof accuracy, surpassing chain-of-thought (CoT) and ToT with average gains of 23.6% and 12.5%, respectively, on GPT-4o. Moreover, within LogicTree, GPT-4o outperforms o3-mini by 7.6% on average.
comment: EMNLP 2025 Main Conference
Computer Vision and Pattern Recognition 60
☆ Modality-Aware Infrared and Visible Image Fusion with Target-Aware Supervision ICCV
Infrared and visible image fusion (IVIF) is a fundamental task in multi-modal perception that aims to integrate complementary structural and textural cues from different spectral domains. In this paper, we propose FusionNet, a novel end-to-end fusion framework that explicitly models inter-modality interaction and enhances task-critical regions. FusionNet introduces a modality-aware attention mechanism that dynamically adjusts the contribution of infrared and visible features based on their discriminative capacity. To achieve fine-grained, interpretable fusion, we further incorporate a pixel-wise alpha blending module, which learns spatially-varying fusion weights in an adaptive and content-aware manner. Moreover, we formulate a target-aware loss that leverages weak ROI supervision to preserve semantic consistency in regions containing important objects (e.g., pedestrians, vehicles). Experiments on the public M3FD dataset demonstrate that FusionNet generates fused images with enhanced semantic preservation, high perceptual quality, and clear interpretability. Our framework provides a general and extensible solution for semantic-aware multi-modal image fusion, with benefits for downstream tasks such as object detection and scene understanding.
comment: Accepted by 2025 6th International Conference on Computer Vision and Data Mining (ICCVDM 2025)
☆ Beyond Frame-wise Tracking: A Trajectory-based Paradigm for Efficient Point Cloud Tracking
LiDAR-based 3D single object tracking (3D SOT) is a critical task in robotics and autonomous systems. Existing methods typically follow frame-wise motion estimation or a sequence-based paradigm. However, the two-frame methods are efficient but lack long-term temporal context, making them vulnerable in sparse or occluded scenes, while sequence-based methods that process multiple point clouds gain robustness at a significant computational cost. To resolve this dilemma, we propose a novel trajectory-based paradigm and its instantiation, TrajTrack. TrajTrack is a lightweight framework that enhances a base two-frame tracker by implicitly learning motion continuity from historical bounding box trajectories alone-without requiring additional, costly point cloud inputs. It first generates a fast, explicit motion proposal and then uses an implicit motion modeling module to predict the future trajectory, which in turn refines and corrects the initial proposal. Extensive experiments on the large-scale NuScenes benchmark show that TrajTrack achieves new state-of-the-art performance, dramatically improving tracking precision by 4.48% over a strong baseline while running at 56 FPS. Besides, we also demonstrate the strong generalizability of TrajTrack across different base trackers. Video is available at https://www.bilibili.com/video/BV1ahYgzmEWP.
comment: 9 pages, 7 figures
☆ MultiMAE for Brain MRIs: Robustness to Missing Inputs Using Multi-Modal Masked Autoencoder
Missing input sequences are common in medical imaging data, posing a challenge for deep learning models reliant on complete input data. In this work, inspired by MultiMAE [2], we develop a masked autoencoder (MAE) paradigm for multi-modal, multi-task learning in 3D medical imaging with brain MRIs. Our method treats each MRI sequence as a separate input modality, leveraging a late-fusion-style transformer encoder to integrate multi-sequence information (multi-modal) and individual decoder streams for each modality for multi-task reconstruction. This pretraining strategy guides the model to learn rich representations per modality while also equipping it to handle missing inputs through cross-sequence reasoning. The result is a flexible and generalizable encoder for brain MRIs that infers missing sequences from available inputs and can be adapted to various downstream applications. We demonstrate the performance and robustness of our method against an MAE-ViT baseline in downstream segmentation and classification tasks, showing absolute improvement of $10.1$ overall Dice score and $0.46$ MCC over the baselines with missing input sequences. Our experiments demonstrate the strength of this pretraining strategy. The implementation is made available.
comment: Official implementation: https://github.com/chris-beischl/multimae-for-brain-mri
☆ Disentanglement of Biological and Technical Factors via Latent Space Rotation in Clinical Imaging Improves Disease Pattern Discovery MICCAI 2025
Identifying new disease-related patterns in medical imaging data with the help of machine learning enlarges the vocabulary of recognizable findings. This supports diagnostic and prognostic assessment. However, image appearance varies not only due to biological differences, but also due to imaging technology linked to vendors, scanning- or re- construction parameters. The resulting domain shifts impedes data representation learning strategies and the discovery of biologically meaningful cluster appearances. To address these challenges, we introduce an approach to actively learn the domain shift via post-hoc rotation of the data latent space, enabling disentanglement of biological and technical factors. Results on real-world heterogeneous clinical data showcase that the learned disentangled representation leads to stable clusters representing tissue-types across different acquisition settings. Cluster consistency is improved by +19.01% (ARI), +16.85% (NMI), and +12.39% (Dice) compared to the entangled representation, outperforming four state-of-the-art harmonization methods. When using the clusters to quantify tissue composition on idiopathic pulmonary fibrosis patients, the learned profiles enhance Cox survival prediction. This indicates that the proposed label-free framework facilitates biomarker discovery in multi-center routine imaging data. Code is available on GitHub https://github.com/cirmuw/latent-space-rotation-disentanglement.
comment: The Fourth Workshop on Applications of Medical Artificial Intelligence, AMAI 2025, Held in Conjunction with MICCAI 2025, Daejeon, Republic of Korea, September 23, 2025, Proceedings
☆ Enhancing Generalization in Vision-Language-Action Models by Preserving Pretrained Representations
Vision-language-action (VLA) models finetuned from vision-language models (VLMs) hold the promise of leveraging rich pretrained representations to build generalist robots across diverse tasks and environments. However, direct fine-tuning on robot data often disrupts these representations and limits generalization. We present a framework that better preserves pretrained features while adapting them for robot manipulation. Our approach introduces three components: (i) a dual-encoder design with one frozen vision encoder to retain pretrained features and another trainable for task adaptation, (ii) a string-based action tokenizer that casts continuous actions into character sequences aligned with the model's pretraining domain, and (iii) a co-training strategy that combines robot demonstrations with vision-language datasets emphasizing spatial reasoning and affordances. Evaluations in simulation and on real robots show that our method improves robustness to visual perturbations, generalization to novel instructions and environments, and overall task success compared to baselines.
comment: Project Page: https://gen-vla.github.io/
☆ On the Skinning of Gaussian Avatars
Radiance field-based methods have recently been used to reconstruct human avatars, showing that we can significantly downscale the systems needed for creating animated human avatars. Although this progress has been initiated by neural radiance fields, their slow rendering and backward mapping from the observation space to the canonical space have been the main challenges. With Gaussian splatting overcoming both challenges, a new family of approaches has emerged that are faster to train and render, while also straightforward to implement using forward skinning from the canonical to the observation space. However, the linear blend skinning required for the deformation of the Gaussians does not provide valid results for their non-linear rotation properties. To address such artifacts, recent works use mesh properties to rotate the non-linear Gaussian properties or train models to predict corrective offsets. Instead, we propose a weighted rotation blending approach that leverages quaternion averaging. This leads to simpler vertex-based Gaussians that can be efficiently animated and integrated in any engine by only modifying the linear blend skinning technique, and using any Gaussian rasterizer.
☆ No Modality Left Behind: Dynamic Model Generation for Incomplete Medical Data MICCAI2025
In real world clinical environments, training and applying deep learning models on multi-modal medical imaging data often struggles with partially incomplete data. Standard approaches either discard missing samples, require imputation or repurpose dropout learning schemes, limiting robustness and generalizability. To address this, we propose a hypernetwork-based method that dynamically generates task-specific classification models conditioned on the set of available modalities. Instead of training a fixed model, a hypernetwork learns to predict the parameters of a task model adapted to available modalities, enabling training and inference on all samples, regardless of completeness. We compare this approach with (1) models trained only on complete data, (2) state of the art channel dropout methods, and (3) an imputation-based method, using artificially incomplete datasets to systematically analyze robustness to missing modalities. Results demonstrate superior adaptability of our method, outperforming state of the art approaches with an absolute increase in accuracy of up to 8% when trained on a dataset with 25% completeness (75% of training data with missing modalities). By enabling a single model to generalize across all modality configurations, our approach provides an efficient solution for real-world multi-modal medical data analysis.
comment: Accepted at MICCAI2025 ML-CDS Workshop
☆ MixANT: Observation-dependent Memory Propagation for Stochastic Dense Action Anticipation ICCV 2025
We present MixANT, a novel architecture for stochastic long-term dense anticipation of human activities. While recent State Space Models (SSMs) like Mamba have shown promise through input-dependent selectivity on three key parameters, the critical forget-gate ($\textbf{A}$ matrix) controlling temporal memory remains static. We address this limitation by introducing a mixture of experts approach that dynamically selects contextually relevant $\textbf{A}$ matrices based on input features, enhancing representational capacity without sacrificing computational efficiency. Extensive experiments on the 50Salads, Breakfast, and Assembly101 datasets demonstrate that MixANT consistently outperforms state-of-the-art methods across all evaluation settings. Our results highlight the importance of input-dependent forget-gate mechanisms for reliable prediction of human behavior in diverse real-world scenarios.
comment: Accepted to ICCV 2025
☆ In-Vivo Skin 3-D Surface Reconstruction and Wrinkle Depth Estimation using Handheld High Resolution Tactile Sensing
Three-dimensional (3-D) skin surface reconstruction offers promise for objective and quantitative dermatological assessment, but no portable, high-resolution device exists that has been validated and used for depth reconstruction across various body locations. We present a compact 3-D skin reconstruction probe based on GelSight tactile imaging with a custom elastic gel and a learning-based reconstruction algorithm for micron-level wrinkle height estimation. Our probe, integrated into a handheld probe with force sensing for consistent contact, achieves a mean absolute error of 12.55 micron on wrinkle-like test objects. In a study with 15 participants without skin disorders, we provide the first validated wrinkle depth metrics across multiple body regions. We further demonstrate statistically significant reductions in wrinkle height at three locations following over-the-counter moisturizer application. Our work offers a validated tool for clinical and cosmetic skin analysis, with potential applications in diagnosis, treatment monitoring, and skincare efficacy evaluation.
☆ PersonaX: Multimodal Datasets with LLM-Inferred Behavior Traits
Understanding human behavior traits is central to applications in human-computer interaction, computational social science, and personalized AI systems. Such understanding often requires integrating multiple modalities to capture nuanced patterns and relationships. However, existing resources rarely provide datasets that combine behavioral descriptors with complementary modalities such as facial attributes and biographical information. To address this gap, we present PersonaX, a curated collection of multimodal datasets designed to enable comprehensive analysis of public traits across modalities. PersonaX consists of (1) CelebPersona, featuring 9444 public figures from diverse occupations, and (2) AthlePersona, covering 4181 professional athletes across 7 major sports leagues. Each dataset includes behavioral trait assessments inferred by three high-performing large language models, alongside facial imagery and structured biographical features. We analyze PersonaX at two complementary levels. First, we abstract high-level trait scores from text descriptions and apply five statistical independence tests to examine their relationships with other modalities. Second, we introduce a novel causal representation learning (CRL) framework tailored to multimodal and multi-measurement data, providing theoretical identifiability guarantees. Experiments on both synthetic and real-world data demonstrate the effectiveness of our approach. By unifying structured and unstructured analysis, PersonaX establishes a foundation for studying LLM-inferred behavioral traits in conjunction with visual and biographical attributes, advancing multimodal trait analysis and causal reasoning.
☆ GLaVE-Cap: Global-Local Aligned Video Captioning with Vision Expert Integration
Video detailed captioning aims to generate comprehensive video descriptions to facilitate video understanding. Recently, most efforts in the video detailed captioning community have been made towards a local-to-global paradigm, which first generates local captions from video clips and then summarizes them into a global caption. However, we find this paradigm leads to less detailed and contextual-inconsistent captions, which can be attributed to (1) no mechanism to ensure fine-grained captions, and (2) weak interaction between local and global captions. To remedy the above two issues, we propose GLaVE-Cap, a Global-Local aligned framework with Vision Expert integration for Captioning, which consists of two core modules: TrackFusion enables comprehensive local caption generation, by leveraging vision experts to acquire cross-frame visual prompts, coupled with a dual-stream structure; while CaptionBridge establishes a local-global interaction, by using global context to guide local captioning, and adaptively summarizing local captions into a coherent global caption. Besides, we construct GLaVE-Bench, a comprehensive video captioning benchmark featuring 5X more queries per video than existing benchmarks, covering diverse visual dimensions to facilitate reliable evaluation. We further provide a training dataset GLaVE-1.2M containing 16K high-quality fine-grained video captions and 1.2M related question-answer pairs. Extensive experiments on four benchmarks show that our GLaVE-Cap achieves state-of-the-art performance. Besides, the ablation studies and student model analyses further validate the effectiveness of the proposed modules and the contribution of GLaVE-1.2M to the video understanding community. The source code, model weights, benchmark, and dataset will be open-sourced.
☆ Promoting Shape Bias in CNNs: Frequency-Based and Contrastive Regularization for Corruption Robustness
Convolutional Neural Networks (CNNs) excel at image classification but remain vulnerable to common corruptions that humans handle with ease. A key reason for this fragility is their reliance on local texture cues rather than global object shapes -- a stark contrast to human perception. To address this, we propose two complementary regularization strategies designed to encourage shape-biased representations and enhance robustness. The first introduces an auxiliary loss that enforces feature consistency between original and low-frequency filtered inputs, discouraging dependence on high-frequency textures. The second incorporates supervised contrastive learning to structure the feature space around class-consistent, shape-relevant representations. Evaluated on the CIFAR-10-C benchmark, both methods improve corruption robustness without degrading clean accuracy. Our results suggest that loss-level regularization can effectively steer CNNs toward more shape-aware, resilient representations.
comment: 12pages, 4 figures
☆ Introduction to a Low-Cost AI-Powered GUI for Unstained Cell Culture Analysis
This article presents a novel microscopy image analysis framework designed for low-budget labs equipped with a standard CPU desktop. The Python-based program enables cytometric analysis of live, unstained cells in culture through an advanced computer vision and machine learning pipeline. Crucially, the framework operates on label-free data, requiring no manually annotated training data or training phase. It is accessible via a user-friendly, cross-platform GUI that requires no programming skills, while also providing a scripting interface for programmatic control and integration by developers. The end-to-end workflow performs semantic and instance segmentation, feature extraction, analysis, evaluation, and automated report generation. Its modular architecture supports easy maintenance and flexible integration while supporting both single-image and batch processing. Validated on several unstained cell types from the public dataset of livecells, the framework demonstrates superior accuracy and reproducibility compared to contemporary tools like Cellpose and StarDist. Its competitive segmentation speed on a CPU-based platform highlights its significant potential for basic research and clinical applications -- particularly in cell transplantation for personalized medicine and muscle regeneration therapies.
☆ Beyond Instance Consistency: Investigating View Diversity in Self-supervised Learning
Self-supervised learning (SSL) conventionally relies on the instance consistency paradigm, assuming that different views of the same image can be treated as positive pairs. However, this assumption breaks down for non-iconic data, where different views may contain distinct objects or semantic information. In this paper, we investigate the effectiveness of SSL when instance consistency is not guaranteed. Through extensive ablation studies, we demonstrate that SSL can still learn meaningful representations even when positive pairs lack strict instance consistency. Furthermore, our analysis further reveals that increasing view diversity, by enforcing zero overlapping or using smaller crop scales, can enhance downstream performance on classification and dense prediction tasks. However, excessive diversity is found to reduce effectiveness, suggesting an optimal range for view diversity. To quantify this, we adopt the Earth Mover's Distance (EMD) as an estimator to measure mutual information between views, finding that moderate EMD values correlate with improved SSL learning, providing insights for future SSL framework design. We validate our findings across a range of settings, highlighting their robustness and applicability on diverse data sources.
comment: Published in TMLR. Review: https://openreview.net/forum?id=urWCU3YMA0
☆ Dual Band Video Thermography Near Ambient Conditions
Long-wave infrared radiation captured by a thermal camera consists of two components: (a) light from the environment reflected or transmitted by a surface, and (b) light emitted by the surface after undergoing heat transport through the object and exchanging heat with the surrounding environment. Separating these components is essential for understanding object properties such as emissivity, temperature, reflectance and shape. Previous thermography studies often assume that only one component is dominant (e.g., in welding) or that the second component is constant and can be subtracted. However, in near-ambient conditions, which are most relevant to computer vision applications, both components are typically comparable in magnitude and vary over time. We introduce the first method that separates reflected and emitted components of light in videos captured by two thermal cameras with different spectral sensitivities. We derive a dual-band thermal image formation model and develop algorithms to estimate the surface's emissivity and its time-varying temperature while isolating a dynamic background. We quantitatively evaluate our approach using carefully calibrated emissivities for a range of materials and show qualitative results on complex everyday scenes, such as a glass filled with hot liquid and people moving in the background.
☆ Toward Next-generation Medical Vision Backbones: Modeling Finer-grained Long-range Visual Dependency MICCAI 2025
Medical Image Computing (MIC) is a broad research topic covering both pixel-wise (e.g., segmentation, registration) and image-wise (e.g., classification, regression) vision tasks. Effective analysis demands models that capture both global long-range context and local subtle visual characteristics, necessitating fine-grained long-range visual dependency modeling. Compared to Convolutional Neural Networks (CNNs) that are limited by intrinsic locality, transformers excel at long-range modeling; however, due to the high computational loads of self-attention, transformers typically cannot process high-resolution features (e.g., full-scale image features before downsampling or patch embedding) and thus face difficulties in modeling fine-grained dependency among subtle medical image details. Concurrently, Multi-layer Perceptron (MLP)-based visual models are recognized as computation/memory-efficient alternatives in modeling long-range visual dependency but have yet to be widely investigated in the MIC community. This doctoral research advances deep learning-based MIC by investigating effective long-range visual dependency modeling. It first presents innovative use of transformers for both pixel- and image-wise medical vision tasks. The focus then shifts to MLPs, pioneeringly developing MLP-based visual models to capture fine-grained long-range visual dependency in medical images. Extensive experiments confirm the critical role of long-range dependency modeling in MIC and reveal a key finding: MLPs provide feasibility in modeling finer-grained long-range dependency among higher-resolution medical features containing enriched anatomical/pathological details. This finding establishes MLPs as a superior paradigm over transformers/CNNs, consistently enhancing performance across various medical vision tasks and paving the way for next-generation medical vision backbones.
comment: Invited as Long Oral Presentation (Top 8) at MICCAI 2025 Doctoral Consortium
☆ Motion Estimation for Multi-Object Tracking using KalmanNet with Semantic-Independent Encoding
Motion estimation is a crucial component in multi-object tracking (MOT). It predicts the trajectory of objects by analyzing the changes in their positions in consecutive frames of images, reducing tracking failures and identity switches. The Kalman filter (KF) based on the linear constant-velocity model is one of the most commonly used methods in MOT. However, it may yield unsatisfactory results when KF's parameters are mismatched and objects move in non-stationary. In this work, we utilize the learning-aided filter to handle the motion estimation of MOT. In particular, we propose a novel method named Semantic-Independent KalmanNet (SIKNet), which encodes the state vector (the input feature) using a Semantic-Independent Encoder (SIE) by two steps. First, the SIE uses a 1D convolution with a kernel size of 1, which convolves along the dimension of homogeneous-semantic elements across different state vectors to encode independent semantic information. Then it employs a fully-connected layer and a nonlinear activation layer to encode nonlinear and cross-dependency information between heterogeneous-semantic elements. To independently evaluate the performance of the motion estimation module in MOT, we constructed a large-scale semi-simulated dataset from several open-source MOT datasets. Experimental results demonstrate that the proposed SIKNet outperforms the traditional KF and achieves superior robustness and accuracy than existing learning-aided filters. The code is available at (https://github.com/SongJgit/filternet and https://github.com/SongJgit/TBDTracker).
☆ UnLoc: Leveraging Depth Uncertainties for Floorplan Localization
We propose UnLoc, an efficient data-driven solution for sequential camera localization within floorplans. Floorplan data is readily available, long-term persistent, and robust to changes in visual appearance. We address key limitations of recent methods, such as the lack of uncertainty modeling in depth predictions and the necessity for custom depth networks trained for each environment. We introduce a novel probabilistic model that incorporates uncertainty estimation, modeling depth predictions as explicit probability distributions. By leveraging off-the-shelf pre-trained monocular depth models, we eliminate the need to rely on per-environment-trained depth networks, enhancing generalization to unseen spaces. We evaluate UnLoc on large-scale synthetic and real-world datasets, demonstrating significant improvements over existing methods in terms of accuracy and robustness. Notably, we achieve $2.7$ times higher localization recall on long sequences (100 frames) and $16.7$ times higher on short ones (15 frames) than the state of the art on the challenging LaMAR HGE dataset.
☆ Mitigating Hallucinations in Large Vision-Language Models by Self-Injecting Hallucinations
Large Vision-Language Models (LVLMs) suffer from serious hallucination problems, where the model-generated responses are inconsistent with the visual inputs. Existing hallucination mitigation methods are mainly based on preference alignment and require external human annotations or auxiliary models for preference data collection, which increase costs and limit sustainable improvement. To tackle these challenges, we propose Autonomous Preference Alignment via Self-Injection (APASI), a novel and generalizable method that mitigates hallucinations without external dependencies. APASI leverages the target LVLM to self-inject hallucinations into a generated response, creating a pair of responses with varying preference levels. During the self-injection process, the dis-preferred response is generated based on three key observations of hallucinations, ensuring it simulates real hallucination patterns. This fidelity offers an accurate learning signal for hallucination mitigation. Moreover, APASI incorporates an iterative alignment training strategy combined with curriculum learning to periodically update the preference data with increasing challenge, enabling stable and continuous enhancement of the LVLM. Extensive experiments across six benchmarks show that APASI not only effectively mitigates hallucinations for three baseline models but also achieves comparable or even superior performance to alignment-based methods with external dependency, thereby demonstrating its effectiveness and generalization capability. The code is available at https://github.com/davidluciolu/APASI.
comment: emnlp 2025 accepted
☆ ROSGS: Relightable Outdoor Scenes With Gaussian Splatting
Image data captured outdoors often exhibit unbounded scenes and unconstrained, varying lighting conditions, making it challenging to decompose them into geometry, reflectance, and illumination. Recent works have focused on achieving this decomposition using Neural Radiance Fields (NeRF) or the 3D Gaussian Splatting (3DGS) representation but remain hindered by two key limitations: the high computational overhead associated with neural networks of NeRF and the use of low-frequency lighting representations, which often result in inefficient rendering and suboptimal relighting accuracy. We propose ROSGS, a two-stage pipeline designed to efficiently reconstruct relightable outdoor scenes using the Gaussian Splatting representation. By leveraging monocular normal priors, ROSGS first reconstructs the scene's geometry with the compact 2D Gaussian Splatting (2DGS) representation, providing an efficient and accurate geometric foundation. Building upon this reconstructed geometry, ROSGS then decomposes the scene's texture and lighting through a hybrid lighting model. This model effectively represents typical outdoor lighting by employing a spherical Gaussian function to capture the directional, high-frequency components of sunlight, while learning a radiance transfer function via Spherical Harmonic coefficients to model the remaining low-frequency skylight comprehensively. Both quantitative metrics and qualitative comparisons demonstrate that ROSGS achieves state-of-the-art performance in relighting outdoor scenes and highlight its ability to deliver superior relighting accuracy and rendering efficiency.
☆ Synthetic Dataset Evaluation Based on Generalized Cross Validation
With the rapid advancement of synthetic dataset generation techniques, evaluating the quality of synthetic data has become a critical research focus. Robust evaluation not only drives innovations in data generation methods but also guides researchers in optimizing the utilization of these synthetic resources. However, current evaluation studies for synthetic datasets remain limited, lacking a universally accepted standard framework. To address this, this paper proposes a novel evaluation framework integrating generalized cross-validation experiments and domain transfer learning principles, enabling generalizable and comparable assessments of synthetic dataset quality. The framework involves training task-specific models (e.g., YOLOv5s) on both synthetic datasets and multiple real-world benchmarks (e.g., KITTI, BDD100K), forming a cross-performance matrix. Following normalization, a Generalized Cross-Validation (GCV) Matrix is constructed to quantify domain transferability. The framework introduces two key metrics. One measures the simulation quality by quantifying the similarity between synthetic data and real-world datasets, while another evaluates the transfer quality by assessing the diversity and coverage of synthetic data across various real-world scenarios. Experimental validation on Virtual KITTI demonstrates the effectiveness of our proposed framework and metrics in assessing synthetic data fidelity. This scalable and quantifiable evaluation solution overcomes traditional limitations, providing a principled approach to guide synthetic dataset optimization in artificial intelligence research.
comment: Accepted for publication in IST 2025. Official IEEE Xplore entry will be available once published
☆ SelectMix: Enhancing Label Noise Robustness through Targeted Sample Mixing
Deep neural networks tend to memorize noisy labels, severely degrading their generalization performance. Although Mixup has demonstrated effectiveness in improving generalization and robustness, existing Mixup-based methods typically perform indiscriminate mixing without principled guidance on sample selection and mixing strategy, inadvertently propagating noisy supervision. To overcome these limitations, we propose SelectMix, a confidence-guided mixing framework explicitly tailored for noisy labels. SelectMix first identifies potentially noisy or ambiguous samples through confidence based mismatch analysis using K-fold cross-validation, then selectively blends identified uncertain samples with confidently predicted peers from their potential classes. Furthermore, SelectMix employs soft labels derived from all classes involved in the mixing process, ensuring the labels accurately represent the composition of the mixed samples, thus aligning supervision signals closely with the actual mixed inputs. Through extensive theoretical analysis and empirical evaluations on multiple synthetic (MNIST, Fashion-MNIST, CIFAR-10, CIFAR-100) and real-world benchmark datasets (CIFAR-N, MNIST and Clothing1M), we demonstrate that SelectMix consistently outperforms strong baseline methods, validating its effectiveness and robustness in learning with noisy labels.
☆ Cross-Domain Attribute Alignment with CLIP: A Rehearsal-Free Approach for Class-Incremental Unsupervised Domain Adaptation ACM MM 2025
Class-Incremental Unsupervised Domain Adaptation (CI-UDA) aims to adapt a model from a labeled source domain to an unlabeled target domain, where the sets of potential target classes appearing at different time steps are disjoint and are subsets of the source classes. The key to solving this problem lies in avoiding catastrophic forgetting of knowledge about previous target classes during continuously mitigating the domain shift. Most previous works cumbersomely combine two technical components. On one hand, they need to store and utilize rehearsal target sample from previous time steps to avoid catastrophic forgetting; on the other hand, they perform alignment only between classes shared across domains at each time step. Consequently, the memory will continuously increase and the asymmetric alignment may inevitably result in knowledge forgetting. In this paper, we propose to mine and preserve domain-invariant and class-agnostic knowledge to facilitate the CI-UDA task. Specifically, via using CLIP, we extract the class-agnostic properties which we name as "attribute". In our framework, we learn a "key-value" pair to represent an attribute, where the key corresponds to the visual prototype and the value is the textual prompt. We maintain two attribute dictionaries, each corresponding to a different domain. Then we perform attribute alignment across domains to mitigate the domain shift, via encouraging visual attention consistency and prediction consistency. Through attribute modeling and cross-domain alignment, we effectively reduce catastrophic knowledge forgetting while mitigating the domain shift, in a rehearsal-free way. Experiments on three CI-UDA benchmarks demonstrate that our method outperforms previous state-of-the-art methods and effectively alleviates catastrophic forgetting. Code is available at https://github.com/RyunMi/VisTA.
comment: Accepted to ACM MM 2025
☆ Realistic Environmental Injection Attacks on GUI Agents
GUI agents built on LVLMs are increasingly used to interact with websites. However, their exposure to open-world content makes them vulnerable to Environmental Injection Attacks (EIAs) that hijack agent behavior via webpage elements. Many recent studies assume the attacker to be a regular user who can only upload a single trigger image, which is more realistic than earlier assumptions of website-level administrative control. However, these works still fall short of realism: (1) the trigger's position and surrounding context remain largely fixed between training and testing, failing to capture the dynamic nature of real webpages and (2) the trigger often occupies an unrealistically large area, whereas real-world images are typically small. To better reflect real-world scenarios, we introduce a more realistic threat model where the attacker is a regular user and the trigger image is small and embedded within a dynamically changing environment. As a result, existing attacks prove largely ineffective under this threat model. To better expose the vulnerabilities of GUI agents, we propose Chameleon, an attack framework with two main novelties. The first is LLM-Driven Environment Simulation, which automatically generates diverse and high-fidelity webpage simulations. The second is Attention Black Hole, which transforms attention weights into explicit supervisory signals that guide the agent's focus toward the trigger region. We evaluate Chameleon on 6 realistic websites and 4 representative LVLM-powered GUI agents, where it significantly outperforms existing methods. Ablation studies confirm that both novelties are critical to performance. Our findings reveal underexplored vulnerabilities in modern GUI agents and establish a robust foundation for future research on defense in open-world GUI agent systems. The code is publicly available at https://github.com/zhangyitonggg/attack2gui.
☆ Contextualized Multimodal Lifelong Person Re-Identification in Hybrid Clothing States
Person Re-Identification (ReID) has several challenges in real-world surveillance systems due to clothing changes (CCReID) and the need for maintaining continual learning (LReID). Previous existing methods either develop models specifically for one application, which is mostly a same-cloth (SC) setting or treat CCReID as its own separate sub-problem. In this work, we will introduce the LReID-Hybrid task with the goal of developing a model to achieve both SC and CC while learning in a continual setting. Mismatched representations and forgetting from one task to the next are significant issues, we address this with CMLReID, a CLIP-based framework composed of two novel tasks: (1) Context-Aware Semantic Prompt (CASP) that generates adaptive prompts, and also incorporates context to align richly multi-grained visual cues with semantic text space; and (2) Adaptive Knowledge Fusion and Projection (AKFP) which produces robust SC/CC prototypes through the use of a dual-path learner that aligns features with our Clothing-State-Aware Projection Loss. Experiments performed on a wide range of datasets and illustrate that CMLReID outperforms all state-of-the-art methods with strong robustness and generalization despite clothing variations and a sophisticated process of sequential learning.
☆ MIS-LSTM: Multichannel Image-Sequence LSTM for Sleep Quality and Stress Prediction
This paper presents MIS-LSTM, a hybrid framework that joins CNN encoders with an LSTM sequence model for sleep quality and stress prediction at the day level from multimodal lifelog data. Continuous sensor streams are first partitioned into N-hour blocks and rendered as multi-channel images, while sparse discrete events are encoded with a dedicated 1D-CNN. A Convolutional Block Attention Module fuses the two modalities into refined block embeddings, which an LSTM then aggregates to capture long-range temporal dependencies. To further boost robustness, we introduce UALRE, an uncertainty-aware ensemble that overrides lowconfidence majority votes with high-confidence individual predictions. Experiments on the 2025 ETRI Lifelog Challenge dataset show that Our base MISLSTM achieves Macro-F1 0.615; with the UALRE ensemble, the score improves to 0.647, outperforming strong LSTM, 1D-CNN, and CNN baselines. Ablations confirm (i) the superiority of multi-channel over stacked-vertical imaging, (ii) the benefit of a 4-hour block granularity, and (iii) the efficacy of modality-specific discrete encoding.
comment: ICTC 2025
☆ ANROT-HELANet: Adverserially and Naturally Robust Attention-Based Aggregation Network via The Hellinger Distance for Few-Shot Classification
Few-Shot Learning (FSL), which involves learning to generalize using only a few data samples, has demonstrated promising and superior performances to ordinary CNN methods. While Bayesian based estimation approaches using Kullback-Leibler (KL) divergence have shown improvements, they remain vulnerable to adversarial attacks and natural noises. We introduce ANROT-HELANet, an Adversarially and Naturally RObusT Hellinger Aggregation Network that significantly advances the state-of-the-art in FSL robustness and performance. Our approach implements an adversarially and naturally robust Hellinger distance-based feature class aggregation scheme, demonstrating resilience to adversarial perturbations up to $\epsilon=0.30$ and Gaussian noise up to $\sigma=0.30$. The network achieves substantial improvements across benchmark datasets, including gains of 1.20\% and 1.40\% for 1-shot and 5-shot scenarios on miniImageNet respectively. We introduce a novel Hellinger Similarity contrastive loss function that generalizes cosine similarity contrastive loss for variational few-shot inference scenarios. Our approach also achieves superior image reconstruction quality with a FID score of 2.75, outperforming traditional VAE (3.43) and WAE (3.38) approaches. Extensive experiments conducted on four few-shot benchmarked datasets verify that ANROT-HELANet's combination of Hellinger distance-based feature aggregation, attention mechanisms, and our novel loss function establishes new state-of-the-art performance while maintaining robustness against both adversarial and natural perturbations. Our code repository will be available at https://github.com/GreedYLearner1146/ANROT-HELANet/tree/main.
comment: Preprint version. The manuscript has been submitted to a journal. All changes will be transferred to the final version if accepted. Also an erratum: In Figure 10 and 11, the $\epsilon = 0.005$ value should be $\epsilon = 0.05$
☆ CCoMAML: Efficient Cattle Identification Using Cooperative Model-Agnostic Meta-Learning
Cattle identification is critical for efficient livestock farming management, currently reliant on radio-frequency identification (RFID) ear tags. However, RFID-based systems are prone to failure due to loss, damage, tampering, and vulnerability to external attacks. As a robust alternative, biometric identification using cattle muzzle patterns similar to human fingerprints has emerged as a promising solution. Deep learning techniques have demonstrated success in leveraging these unique patterns for accurate identification. But deep learning models face significant challenges, including limited data availability, disruptions during data collection, and dynamic herd compositions that require frequent model retraining. To address these limitations, this paper proposes a novel few-shot learning framework for real-time cattle identification using Cooperative Model-Agnostic Meta-Learning (CCoMAML) with Multi-Head Attention Feature Fusion (MHAFF) as a feature extractor model. This model offers great model adaptability to new data through efficient learning from few data samples without retraining. The proposed approach has been rigorously evaluated against current state-of-the-art few-shot learning techniques applied in cattle identification. Comprehensive experimental results demonstrate that our proposed CCoMAML with MHAFF has superior cattle identification performance with 98.46% and 97.91% F1 scores.
☆ Geometrically Constrained and Token-Based Probabilistic Spatial Transformers
Fine-grained visual classification (FGVC) remains highly sensitive to geometric variability, where objects appear under arbitrary orientations, scales, and perspective distortions. While equivariant architectures address this issue, they typically require substantial computational resources and restrict the hypothesis space. We revisit Spatial Transformer Networks (STNs) as a canonicalization tool for transformer-based vision pipelines, emphasizing their flexibility, backbone-agnostic nature, and lack of architectural constraints. We propose a probabilistic, component-wise extension that improves robustness. Specifically, we decompose affine transformations into rotation, scaling, and shearing, and regress each component under geometric constraints using a shared localization encoder. To capture uncertainty, we model each component with a Gaussian variational posterior and perform sampling-based canonicalization during inference.A novel component-wise alignment loss leverages augmentation parameters to guide spatial alignment. Experiments on challenging moth classification benchmarks demonstrate that our method consistently improves robustness compared to other STNs.
☆ Beyond Sliders: Mastering the Art of Diffusion-based Image Manipulation
In the realm of image generation, the quest for realism and customization has never been more pressing. While existing methods like concept sliders have made strides, they often falter when it comes to no-AIGC images, particularly images captured in real world settings. To bridge this gap, we introduce Beyond Sliders, an innovative framework that integrates GANs and diffusion models to facilitate sophisticated image manipulation across diverse image categories. Improved upon concept sliders, our method refines the image through fine grained guidance both textual and visual in an adversarial manner, leading to a marked enhancement in image quality and realism. Extensive experimental validation confirms the robustness and versatility of Beyond Sliders across a spectrum of applications.
comment: 6 pages, 6 figures
☆ Scaling Up Forest Vision with Synthetic Data
Accurate tree segmentation is a key step in extracting individual tree metrics from forest laser scans, and is essential to understanding ecosystem functions in carbon cycling and beyond. Over the past decade, tree segmentation algorithms have advanced rapidly due to developments in AI. However existing, public, 3D forest datasets are not large enough to build robust tree segmentation systems. Motivated by the success of synthetic data in other domains such as self-driving, we investigate whether similar approaches can help with tree segmentation. In place of expensive field data collection and annotation, we use synthetic data during pretraining, and then require only minimal, real forest plot annotation for fine-tuning. We have developed a new synthetic data generation pipeline to do this for forest vision tasks, integrating advances in game-engines with physics-based LiDAR simulation. As a result, we have produced a comprehensive, diverse, annotated 3D forest dataset on an unprecedented scale. Extensive experiments with a state-of-the-art tree segmentation algorithm and a popular real dataset show that our synthetic data can substantially reduce the need for labelled real data. After fine-tuning on just a single, real, forest plot of less than 0.1 hectare, the pretrained model achieves segmentations that are competitive with a model trained on the full scale real data. We have also identified critical factors for successful use of synthetic data: physics, diversity, and scale, paving the way for more robust 3D forest vision systems in the future. Our data generation pipeline and the resulting dataset are available at https://github.com/yihshe/CAMP3D.git.
☆ DreamNav: A Trajectory-Based Imaginative Framework for Zero-Shot Vision-and-Language Navigation
Vision-and-Language Navigation in Continuous Environments (VLN-CE), which links language instructions to perception and control in the real world, is a core capability of embodied robots. Recently, large-scale pretrained foundation models have been leveraged as shared priors for perception, reasoning, and action, enabling zero-shot VLN without task-specific training. However, existing zero-shot VLN methods depend on costly perception and passive scene understanding, collapsing control to point-level choices. As a result, they are expensive to deploy, misaligned in action semantics, and short-sighted in planning. To address these issues, we present DreamNav that focuses on the following three aspects: (1) for reducing sensory cost, our EgoView Corrector aligns viewpoints and stabilizes egocentric perception; (2) instead of point-level actions, our Trajectory Predictor favors global trajectory-level planning to better align with instruction semantics; and (3) to enable anticipatory and long-horizon planning, we propose an Imagination Predictor to endow the agent with proactive thinking capability. On VLN-CE and real-world tests, DreamNav sets a new zero-shot state-of-the-art (SOTA), outperforming the strongest egocentric baseline with extra information by up to 7.49\% and 18.15\% in terms of SR and SPL metrics. To our knowledge, this is the first zero-shot VLN method to unify trajectory-level planning and active imagination while using only egocentric inputs.
☆ The Impact of Skin Tone Label Granularity on the Performance and Fairness of AI Based Dermatology Image Classification Models
Artificial intelligence (AI) models to automatically classify skin lesions from dermatology images have shown promising performance but also susceptibility to bias by skin tone. The most common way of representing skin tone information is the Fitzpatrick Skin Tone (FST) scale. The FST scale has been criticised for having greater granularity in its skin tone categories for lighter-skinned subjects. This paper conducts an investigation of the impact (on performance and bias) on AI classification models of granularity in the FST scale. By training multiple AI models to classify benign vs. malignant lesions using FST-specific data of differing granularity, we show that: (i) when training models using FST-specific data based on three groups (FST 1/2, 3/4 and 5/6), performance is generally better for models trained on FST-specific data compared to a general model trained on FST-balanced data; (ii) reducing the granularity of FST scale information (from 1/2 and 3/4 to 1/2/3/4) can have a detrimental effect on performance. Our results highlight the importance of the granularity of FST groups when training lesion classification models. Given the question marks over possible human biases in the choice of categories in the FST scale, this paper provides evidence for a move away from the FST scale in fair AI research and a transition to an alternative scale that better represents the diversity of human skin tones.
☆ StegOT: Trade-offs in Steganography via Optimal Transport
Image hiding is often referred to as steganography, which aims to hide a secret image in a cover image of the same resolution. Many steganography models are based on genera-tive adversarial networks (GANs) and variational autoencoders (VAEs). However, most existing models suffer from mode collapse. Mode collapse will lead to an information imbalance between the cover and secret images in the stego image and further affect the subsequent extraction. To address these challenges, this paper proposes StegOT, an autoencoder-based steganography model incorporating optimal transport theory. We designed the multiple channel optimal transport (MCOT) module to transform the feature distribution, which exhibits multiple peaks, into a single peak to achieve the trade-off of information. Experiments demonstrate that we not only achieve a trade-off between the cover and secret images but also enhance the quality of both the stego and recovery images. The source code will be released on https://github.com/Rss1124/StegOT.
☆ SPHERE: Semantic-PHysical Engaged REpresentation for 3D Semantic Scene Completion
Camera-based 3D Semantic Scene Completion (SSC) is a critical task in autonomous driving systems, assessing voxel-level geometry and semantics for holistic scene perception. While existing voxel-based and plane-based SSC methods have achieved considerable progress, they struggle to capture physical regularities for realistic geometric details. On the other hand, neural reconstruction methods like NeRF and 3DGS demonstrate superior physical awareness, but suffer from high computational cost and slow convergence when handling large-scale, complex autonomous driving scenes, leading to inferior semantic accuracy. To address these issues, we propose the Semantic-PHysical Engaged REpresentation (SPHERE) for camera-based SSC, which integrates voxel and Gaussian representations for joint exploitation of semantic and physical information. First, the Semantic-guided Gaussian Initialization (SGI) module leverages dual-branch 3D scene representations to locate focal voxels as anchors to guide efficient Gaussian initialization. Then, the Physical-aware Harmonics Enhancement (PHE) module incorporates semantic spherical harmonics to model physical-aware contextual details and promote semantic-geometry consistency through focal distribution alignment, generating SSC results with realistic details. Extensive experiments and analyses on the popular SemanticKITTI and SSCBench-KITTI-360 benchmarks validate the effectiveness of SPHERE. The code is available at https://github.com/PKU-ICST-MIPL/SPHERE_ACMMM2025.
comment: 10 pages, 6 figures
☆ Multispectral-NeRF:a multispectral modeling approach based on neural radiance fields
3D reconstruction technology generates three-dimensional representations of real-world objects, scenes, or environments using sensor data such as 2D images, with extensive applications in robotics, autonomous vehicles, and virtual reality systems. Traditional 3D reconstruction techniques based on 2D images typically relies on RGB spectral information. With advances in sensor technology, additional spectral bands beyond RGB have been increasingly incorporated into 3D reconstruction workflows. Existing methods that integrate these expanded spectral data often suffer from expensive scheme prices, low accuracy and poor geometric features. Three - dimensional reconstruction based on NeRF can effectively address the various issues in current multispectral 3D reconstruction methods, producing high - precision and high - quality reconstruction results. However, currently, NeRF and some improved models such as NeRFacto are trained on three - band data and cannot take into account the multi - band information. To address this problem, we propose Multispectral-NeRF, an enhanced neural architecture derived from NeRF that can effectively integrates multispectral information. Our technical contributions comprise threefold modifications: Expanding hidden layer dimensionality to accommodate 6-band spectral inputs; Redesigning residual functions to optimize spectral discrepancy calculations between reconstructed and reference images; Adapting data compression modules to address the increased bit-depth requirements of multispectral imagery. Experimental results confirm that Multispectral-NeRF successfully processes multi-band spectral features while accurately preserving the original scenes' spectral characteristics.
☆ Traffic-MLLM: A Spatio-Temporal MLLM with Retrieval-Augmented Generation for Causal Inference in Traffic
As intelligent transportation systems advance, traffic video understanding plays an increasingly pivotal role in comprehensive scene perception and causal analysis. Yet, existing approaches face notable challenges in accurately modeling spatiotemporal causality and integrating domain-specific knowledge, limiting their effectiveness in complex scenarios. To address these limitations, we propose Traffic-MLLM, a multimodal large language model tailored for fine-grained traffic analysis. Built on the Qwen2.5-VL backbone, our model leverages high-quality traffic-specific multimodal datasets and uses Low-Rank Adaptation (LoRA) for lightweight fine-tuning, significantly enhancing its capacity to model continuous spatiotemporal features in video sequences. Furthermore, we introduce an innovative knowledge prompting module fusing Chain-of-Thought (CoT) reasoning with Retrieval-Augmented Generation (RAG), enabling precise injection of detailed traffic regulations and domain knowledge into the inference process. This design markedly boosts the model's logical reasoning and knowledge adaptation capabilities. Experimental results on TrafficQA and DriveQA benchmarks show Traffic-MLLM achieves state-of-the-art performance, validating its superior ability to process multimodal traffic data. It also exhibits remarkable zero-shot reasoning and cross-scenario generalization capabilities.
☆ No Mesh, No Problem: Estimating Coral Volume and Surface from Sparse Multi-View Images
Effective reef monitoring requires the quantification of coral growth via accurate volumetric and surface area estimates, which is a challenging task due to the complex morphology of corals. We propose a novel, lightweight, and scalable learning framework that addresses this challenge by predicting the 3D volume and surface area of coral-like objects from 2D multi-view RGB images. Our approach utilizes a pre-trained module (VGGT) to extract dense point maps from each view; these maps are merged into a unified point cloud and enriched with per-view confidence scores. The resulting cloud is fed to two parallel DGCNN decoder heads, which jointly output the volume and the surface area of the coral, as well as their corresponding confidence estimate. To enhance prediction stability and provide uncertainty estimates, we introduce a composite loss function based on Gaussian negative log-likelihood in both real and log domains. Our method achieves competitive accuracy and generalizes well to unseen morphologies. This framework paves the way for efficient and scalable coral geometry estimation directly from a sparse set of images, with potential applications in coral growth analysis and reef monitoring.
☆ ManiVID-3D: Generalizable View-Invariant Reinforcement Learning for Robotic Manipulation via Disentangled 3D Representations
Deploying visual reinforcement learning (RL) policies in real-world manipulation is often hindered by camera viewpoint changes. A policy trained from a fixed front-facing camera may fail when the camera is shifted--an unavoidable situation in real-world settings where sensor placement is hard to manage appropriately. Existing methods often rely on precise camera calibration or struggle with large perspective changes. To address these limitations, we propose ManiVID-3D, a novel 3D RL architecture designed for robotic manipulation, which learns view-invariant representations through self-supervised disentangled feature learning. The framework incorporates ViewNet, a lightweight yet effective module that automatically aligns point cloud observations from arbitrary viewpoints into a unified spatial coordinate system without the need for extrinsic calibration. Additionally, we develop an efficient GPU-accelerated batch rendering module capable of processing over 5000 frames per second, enabling large-scale training for 3D visual RL at unprecedented speeds. Extensive evaluation across 10 simulated and 5 real-world tasks demonstrates that our approach achieves a 44.7% higher success rate than state-of-the-art methods under viewpoint variations while using 80% fewer parameters. The system's robustness to severe perspective changes and strong sim-to-real performance highlight the effectiveness of learning geometrically consistent representations for scalable robotic manipulation in unstructured environments. Our project website can be found in https://zheng-joe-lee.github.io/manivid3d/.
comment: 8 pages, 7 figures
☆ SVR-GS: Spatially Variant Regularization for Probabilistic Masks in 3D Gaussian Splatting
3D Gaussian Splatting (3DGS) enables fast, high-quality novel view synthesis but typically relies on densification followed by pruning to optimize the number of Gaussians. Existing mask-based pruning, such as MaskGS, regularizes the global mean of the mask, which is misaligned with the local per-pixel (per-ray) reconstruction loss that determines image quality along individual camera rays. This paper introduces SVR-GS, a spatially variant regularizer that renders a per-pixel spatial mask from each Gaussian's effective contribution along the ray, thereby applying sparsity pressure where it matters: on low-importance Gaussians. We explore three spatial-mask aggregation strategies, implement them in CUDA, and conduct a gradient analysis to motivate our final design. Extensive experiments on Tanks\&Temples, Deep Blending, and Mip-NeRF360 datasets demonstrate that, on average across the three datasets, the proposed SVR-GS reduces the number of Gaussians by 1.79\(\times\) compared to MaskGS and 5.63\(\times\) compared to 3DGS, while incurring only 0.50 dB and 0.40 dB PSNR drops, respectively. These gains translate into significantly smaller, faster, and more memory-efficient models, making them well-suited for real-time applications such as robotics, AR/VR, and mobile perception.
☆ WildSmoke: Ready-to-Use Dynamic 3D Smoke Assets from a Single Video in the Wild
We propose a pipeline to extract and reconstruct dynamic 3D smoke assets from a single in-the-wild video, and further integrate interactive simulation for smoke design and editing. Recent developments in 3D vision have significantly improved reconstructing and rendering fluid dynamics, supporting realistic and temporally consistent view synthesis. However, current fluid reconstructions rely heavily on carefully controlled clean lab environments, whereas real-world videos captured in the wild are largely underexplored. We pinpoint three key challenges of reconstructing smoke in real-world videos and design targeted techniques, including smoke extraction with background removal, initialization of smoke particles and camera poses, and inferring multi-view videos. Our method not only outperforms previous reconstruction and generation methods with high-quality smoke reconstructions (+2.22 average PSNR on wild videos), but also enables diverse and realistic editing of fluid dynamics by simulating our smoke assets. We provide our models, data, and 4D smoke assets at [https://autumnyq.github.io/WildSmoke](https://autumnyq.github.io/WildSmoke).
☆ UltraUPConvNet: A UPerNet- and ConvNeXt-Based Multi-Task Network for Ultrasound Tissue Segmentation and Disease Prediction
Ultrasound imaging is widely used in clinical practice due to its cost-effectiveness, mobility, and safety. However, current AI research often treats disease prediction and tissue segmentation as two separate tasks and their model requires substantial computational overhead. In such a situation, we introduce UltraUPConvNet, a computationally efficient universal framework designed for both ultrasound image classification and segmentation. Trained on a large-scale dataset containing more than 9,700 annotations across seven different anatomical regions, our model achieves state-of-the-art performance on certain datasets with lower computational overhead. Our model weights and codes are available at https://github.com/yyxl123/UltraUPConvNet
comment: 8 pages
☆ Filling the Gaps: A Multitask Hybrid Multiscale Generative Framework for Missing Modality in Remote Sensing Semantic Segmentation
Multimodal learning has shown significant performance boost compared to ordinary unimodal models across various domains. However, in real-world scenarios, multimodal signals are susceptible to missing because of sensor failures and adverse weather conditions, which drastically deteriorates models' operation and performance. Generative models such as AutoEncoder (AE) and Generative Adversarial Network (GAN) are intuitive solutions aiming to reconstruct missing modality from available ones. Yet, their efficacy in remote sensing semantic segmentation remains underexplored. In this paper, we first examine the limitations of existing generative approaches in handling the heterogeneity of multimodal remote sensing data. They inadequately capture semantic context in complex scenes with large intra-class and small inter-class variation. In addition, traditional generative models are susceptible to heavy dependence on the dominant modality, introducing bias that affects model robustness under missing modality conditions. To tackle these limitations, we propose a novel Generative-Enhanced MultiModal learning Network (GEMMNet) with three key components: (1) Hybrid Feature Extractor (HyFEx) to effectively learn modality-specific representations, (2) Hybrid Fusion with Multiscale Awareness (HyFMA) to capture modality-synergistic semantic context across scales and (3) Complementary Loss (CoLoss) scheme to alleviate the inherent bias by encouraging consistency across modalities and tasks. Our method, GEMMNet, outperforms both generative baselines AE, cGAN (conditional GAN), and state-of-the-art non-generative approaches - mmformer and shaspec - on two challenging semantic segmentation remote sensing datasets (Vaihingen and Potsdam). Source code is made available.
comment: Accepted to DICTA 2025
♻ ☆ Evaluating Representational Similarity Measures from the Lens of Functional Correspondence
Neuroscience and artificial intelligence (AI) both face the challenge of interpreting high-dimensional neural data, where the comparative analysis of such data is crucial for revealing shared mechanisms and differences between these complex systems. Despite the widespread use of representational comparisons and the abundance classes of comparison methods, a critical question remains: which metrics are most suitable for these comparisons? While some studies evaluate metrics based on their ability to differentiate models of different origins or constructions (e.g., various architectures), another approach is to assess how well they distinguish models that exhibit distinct behaviors. To investigate this, we examine the degree of alignment between various representational similarity measures and behavioral outcomes, employing group statistics and a comprehensive suite of behavioral metrics for comparison. In our evaluation of eight commonly used representational similarity metrics in the visual domain -- spanning alignment-based, Canonical Correlation Analysis (CCA)-based, inner product kernel-based, and nearest-neighbor methods -- we found that metrics like linear Centered Kernel Alignment (CKA) and Procrustes distance, which emphasize the overall geometric structure or shape of representations, excelled in differentiating trained from untrained models and aligning with behavioral measures, whereas metrics such as linear predictivity, commonly used in neuroscience, demonstrated only moderate alignment with behavior. These insights are crucial for selecting metrics that emphasize behaviorally meaningful comparisons in NeuroAI research.
comment: Published in CCN 2025 Proceedings (Talk & Poster), May 14, 2025
♻ ☆ STRICT: Stress Test of Rendering Images Containing Text EMNLP 2025
While diffusion models have revolutionized text-to-image generation with their ability to synthesize realistic and diverse scenes, they continue to struggle to generate consistent and legible text within images. This shortcoming is commonly attributed to the locality bias inherent in diffusion-based generation, which limits their ability to model long-range spatial dependencies. In this paper, we introduce $\textbf{STRICT}$, a benchmark designed to systematically stress-test the ability of diffusion models to render coherent and instruction-aligned text in images. Our benchmark evaluates models across multiple dimensions: (1) the maximum length of readable text that can be generated; (2) the correctness and legibility of the generated text, and (3) the ratio of not following instructions for generating text. We evaluate several state-of-the-art models, including proprietary and open-source variants, and reveal persistent limitations in long-range consistency and instruction-following capabilities. Our findings provide insights into architectural bottlenecks and motivate future research directions in multimodal generative modeling. We release our entire evaluation pipeline at https://github.com/tianyu-z/STRICT-Bench.
comment: Accepted as a main conference paper at EMNLP 2025
♻ ☆ An End-to-End Depth-Based Pipeline for Selfie Image Rectification
Portraits or selfie images taken from a close distance typically suffer from perspective distortion. In this paper, we propose an end-to-end deep learning-based rectification pipeline to mitigate the effects of perspective distortion. We learn to predict the facial depth by training a deep CNN. The estimated depth is utilized to adjust the camera-to-subject distance by moving the camera farther, increasing the camera focal length, and reprojecting the 3D image features to the new perspective. The reprojected features are then fed to an inpainting module to fill in the missing pixels. We leverage a differentiable renderer to enable end-to-end training of our depth estimation and feature extraction nets to improve the rectified outputs. To boost the results of the inpainting module, we incorporate an auxiliary module to predict the horizontal movement of the camera which decreases the area that requires hallucination of challenging face parts such as ears. Unlike previous works, we process the full-frame input image at once without cropping the subject's face and processing it separately from the rest of the body, eliminating the need for complex post-processing steps to attach the face back to the subject's body. To train our network, we utilize the popular game engine Unreal Engine to generate a large synthetic face dataset containing various subjects, head poses, expressions, eyewear, clothes, and lighting. Quantitative and qualitative results show that our rectification pipeline outperforms previous methods, and produces comparable results with a time-consuming 3D GAN-based method while being more than 260 times faster.
comment: Accepted at IEEE TPAMI
♻ ☆ Improvement of Human-Object Interaction Action Recognition Using Scene Information and Multi-Task Learning Approach
Recent graph convolutional neural networks (GCNs) have shown high performance in the field of human action recognition by using human skeleton poses. However, it fails to detect human-object interaction cases successfully due to the lack of effective representation of the scene information and appropriate learning architectures. In this context, we propose a methodology to utilize human action recognition performance by considering fixed object information in the environment and following a multi-task learning approach. In order to evaluate the proposed method, we collected real data from public environments and prepared our data set, which includes interaction classes of hands-on fixed objects (e.g., ATM ticketing machines, check-in/out machines, etc.) and non-interaction classes of walking and standing. The multi-task learning approach, along with interaction area information, succeeds in recognizing the studied interaction and non-interaction actions with an accuracy of 99.25%, outperforming the accuracy of the base model using only human skeleton poses by 2.75%.
♻ ☆ Improved Classification of Nitrogen Stress Severity in Plants Under Combined Stress Conditions Using Spatio-Temporal Deep Learning Framework
Plants in their natural habitats endure an array of interacting stresses, both biotic and abiotic, that rarely occur in isolation. Nutrient stress-particularly nitrogen deficiency-becomes even more critical when compounded with drought and weed competition, making it increasingly difficult to distinguish and address its effects. Early detection of nitrogen stress is therefore crucial for protecting plant health and implementing effective management strategies. This study proposes a novel deep learning framework to accurately classify nitrogen stress severity in a combined stress environment. Our model uses a unique blend of four imaging modalities-RGB, multispectral, and two infrared wavelengths-to capture a wide range of physiological plant responses from canopy images. These images, provided as time-series data, document plant health across three levels of nitrogen availability (low, medium, and high) under varying water stress and weed pressures. The core of our approach is a spatio-temporal deep learning pipeline that merges a Convolutional Neural Network (CNN) for extracting spatial features from images with a Long Short-Term Memory (LSTM) network to capture temporal dependencies. We also devised and evaluated a spatial-only CNN pipeline for comparison. Our CNN-LSTM pipeline achieved an impressive accuracy of 98%, impressively surpassing the spatial-only model's 80.45% and other previously reported machine learning method's 76%. These results bring actionable insights based on the power of our CNN-LSTM approach in effectively capturing the subtle and complex interactions between nitrogen deficiency, water stress, and weed pressure. This robust platform offers a promising tool for the timely and proactive identification of nitrogen stress severity, enabling better crop management and improved plant health.
comment: 13 pages, 8 figures, 7 Tables
♻ ☆ GISE-TTT:A Framework for Global InformationSegmentation and Enhancement
This paper addresses the challenge of capturing global temporaldependencies in long video sequences for Video Object Segmentation (VOS). Existing architectures often fail to effectively model these dependencies acrossextended temporal horizons. To overcome this limitation, we introduce GISE-TTT, anovel architecture that integrates Temporal Transformer (TTT) layers intotransformer-based frameworks through a co-designed hierarchical approach.The TTTlayer systematically condenses historical temporal information into hidden states thatencode globally coherent contextual representations. By leveraging multi-stagecontextual aggregation through hierarchical concatenation, our frameworkprogressively refines spatiotemporal dependencies across network layers. This designrepresents the first systematic empirical evidence that distributing global informationacross multiple network layers is critical for optimal dependency utilization in videosegmentation tasks.Ablation studies demonstrate that incorporating TTT modules athigh-level feature stages significantly enhances global modeling capabilities, therebyimproving the network's ability to capture long-range temporal relationships. Extensive experiments on DAVIS 2017 show that GISE-TTT achieves a 3.2%improvement in segmentation accuracy over the baseline model, providingcomprehensive evidence that global information should be strategically leveragedthroughout the network architecture.The code will be made available at:https://github.com/uuool/GISE-TTT.
comment: The manuscript requires further improvement
♻ ☆ ResWCAE: Biometric Pattern Image Denoising Using Residual Wavelet-Conditioned Autoencoder
The utilization of biometric authentication with pattern images is increasingly popular in compact Internet of Things (IoT) devices. However, the reliability of such systems can be compromised by image quality issues, particularly in the presence of high levels of noise. While state-of-the-art deep learning algorithms designed for generic image denoising have shown promise, their large number of parameters and lack of optimization for unique biometric pattern retrieval make them unsuitable for these devices and scenarios. In response to these challenges, this paper proposes a lightweight and robust deep learning architecture, the Residual Wavelet-Conditioned Convolutional Autoencoder (Res-WCAE) with a Kullback-Leibler divergence (KLD) regularization, designed specifically for fingerprint image denoising. Res-WCAE comprises two encoders - an image encoder and a wavelet encoder - and one decoder. Residual connections between the image encoder and decoder are leveraged to preserve fine-grained spatial features, where the bottleneck layer conditioned on the compressed representation of features obtained from the wavelet encoder using approximation and detail subimages in the wavelet-transform domain. The effectiveness of Res-WCAE is evaluated against several state-of-the-art denoising methods, and the experimental results demonstrate that Res-WCAE outperforms these methods, particularly for heavily degraded fingerprint images in the presence of high levels of noise. Overall, Res-WCAE shows promise as a solution to the challenges faced by biometric authentication systems in compact IoT devices.
comment: 8 pages, 2 figures
♻ ☆ Surveying the Landscape of Image Captioning Evaluation: A Comprehensive Taxonomy, Trends and Metrics Analysis
The task of image captioning has recently been gaining popularity, and with it the complex task of evaluating the quality of image captioning models. In this work, we present the first survey and taxonomy of over 70 different image captioning metrics and their usage in hundreds of papers, specifically designed to help users select the most suitable metric for their needs. We find that despite the diversity of proposed metrics, the vast majority of studies rely on only five popular metrics, which we show to be weakly correlated with human ratings. We hypothesize that combining a diverse set of metrics can enhance correlation with human ratings. As an initial step, we demonstrate that a linear regression-based ensemble method, which we call EnsembEval, trained on one human ratings dataset, achieves improved correlation across five additional datasets, showing there is a lot of room for improvement by leveraging a diverse set of metrics.
♻ ☆ Blending 3D Geometry and Machine Learning for Multi-View Stereopsis
Traditional multi-view stereo (MVS) methods primarily depend on photometric and geometric consistency constraints. In contrast, modern learning-based algorithms often rely on the plane sweep algorithm to infer 3D geometry, applying explicit geometric consistency (GC) checks only as a post-processing step, with no impact on the learning process itself. In this work, we introduce GC MVSNet plus plus, a novel approach that actively enforces geometric consistency of reference view depth maps across multiple source views (multi view) and at various scales (multi scale) during the learning phase (see Fig. 1). This integrated GC check significantly accelerates the learning process by directly penalizing geometrically inconsistent pixels, effectively halving the number of training iterations compared to other MVS methods. Furthermore, we introduce a densely connected cost regularization network with two distinct block designs simple and feature dense optimized to harness dense feature connections for enhanced regularization. Extensive experiments demonstrate that our approach achieves a new state of the art on the DTU and BlendedMVS datasets and secures second place on the Tanks and Temples benchmark. To our knowledge, GC MVSNet plus plus is the first method to enforce multi-view, multi-scale supervised geometric consistency during learning. Our code is available.
comment: A pre-print -- accepted at Neurocomputing. arXiv admin note: substantial text overlap with arXiv:2310.19583
♻ ☆ Marigold-DC: Zero-Shot Monocular Depth Completion with Guided Diffusion ICCV 2025
Depth completion upgrades sparse depth measurements into dense depth maps guided by a conventional image. Existing methods for this highly ill-posed task operate in tightly constrained settings and tend to struggle when applied to images outside the training domain or when the available depth measurements are sparse, irregularly distributed, or of varying density. Inspired by recent advances in monocular depth estimation, we reframe depth completion as an image-conditional depth map generation guided by sparse measurements. Our method, Marigold-DC, builds on a pretrained latent diffusion model for monocular depth estimation and injects the depth observations as test-time guidance via an optimization scheme that runs in tandem with the iterative inference of denoising diffusion. The method exhibits excellent zero-shot generalization across a diverse range of environments and handles even extremely sparse guidance effectively. Our results suggest that contemporary monocular depth priors greatly robustify depth completion: it may be better to view the task as recovering dense depth from (dense) image pixels, guided by sparse depth; rather than as inpainting (sparse) depth, guided by an image. Project website: https://MarigoldDepthCompletion.github.io/
comment: ICCV 2025
♻ ☆ Bayesian Unsupervised Disentanglement of Anatomy and Geometry for Deep Groupwise Image Registration
This article presents a general Bayesian learning framework for multi-modal groupwise image registration. The method builds on probabilistic modelling of the image generative process, where the underlying common anatomy and geometric variations of the observed images are explicitly disentangled as latent variables. Therefore, groupwise image registration is achieved via hierarchical Bayesian inference. We propose a novel hierarchical variational auto-encoding architecture to realise the inference procedure of the latent variables, where the registration parameters can be explicitly estimated in a mathematically interpretable fashion. Remarkably, this new paradigm learns groupwise image registration in an unsupervised closed-loop self-reconstruction process, sparing the burden of designing complex image-based similarity measures. The computationally efficient disentangled network architecture is also inherently scalable and flexible, allowing for groupwise registration on large-scale image groups with variable sizes. Furthermore, the inferred structural representations from multi-modal images via disentanglement learning are capable of capturing the latent anatomy of the observations with visual semantics. Extensive experiments were conducted to validate the proposed framework, including four different datasets from cardiac, brain, and abdominal medical images. The results have demonstrated the superiority of our method over conventional similarity-based approaches in terms of accuracy, efficiency, scalability, and interpretability.
♻ ☆ PainFormer: a Vision Foundation Model for Automatic Pain Assessment
Pain is a manifold condition that impacts a significant percentage of the population. Accurate and reliable pain evaluation for the people suffering is crucial to developing effective and advanced pain management protocols. Automatic pain assessment systems provide continuous monitoring and support decision-making processes, ultimately aiming to alleviate distress and prevent functionality decline. This study introduces PainFormer, a vision foundation model based on multi-task learning principles trained simultaneously on 14 tasks/datasets with a total of 10.9 million samples. Functioning as an embedding extractor for various input modalities, the foundation model provides feature representations to the Embedding-Mixer, a transformer-based module that performs the final pain assessment. Extensive experiments employing behavioral modalities - including RGB, synthetic thermal, and estimated depth videos - and physiological modalities such as ECG, EMG, GSR, and fNIRS revealed that PainFormer effectively extracts high-quality embeddings from diverse input modalities. The proposed framework is evaluated on two pain datasets, BioVid and AI4Pain, and directly compared to 75 different methodologies documented in the literature. Experiments conducted in unimodal and multimodal settings demonstrate state-of-the-art performances across modalities and pave the way toward general-purpose models for automatic pain assessment. The foundation model's architecture (code) and weights are available at: https://github.com/GkikasStefanos/PainFormer.
♻ ☆ Fighting Fire with Fire (F3): A Training-free and Efficient Visual Adversarial Example Purification Method in LVLMs
Recent advances in large vision-language models (LVLMs) have showcased their remarkable capabilities across a wide range of multimodal vision-language tasks. However, these models remain vulnerable to visual adversarial attacks, which can substantially compromise their performance. In this paper, we introduce F3, a novel adversarial purification framework that employs a counterintuitive ``fighting fire with fire'' strategy: intentionally introducing simple perturbations to adversarial examples to mitigate their harmful effects. Specifically, F3 leverages cross-modal attentions derived from randomly perturbed adversary examples as reference targets. By injecting noise into these adversarial examples, F3 effectively refines their attention, resulting in cleaner and more reliable model outputs. Remarkably, this seemingly paradoxical approach of employing noise to counteract adversarial attacks yields impressive purification results. Furthermore, F3 offers several distinct advantages: it is training-free and straightforward to implement, and exhibits significant computational efficiency improvements compared to existing purification methods. These attributes render F3 particularly suitable for large-scale industrial applications where both robust performance and operational efficiency are critical priorities. The code is available at https://github.com/btzyd/F3.
comment: Accepted by ACM Multimedia 2025 BNI track (Oral)
♻ ☆ DAOcc: 3D Object Detection Assisted Multi-Sensor Fusion for 3D Occupancy Prediction
Multi-sensor fusion significantly enhances the accuracy and robustness of 3D semantic occupancy prediction, which is crucial for autonomous driving and robotics. However, most existing approaches depend on high-resolution images and complex networks to achieve top performance, hindering their deployment in practical scenarios. Moreover, current multi-sensor fusion approaches mainly focus on improving feature fusion while largely neglecting effective supervision strategies for those features. To address these issues, we propose DAOcc, a novel multi-modal occupancy prediction framework that leverages 3D object detection supervision to assist in achieving superior performance, while using a deployment-friendly image backbone and practical input resolution. In addition, we introduce a BEV View Range Extension strategy to mitigate performance degradation caused by lower image resolution. Extensive experiments demonstrate that DAOcc achieves new state-of-the-art results on both the Occ3D-nuScenes and Occ3D-Waymo benchmarks, and outperforms previous state-of-the-art methods by a significant margin using only a ResNet-50 backbone and 256*704 input resolution. With TensorRT optimization, DAOcc reaches 104.9 FPS while maintaining 54.2 mIoU on an NVIDIA RTX 4090 GPU. Code is available at https://github.com/AlphaPlusTT/DAOcc.
comment: TCSVT Accepted version (not the final published version)
♻ ☆ MCITlib: Multimodal Continual Instruction Tuning Library and Benchmark
Continual learning aims to equip AI systems with the ability to continuously acquire and adapt to new knowledge without forgetting previously learned information, similar to human learning. While traditional continual learning methods focusing on unimodal tasks have achieved notable success, the emergence of Multimodal Large Language Models has brought increasing attention to Multimodal Continual Learning tasks involving multiple modalities, such as vision and language. In this setting, models are expected to not only mitigate catastrophic forgetting but also handle the challenges posed by cross-modal interactions and coordination. To facilitate research in this direction, we introduce MCITlib, a comprehensive and constantly evolving code library for continual instruction tuning of Multimodal Large Language Models. In MCITlib, we have currently implemented 8 representative algorithms for Multimodal Continual Instruction Tuning and systematically evaluated them on 2 carefully selected benchmarks. MCITlib will be continuously updated to reflect advances in the Multimodal Continual Learning field. The codebase is released at https://github.com/Ghy0501/MCITlib.
comment: Preprint
♻ ☆ Seeing the Undefined: Chain-of-Action for Generative Semantic Labels
Recent advances in vision-language models (VLMs) have demonstrated remarkable capabilities in image classification by leveraging predefined sets of labels to construct text prompts for zero-shot reasoning. However, these approaches face significant limitations in undefined domains, where the label space is vocabulary-unknown and composite. We thus introduce Generative Semantic Labels (GSLs), a novel task that aims to predict a comprehensive set of semantic labels for an image without being constrained by a predefined labels set. Unlike traditional zero-shot classification, GSLs generates multiple semantic-level labels, encompassing objects, scenes, attributes, and relationships, thereby providing a richer and more accurate representation of image content. In this paper, we propose Chain-of-Action (CoA), an innovative method designed to tackle the GSLs task. CoA is motivated by the observation that enriched contextual information significantly improves generative performance during inference. Specifically, CoA decomposes the GSLs task into a sequence of detailed actions. Each action extracts and merges key information from the previous step, passing enriched context to the next, ultimately guiding the VLM to generate comprehensive and accurate semantic labels. We evaluate the effectiveness of CoA through extensive experiments on widely-used benchmark datasets. The results demonstrate significant improvements across key performance metrics, validating the capability of CoA to generate accurate and contextually rich semantic labels. Our work not only advances the state-of-the-art in generative semantic labels but also opens new avenues for applying VLMs in open-ended and dynamic real-world scenarios.
comment: 15 pages, 8 figures
♻ ☆ EasyEdit2: An Easy-to-use Steering Framework for Editing Large Language Models EMNLP 2025
In this paper, we introduce EasyEdit2, a framework designed to enable plug-and-play adjustability for controlling Large Language Model (LLM) behaviors. EasyEdit2 supports a wide range of test-time interventions, including safety, sentiment, personality, reasoning patterns, factuality, and language features. Unlike its predecessor, EasyEdit2 features a new architecture specifically designed for seamless model steering. It comprises key modules such as the steering vector generator and the steering vector applier, which enable automatic generation and application of steering vectors to influence the model's behavior without modifying its parameters. One of the main advantages of EasyEdit2 is its ease of use-users do not need extensive technical knowledge. With just a single example, they can effectively guide and adjust the model's responses, making precise control both accessible and efficient. Empirically, we report model steering performance across different LLMs, demonstrating the effectiveness of these techniques. We have released the source code on GitHub at https://github.com/zjunlp/EasyEdit along with a demonstration notebook. In addition, we provide a demo video at https://www.youtube.com/watch?v=AkfoiPfp5rQ for a quick introduction.
comment: EMNLP 2025 System Demonstrations. Demo: https://www.youtube.com/watch?v=AkfoiPfp5rQ; code: https://github.com/zjunlp/EasyEdit
Computer Vision and Pattern Recognition 94
☆ GC-VLN: Instruction as Graph Constraints for Training-free Vision-and-Language Navigation
In this paper, we propose a training-free framework for vision-and-language navigation (VLN). Existing zero-shot VLN methods are mainly designed for discrete environments or involve unsupervised training in continuous simulator environments, which makes it challenging to generalize and deploy them in real-world scenarios. To achieve a training-free framework in continuous environments, our framework formulates navigation guidance as graph constraint optimization by decomposing instructions into explicit spatial constraints. The constraint-driven paradigm decodes spatial semantics through constraint solving, enabling zero-shot adaptation to unseen environments. Specifically, we construct a spatial constraint library covering all types of spatial relationship mentioned in VLN instructions. The human instruction is decomposed into a directed acyclic graph, with waypoint nodes, object nodes and edges, which are used as queries to retrieve the library to build the graph constraints. The graph constraint optimization is solved by the constraint solver to determine the positions of waypoints, obtaining the robot's navigation path and final goal. To handle cases of no solution or multiple solutions, we construct a navigation tree and the backtracking mechanism. Extensive experiments on standard benchmarks demonstrate significant improvements in success rate and navigation efficiency compared to state-of-the-art zero-shot VLN methods. We further conduct real-world experiments to show that our framework can effectively generalize to new environments and instruction sets, paving the way for a more robust and autonomous navigation framework.
comment: Accepted to CoRL 2025. Project page: [this https URL](https://bagh2178.github.io/GC-VLN/)
☆ SSL-AD: Spatiotemporal Self-Supervised Learning for Generalizability and Adaptability Across Alzheimer's Prediction Tasks and Datasets
Alzheimer's disease is a progressive, neurodegenerative disorder that causes memory loss and cognitive decline. While there has been extensive research in applying deep learning models to Alzheimer's prediction tasks, these models remain limited by lack of available labeled data, poor generalization across datasets, and inflexibility to varying numbers of input scans and time intervals between scans. In this study, we adapt three state-of-the-art temporal self-supervised learning (SSL) approaches for 3D brain MRI analysis, and add novel extensions designed to handle variable-length inputs and learn robust spatial features. We aggregate four publicly available datasets comprising 3,161 patients for pre-training, and show the performance of our model across multiple Alzheimer's prediction tasks including diagnosis classification, conversion detection, and future conversion prediction. Importantly, our SSL model implemented with temporal order prediction and contrastive learning outperforms supervised learning on six out of seven downstream tasks. It demonstrates adaptability and generalizability across tasks and number of input images with varying time intervals, highlighting its capacity for robust performance across clinical applications. We release our code and model publicly at https://github.com/emilykaczmarek/SSL-AD.
☆ InfGen: A Resolution-Agnostic Paradigm for Scalable Image Synthesis ICCV 2025
Arbitrary resolution image generation provides a consistent visual experience across devices, having extensive applications for producers and consumers. Current diffusion models increase computational demand quadratically with resolution, causing 4K image generation delays over 100 seconds. To solve this, we explore the second generation upon the latent diffusion models, where the fixed latent generated by diffusion models is regarded as the content representation and we propose to decode arbitrary resolution images with a compact generated latent using a one-step generator. Thus, we present the \textbf{InfGen}, replacing the VAE decoder with the new generator, for generating images at any resolution from a fixed-size latent without retraining the diffusion models, which simplifies the process, reducing computational complexity and can be applied to any model using the same latent space. Experiments show InfGen is capable of improving many models into the arbitrary high-resolution era while cutting 4K image generation time to under 10 seconds.
comment: Accepted by ICCV 2025
☆ Multimodal SAM-adapter for Semantic Segmentation
Semantic segmentation, a key task in computer vision with broad applications in autonomous driving, medical imaging, and robotics, has advanced substantially with deep learning. Nevertheless, current approaches remain vulnerable to challenging conditions such as poor lighting, occlusions, and adverse weather. To address these limitations, multimodal methods that integrate auxiliary sensor data (e.g., LiDAR, infrared) have recently emerged, providing complementary information that enhances robustness. In this work, we present MM SAM-adapter, a novel framework that extends the capabilities of the Segment Anything Model (SAM) for multimodal semantic segmentation. The proposed method employs an adapter network that injects fused multimodal features into SAM's rich RGB features. This design enables the model to retain the strong generalization ability of RGB features while selectively incorporating auxiliary modalities only when they contribute additional cues. As a result, MM SAM-adapter achieves a balanced and efficient use of multimodal information. We evaluate our approach on three challenging benchmarks, DeLiVER, FMB, and MUSES, where MM SAM-adapter delivers state-of-the-art performance. To further analyze modality contributions, we partition DeLiVER and FMB into RGB-easy and RGB-hard subsets. Results consistently demonstrate that our framework outperforms competing methods in both favorable and adverse conditions, highlighting the effectiveness of multimodal adaptation for robust scene understanding. The code is available at the following link: https://github.com/iacopo97/Multimodal-SAM-Adapter.
☆ Compressed Video Quality Enhancement: Classifying and Benchmarking over Standards
Compressed video quality enhancement (CVQE) is crucial for improving user experience with lossy video codecs like H.264/AVC, H.265/HEVC, and H.266/VVC. While deep learning based CVQE has driven significant progress, existing surveys still suffer from limitations: lack of systematic classification linking methods to specific standards and artifacts, insufficient comparative analysis of architectural paradigms across coding types, and underdeveloped benchmarking practices. To address these gaps, this paper presents three key contributions. First, it introduces a novel taxonomy classifying CVQE methods across architectural paradigms, coding standards, and compressed-domain feature utilization. Second, it proposes a unified benchmarking framework integrating modern compression protocols and standard test sequences for fair multi-criteria evaluation. Third, it provides a systematic analysis of the critical trade-offs between reconstruction performance and computational complexity observed in state-of-the-art methods and highlighting promising directions for future research. This comprehensive review aims to establish a foundation for consistent assessment and informed model selection in CVQE research and deployment.
☆ Ordinality of Visible-Thermal Image Intensities for Intrinsic Image Decomposition
Decomposing an image into its intrinsic photometric factors--shading and reflectance--is a long-standing challenge due to the lack of extensive ground-truth data for real-world scenes. Recent methods rely on synthetic data or sparse annotations for limited indoor and even fewer outdoor scenes. We introduce a novel training-free approach for intrinsic image decomposition using only a pair of visible and thermal images. We leverage the principle that light not reflected from an opaque surface is absorbed and detected as heat by a thermal camera. This allows us to relate the ordinalities between visible and thermal image intensities to the ordinalities of shading and reflectance, which can densely self-supervise an optimizing neural network to recover shading and reflectance. We perform quantitative evaluations with known reflectance and shading under natural and artificial lighting, and qualitative experiments across diverse outdoor scenes. The results demonstrate superior performance over recent learning-based models and point toward a scalable path to curating real-world ordinal supervision, previously infeasible via manual labeling.
☆ Efficient Learned Image Compression Through Knowledge Distillation
Learned image compression sits at the intersection of machine learning and image processing. With advances in deep learning, neural network-based compression methods have emerged. In this process, an encoder maps the image to a low-dimensional latent space, which is then quantized, entropy-coded into a binary bitstream, and transmitted to the receiver. At the receiver end, the bitstream is entropy-decoded, and a decoder reconstructs an approximation of the original image. Recent research suggests that these models consistently outperform conventional codecs. However, they require significant processing power, making them unsuitable for real-time use on resource-constrained platforms, which hinders their deployment in mainstream applications. This study aims to reduce the resource requirements of neural networks used for image compression by leveraging knowledge distillation, a training paradigm where smaller neural networks, partially trained on the outputs of larger, more complex models, can achieve better performance than when trained independently. Our work demonstrates that knowledge distillation can be effectively applied to image compression tasks: i) across various architecture sizes, ii) to achieve different image quality/bit rate tradeoffs, and iii) to save processing and energy resources. This approach introduces new settings and hyperparameters, and future research could explore the impact of different teacher models, as well as alternative loss functions. Knowledge distillation could also be extended to transformer-based models. The code is publicly available at: https://github.com/FABallemand/PRIM .
comment: 19 pages, 21 figures
☆ Immunizing Images from Text to Image Editing via Adversarial Cross-Attention
Recent advances in text-based image editing have enabled fine-grained manipulation of visual content guided by natural language. However, such methods are susceptible to adversarial attacks. In this work, we propose a novel attack that targets the visual component of editing methods. We introduce Attention Attack, which disrupts the cross-attention between a textual prompt and the visual representation of the image by using an automatically generated caption of the source image as a proxy for the edit prompt. This breaks the alignment between the contents of the image and their textual description, without requiring knowledge of the editing method or the editing prompt. Reflecting on the reliability of existing metrics for immunization success, we propose two novel evaluation strategies: Caption Similarity, which quantifies semantic consistency between original and adversarial edits, and semantic Intersection over Union (IoU), which measures spatial layout disruption via segmentation masks. Experiments conducted on the TEDBench++ benchmark demonstrate that our attack significantly degrades editing performance while remaining imperceptible.
comment: Accepted as Regular Paper at ACM Multimedia 2025
☆ Multi-pathology Chest X-ray Classification with Rejection Mechanisms
Overconfidence in deep learning models poses a significant risk in high-stakes medical imaging tasks, particularly in multi-label classification of chest X-rays, where multiple co-occurring pathologies must be detected simultaneously. This study introduces an uncertainty-aware framework for chest X-ray diagnosis based on a DenseNet-121 backbone, enhanced with two selective prediction mechanisms: entropy-based rejection and confidence interval-based rejection. Both methods enable the model to abstain from uncertain predictions, improving reliability by deferring ambiguous cases to clinical experts. A quantile-based calibration procedure is employed to tune rejection thresholds using either global or class-specific strategies. Experiments conducted on three large public datasets (PadChest, NIH ChestX-ray14, and MIMIC-CXR) demonstrate that selective rejection improves the trade-off between diagnostic accuracy and coverage, with entropy-based rejection yielding the highest average AUC across all pathologies. These results support the integration of selective prediction into AI-assisted diagnostic workflows, providing a practical step toward safer, uncertainty-aware deployment of deep learning in clinical settings.
comment: 12 pages, 4 figures
☆ Towards Understanding Visual Grounding in Visual Language Models
Visual grounding refers to the ability of a model to identify a region within some visual input that matches a textual description. Consequently, a model equipped with visual grounding capabilities can target a wide range of applications in various domains, including referring expression comprehension, answering questions pertinent to fine-grained details in images or videos, caption visual context by explicitly referring to entities, as well as low and high-level control in simulated and real environments. In this survey paper, we review representative works across the key areas of research on modern general-purpose vision language models (VLMs). We first outline the importance of grounding in VLMs, then delineate the core components of the contemporary paradigm for developing grounded models, and examine their practical applications, including benchmarks and evaluation metrics for grounded multimodal generation. We also discuss the multifaceted interrelations among visual grounding, multimodal chain-of-thought, and reasoning in VLMs. Finally, we analyse the challenges inherent to visual grounding and suggest promising directions for future research.
☆ GLAM: Geometry-Guided Local Alignment for Multi-View VLP in Mammography MICCAI 2025
Mammography screening is an essential tool for early detection of breast cancer. The speed and accuracy of mammography interpretation have the potential to be improved with deep learning methods. However, the development of a foundation visual language model (VLM) is hindered by limited data and domain differences between natural and medical images. Existing mammography VLMs, adapted from natural images, often ignore domain-specific characteristics, such as multi-view relationships in mammography. Unlike radiologists who analyze both views together to process ipsilateral correspondence, current methods treat them as independent images or do not properly model the multi-view correspondence learning, losing critical geometric context and resulting in suboptimal prediction. We propose GLAM: Global and Local Alignment for Multi-view mammography for VLM pretraining using geometry guidance. By leveraging the prior knowledge about the multi-view imaging process of mammograms, our model learns local cross-view alignments and fine-grained local features through joint global and local, visual-visual, and visual-language contrastive learning. Pretrained on EMBED [14], one of the largest open mammography datasets, our model outperforms baselines across multiple datasets under different settings.
comment: Accepted by MICCAI 2025
☆ GARD: Gamma-based Anatomical Restoration and Denoising for Retinal OCT
Optical Coherence Tomography (OCT) is a vital imaging modality for diagnosing and monitoring retinal diseases. However, OCT images are inherently degraded by speckle noise, which obscures fine details and hinders accurate interpretation. While numerous denoising methods exist, many struggle to balance noise reduction with the preservation of crucial anatomical structures. This paper introduces GARD (Gamma-based Anatomical Restoration and Denoising), a novel deep learning approach for OCT image despeckling that leverages the strengths of diffusion probabilistic models. Unlike conventional diffusion models that assume Gaussian noise, GARD employs a Denoising Diffusion Gamma Model to more accurately reflect the statistical properties of speckle. Furthermore, we introduce a Noise-Reduced Fidelity Term that utilizes a pre-processed, less-noisy image to guide the denoising process. This crucial addition prevents the reintroduction of high-frequency noise. We accelerate the inference process by adapting the Denoising Diffusion Implicit Model framework to our Gamma-based model. Experiments on a dataset with paired noisy and less-noisy OCT B-scans demonstrate that GARD significantly outperforms traditional denoising methods and state-of-the-art deep learning models in terms of PSNR, SSIM, and MSE. Qualitative results confirm that GARD produces sharper edges and better preserves fine anatomical details.
☆ I-Segmenter: Integer-Only Vision Transformer for Efficient Semantic Segmentation
Vision Transformers (ViTs) have recently achieved strong results in semantic segmentation, yet their deployment on resource-constrained devices remains limited due to their high memory footprint and computational cost. Quantization offers an effective strategy to improve efficiency, but ViT-based segmentation models are notoriously fragile under low precision, as quantization errors accumulate across deep encoder-decoder pipelines. We introduce I-Segmenter, the first fully integer-only ViT segmentation framework. Building on the Segmenter architecture, I-Segmenter systematically replaces floating-point operations with integer-only counterparts. To further stabilize both training and inference, we propose $\lambda$-ShiftGELU, a novel activation function that mitigates the limitations of uniform quantization in handling long-tailed activation distributions. In addition, we remove the L2 normalization layer and replace bilinear interpolation in the decoder with nearest neighbor upsampling, ensuring integer-only execution throughout the computational graph. Extensive experiments show that I-Segmenter achieves accuracy within a reasonable margin of its FP32 baseline (5.1 % on average), while reducing model size by up to 3.8x and enabling up to 1.2x faster inference with optimized runtimes. Notably, even in one-shot PTQ with a single calibration image, I-Segmenter delivers competitive accuracy, underscoring its practicality for real-world deployment.
☆ Compute Only 16 Tokens in One Timestep: Accelerating Diffusion Transformers with Cluster-Driven Feature Caching ACM MM2025
Diffusion transformers have gained significant attention in recent years for their ability to generate high-quality images and videos, yet still suffer from a huge computational cost due to their iterative denoising process. Recently, feature caching has been introduced to accelerate diffusion transformers by caching the feature computation in previous timesteps and reusing it in the following timesteps, which leverage the temporal similarity of diffusion models while ignoring the similarity in the spatial dimension. In this paper, we introduce Cluster-Driven Feature Caching (ClusCa) as an orthogonal and complementary perspective for previous feature caching. Specifically, ClusCa performs spatial clustering on tokens in each timestep, computes only one token in each cluster and propagates their information to all the other tokens, which is able to reduce the number of tokens by over 90%. Extensive experiments on DiT, FLUX and HunyuanVideo demonstrate its effectiveness in both text-to-image and text-to-video generation. Besides, it can be directly applied to any diffusion transformer without requirements for training. For instance, ClusCa achieves 4.96x acceleration on FLUX with an ImageReward of 99.49%, surpassing the original model by 0.51%. The code is available at https://github.com/Shenyi-Z/Cache4Diffusion.
comment: 11 pages, 11 figures; Accepted by ACM MM2025; Mainly focus on feature caching for diffusion transformers acceleration
☆ A Stochastic Birth-and-Death Approach for Street Furniture Geolocation in Urban Environments
In this paper we address the problem of precise geolocation of street furniture in complex urban environments, which is a critical task for effective monitoring and maintenance of public infrastructure by local authorities and private stakeholders. To this end, we propose a probabilistic framework based on energy maps that encode the spatial likelihood of object locations. Representing the energy in a map-based geopositioned format allows the optimisation process to seamlessly integrate external geospatial information, such as GIS layers, road maps, or placement constraints, which improves contextual awareness and localisation accuracy. A stochastic birth-and-death optimisation algorithm is introduced to infer the most probable configuration of assets. We evaluate our approach using a realistic simulation informed by a geolocated dataset of street lighting infrastructure in Dublin city centre, demonstrating its potential for scalable and accurate urban asset mapping. The implementation of the algorithm will be made available in the GitHub repository https://github.com/EMurphy0108/SBD_Street_Furniture.
comment: Accepted for publication in the Proceedings of the 27th Irish Machine Vision and Image Processing Conference (IMVIP 2025)
☆ Adversarial robustness through Lipschitz-Guided Stochastic Depth in Neural Networks
Deep neural networks and Vision Transformers achieve state-of-the-art performance in computer vision but are highly vulnerable to adversarial perturbations. Standard defenses often incur high computational cost or lack formal guarantees. We propose a Lipschitz-guided stochastic depth (DropPath) method, where drop probabilities increase with depth to control the effective Lipschitz constant of the network. This approach regularizes deeper layers, improving robustness while preserving clean accuracy and reducing computation. Experiments on CIFAR-10 with ViT-Tiny show that our custom depth-dependent schedule maintains near-baseline clean accuracy, enhances robustness under FGSM, PGD-20, and AutoAttack, and significantly reduces FLOPs compared to baseline and linear DropPath schedules.
comment: 8 pages, 2 tables
☆ MCL-AD: Multimodal Collaboration Learning for Zero-Shot 3D Anomaly Detection
Zero-shot 3D (ZS-3D) anomaly detection aims to identify defects in 3D objects without relying on labeled training data, making it especially valuable in scenarios constrained by data scarcity, privacy, or high annotation cost. However, most existing methods focus exclusively on point clouds, neglecting the rich semantic cues available from complementary modalities such as RGB images and texts priors. This paper introduces MCL-AD, a novel framework that leverages multimodal collaboration learning across point clouds, RGB images, and texts semantics to achieve superior zero-shot 3D anomaly detection. Specifically, we propose a Multimodal Prompt Learning Mechanism (MPLM) that enhances the intra-modal representation capability and inter-modal collaborative learning by introducing an object-agnostic decoupled text prompt and a multimodal contrastive loss. In addition, a collaborative modulation mechanism (CMM) is proposed to fully leverage the complementary representations of point clouds and RGB images by jointly modulating the RGB image-guided and point cloud-guided branches. Extensive experiments demonstrate that the proposed MCL-AD framework achieves state-of-the-art performance in ZS-3D anomaly detection.
comment: Page 14, 5 pictures
☆ Detecting Text Manipulation in Images using Vision Language Models BMVC-2025
Recent works have shown the effectiveness of Large Vision Language Models (VLMs or LVLMs) in image manipulation detection. However, text manipulation detection is largely missing in these studies. We bridge this knowledge gap by analyzing closed- and open-source VLMs on different text manipulation datasets. Our results suggest that open-source models are getting closer, but still behind closed-source ones like GPT- 4o. Additionally, we benchmark image manipulation detection-specific VLMs for text manipulation detection and show that they suffer from the generalization problem. We benchmark VLMs for manipulations done on in-the-wild scene texts and on fantasy ID cards, where the latter mimic a challenging real-world misuse.
comment: Accepted in Synthetic Realities and Biometric Security Workshop BMVC-2025. For paper page see https://www.idiap.ch/paper/textvlmdet/
☆ SignClip: Leveraging Mouthing Cues for Sign Language Translation by Multimodal Contrastive Fusion
Sign language translation (SLT) aims to translate natural language from sign language videos, serving as a vital bridge for inclusive communication. While recent advances leverage powerful visual backbones and large language models, most approaches mainly focus on manual signals (hand gestures) and tend to overlook non-manual cues like mouthing. In fact, mouthing conveys essential linguistic information in sign languages and plays a crucial role in disambiguating visually similar signs. In this paper, we propose SignClip, a novel framework to improve the accuracy of sign language translation. It fuses manual and non-manual cues, specifically spatial gesture and lip movement features. Besides, SignClip introduces a hierarchical contrastive learning framework with multi-level alignment objectives, ensuring semantic consistency across sign-lip and visual-text modalities. Extensive experiments on two benchmark datasets, PHOENIX14T and How2Sign, demonstrate the superiority of our approach. For example, on PHOENIX14T, in the Gloss-free setting, SignClip surpasses the previous state-of-the-art model SpaMo, improving BLEU-4 from 24.32 to 24.71, and ROUGE from 46.57 to 48.38.
☆ MagicMirror: A Large-Scale Dataset and Benchmark for Fine-Grained Artifacts Assessment in Text-to-Image Generation
Text-to-image (T2I) generation has achieved remarkable progress in instruction following and aesthetics. However, a persistent challenge is the prevalence of physical artifacts, such as anatomical and structural flaws, which severely degrade perceptual quality and limit application. Given the diversity and complexity of these artifacts, a systematic and fine-grained evaluation framework is required, which is lacking in current benchmarks. To fill this gap, we introduce MagicMirror, a comprehensive framework for artifacts assessment. We first establish a detailed taxonomy of generated image artifacts. Guided by this taxonomy, we manually annotate MagicData340K, the first human-annotated large-scale dataset of 340K generated images with fine-grained artifact labels. Building on this dataset, we train MagicAssessor, a Vision-Language Model (VLM) that provides detailed assessments and corresponding labels. To overcome challenges like class imbalance and reward hacking, we design a novel data sampling strategy and a multi-level reward system for Group Relative Policy Optimization (GRPO). Finally, we leverage MagicAssessor to construct MagicBench, an automated benchmark for evaluating the image artifacts of current T2I models. Our evaluation with MagicBench reveals that despite their widespread adoption, even top-tier models like GPT-image-1 are consistently plagued by significant artifacts, highlighting artifact reduction as a critical frontier for future T2I development. Project page: https://wj-inf.github.io/MagicMirror-page/.
☆ Mask Consistency Regularization in Object Removal
Object removal, a challenging task within image inpainting, involves seamlessly filling the removed region with content that matches the surrounding context. Despite advancements in diffusion models, current methods still face two critical challenges. The first is mask hallucination, where the model generates irrelevant or spurious content inside the masked region, and the second is mask-shape bias, where the model fills the masked area with an object that mimics the mask's shape rather than surrounding content. To address these issues, we propose Mask Consistency Regularization (MCR), a novel training strategy designed specifically for object removal tasks. During training, our approach introduces two mask perturbations: dilation and reshape, enforcing consistency between the outputs of these perturbed branches and the original mask. The dilated masks help align the model's output with the surrounding content, while reshaped masks encourage the model to break the mask-shape bias. This combination of strategies enables MCR to produce more robust and contextually coherent inpainting results. Our experiments demonstrate that MCR significantly reduces hallucinations and mask-shape bias, leading to improved performance in object removal.
☆ Robustness and Diagnostic Performance of Super-Resolution Fetal Brain MRI MICCAI 2025
Fetal brain MRI relies on rapid multi-view 2D slice acquisitions to reduce motion artifacts caused by fetal movement. However, these stacks are typically low resolution, may suffer from motion corruption, and do not adequately capture 3D anatomy. Super-resolution reconstruction (SRR) methods aim to address these limitations by combining slice-to-volume registration and super-resolution techniques to generate high-resolution (HR) 3D volumes. While several SRR methods have been proposed, their comparative performance - particularly in pathological cases - and their influence on downstream volumetric analysis and diagnostic tasks remain underexplored. In this study, we applied three state-of-the-art SRR method - NiftyMIC, SVRTK, and NeSVoR - to 140 fetal brain MRI scans, including both healthy controls (HC) and pathological cases (PC) with ventriculomegaly (VM). Each HR reconstruction was segmented using the BoUNTi algorithm to extract volumes of nine principal brain structures. We evaluated visual quality, SRR success rates, volumetric measurement agreement, and diagnostic classification performance. NeSVoR demonstrated the highest and most consistent reconstruction success rate (>90%) across both HC and PC groups. Although significant differences in volumetric estimates were observed between SRR methods, classification performance for VM was not affected by the choice of SRR method. These findings highlight NeSVoR's robustness and the resilience of diagnostic performance despite SRR-induced volumetric variability.
comment: Accepted at the PIPPI Workshop of MICCAI 2025
☆ GAMMA: Generalizable Alignment via Multi-task and Manipulation-Augmented Training for AI-Generated Image Detection
With generative models becoming increasingly sophisticated and diverse, detecting AI-generated images has become increasingly challenging. While existing AI-genereted Image detectors achieve promising performance on in-distribution generated images, their generalization to unseen generative models remains limited. This limitation is largely attributed to their reliance on generation-specific artifacts, such as stylistic priors and compression patterns. To address these limitations, we propose GAMMA, a novel training framework designed to reduce domain bias and enhance semantic alignment. GAMMA introduces diverse manipulation strategies, such as inpainting-based manipulation and semantics-preserving perturbations, to ensure consistency between manipulated and authentic content. We employ multi-task supervision with dual segmentation heads and a classification head, enabling pixel-level source attribution across diverse generative domains. In addition, a reverse cross-attention mechanism is introduced to allow the segmentation heads to guide and correct biased representations in the classification branch. Our method achieves state-of-the-art generalization performance on the GenImage benchmark, imporving accuracy by 5.8%, but also maintains strong robustness on newly released generative model such as GPT-4o.
comment: 11 pages, 5 figures
☆ On the Geometric Accuracy of Implicit and Primitive-based Representations Derived from View Rendering Constraints
We present the first systematic comparison of implicit and explicit Novel View Synthesis methods for space-based 3D object reconstruction, evaluating the role of appearance embeddings. While embeddings improve photometric fidelity by modeling lighting variation, we show they do not translate into meaningful gains in geometric accuracy - a critical requirement for space robotics applications. Using the SPEED+ dataset, we compare K-Planes, Gaussian Splatting, and Convex Splatting, and demonstrate that embeddings primarily reduce the number of primitives needed for explicit methods rather than enhancing geometric fidelity. Moreover, convex splatting achieves more compact and clutter-free representations than Gaussian splatting, offering advantages for safety-critical applications such as interaction and collision avoidance. Our findings clarify the limits of appearance embeddings for geometry-centric tasks and highlight trade-offs between reconstruction quality and representation efficiency in space scenarios.
comment: 9 pages, 3 figures, to be presented at ASTRA25,
☆ LayerLock: Non-collapsing Representation Learning with Progressive Freezing ICCV 2025
We introduce LayerLock, a simple yet effective approach for self-supervised visual representation learning, that gradually transitions from pixel to latent prediction through progressive layer freezing. First, we make the observation that during training of video masked-autoencoding (MAE) models, ViT layers converge in the order of their depth: shallower layers converge early, deeper layers converge late. We then show that this observation can be exploited to accelerate standard MAE by progressively freezing the model according to an explicit schedule, throughout training. Furthermore, this same schedule can be used in a simple and scalable approach to latent prediction that does not suffer from "representation collapse". We apply our proposed approach, LayerLock, to large models of up to 4B parameters with results surpassing those of non-latent masked prediction on the 4DS perception suite.
comment: ICCV 2025
☆ Scalable Training for Vector-Quantized Networks with 100% Codebook Utilization
Vector quantization (VQ) is a key component in discrete tokenizers for image generation, but its training is often unstable due to straight-through estimation bias, one-step-behind updates, and sparse codebook gradients, which lead to suboptimal reconstruction performance and low codebook usage. In this work, we analyze these fundamental challenges and provide a simple yet effective solution. To maintain high codebook usage in VQ networks (VQN) during learning annealing and codebook size expansion, we propose VQBridge, a robust, scalable, and efficient projector based on the map function method. VQBridge optimizes code vectors through a compress-process-recover pipeline, enabling stable and effective codebook training. By combining VQBridge with learning annealing, our VQN achieves full (100%) codebook usage across diverse codebook configurations, which we refer to as FVQ (FullVQ). Through extensive experiments, we demonstrate that FVQ is effective, scalable, and generalizable: it attains 100% codebook usage even with a 262k-codebook, achieves state-of-the-art reconstruction performance, consistently improves with larger codebooks, higher vector channels, or longer training, and remains effective across different VQ variants. Moreover, when integrated with LlamaGen, FVQ significantly enhances image generation performance, surpassing visual autoregressive models (VAR) by 0.5 and diffusion models (DiT) by 0.2 rFID, highlighting the importance of high-quality tokenizers for strong autoregressive image generation.
☆ Grad-CL: Source Free Domain Adaptation with Gradient Guided Feature Disalignment BMVC 2025
Accurate segmentation of the optic disc and cup is critical for the early diagnosis and management of ocular diseases such as glaucoma. However, segmentation models trained on one dataset often suffer significant performance degradation when applied to target data acquired under different imaging protocols or conditions. To address this challenge, we propose \textbf{Grad-CL}, a novel source-free domain adaptation framework that leverages a pre-trained source model and unlabeled target data to robustly adapt segmentation performance without requiring access to the original source data. Grad-CL combines a gradient-guided pseudolabel refinement module with a cosine similarity-based contrastive learning strategy. In the first stage, salient class-specific features are extracted via a gradient-based mechanism, enabling more accurate uncertainty quantification and robust prototype estimation for refining noisy pseudolabels. In the second stage, a contrastive loss based on cosine similarity is employed to explicitly enforce inter-class separability between the gradient-informed features of the optic cup and disc. Extensive experiments on challenging cross-domain fundus imaging datasets demonstrate that Grad-CL outperforms state-of-the-art unsupervised and source-free domain adaptation methods, achieving superior segmentation accuracy and improved boundary delineation. Project and code are available at https://visdomlab.github.io/GCL/.
comment: Accepted in BMVC 2025
☆ Realism Control One-step Diffusion for Real-World Image Super-Resolution
Pre-trained diffusion models have shown great potential in real-world image super-resolution (Real-ISR) tasks by enabling high-resolution reconstructions. While one-step diffusion (OSD) methods significantly improve efficiency compared to traditional multi-step approaches, they still have limitations in balancing fidelity and realism across diverse scenarios. Since the OSDs for SR are usually trained or distilled by a single timestep, they lack flexible control mechanisms to adaptively prioritize these competing objectives, which are inherently manageable in multi-step methods through adjusting sampling steps. To address this challenge, we propose a Realism Controlled One-step Diffusion (RCOD) framework for Real-ISR. RCOD provides a latent domain grouping strategy that enables explicit control over fidelity-realism trade-offs during the noise prediction phase with minimal training paradigm modifications and original training data. A degradation-aware sampling strategy is also introduced to align distillation regularization with the grouping strategy and enhance the controlling of trade-offs. Moreover, a visual prompt injection module is used to replace conventional text prompts with degradation-aware visual tokens, enhancing both restoration accuracy and semantic consistency. Our method achieves superior fidelity and perceptual quality while maintaining computational efficiency. Extensive experiments demonstrate that RCOD outperforms state-of-the-art OSD methods in both quantitative metrics and visual qualities, with flexible realism control capabilities in the inference stage. The code will be released.
☆ A Lightweight Ensemble-Based Face Image Quality Assessment Method with Correlation-Aware Loss
Face image quality assessment (FIQA) plays a critical role in face recognition and verification systems, especially in uncontrolled, real-world environments. Although several methods have been proposed, general-purpose no-reference image quality assessment techniques often fail to capture face-specific degradations. Meanwhile, state-of-the-art FIQA models tend to be computationally intensive, limiting their practical applicability. We propose a lightweight and efficient method for FIQA, designed for the perceptual evaluation of face images in the wild. Our approach integrates an ensemble of two compact convolutional neural networks, MobileNetV3-Small and ShuffleNetV2, with prediction-level fusion via simple averaging. To enhance alignment with human perceptual judgments, we employ a correlation-aware loss (MSECorrLoss), combining mean squared error (MSE) with a Pearson correlation regularizer. Our method achieves a strong balance between accuracy and computational cost, making it suitable for real-world deployment. Experiments on the VQualA FIQA benchmark demonstrate that our model achieves a Spearman rank correlation coefficient (SRCC) of 0.9829 and a Pearson linear correlation coefficient (PLCC) of 0.9894, remaining within competition efficiency constraints.
☆ VARCO-VISION-2.0 Technical Report
We introduce VARCO-VISION-2.0, an open-weight bilingual vision-language model (VLM) for Korean and English with improved capabilities compared to the previous model VARCO-VISION-14B. The model supports multi-image understanding for complex inputs such as documents, charts, and tables, and delivers layoutaware OCR by predicting both textual content and its spatial location. Trained with a four-stage curriculum with memory-efficient techniques, the model achieves enhanced multimodal alignment, while preserving core language abilities and improving safety via preference optimization. Extensive benchmark evaluations demonstrate strong spatial grounding and competitive results for both languages, with the 14B model achieving 8th place on the OpenCompass VLM leaderboard among models of comparable scale. Alongside the 14B-scale model, we release a 1.7B version optimized for on-device deployment. We believe these models advance the development of bilingual VLMs and their practical applications. Two variants of VARCO-VISION-2.0 are available at Hugging Face: a full-scale 14B model and a lightweight 1.7B model.
comment: 19 pages, 1 figure, 14 tables. Technical report for VARCO-VISION-2.0, a Korean-English bilingual VLM in 14B and 1.7B variants. Key features: multi-image understanding, OCR with text localization, improved Korean capabilities
☆ Polarization Denoising and Demosaicking: Dataset and Baseline Method ICIP2025
A division-of-focal-plane (DoFP) polarimeter enables us to acquire images with multiple polarization orientations in one shot and thus it is valuable for many applications using polarimetric information. The image processing pipeline for a DoFP polarimeter entails two crucial tasks: denoising and demosaicking. While polarization demosaicking for a noise-free case has increasingly been studied, the research for the joint task of polarization denoising and demosaicking is scarce due to the lack of a suitable evaluation dataset and a solid baseline method. In this paper, we propose a novel dataset and method for polarization denoising and demosaicking. Our dataset contains 40 real-world scenes and three noise-level conditions, consisting of pairs of noisy mosaic inputs and noise-free full images. Our method takes a denoising-then-demosaicking approach based on well-accepted signal processing components to offer a reproducible method. Experimental results demonstrate that our method exhibits higher image reconstruction performance than other alternative methods, offering a solid baseline.
comment: Published in ICIP2025; Project page: http://www.ok.sc.e.titech.ac.jp/res/PolarDem/PDD.html
☆ HHI-Assist: A Dataset and Benchmark of Human-Human Interaction in Physical Assistance Scenario
The increasing labor shortage and aging population underline the need for assistive robots to support human care recipients. To enable safe and responsive assistance, robots require accurate human motion prediction in physical interaction scenarios. However, this remains a challenging task due to the variability of assistive settings and the complexity of coupled dynamics in physical interactions. In this work, we address these challenges through two key contributions: (1) HHI-Assist, a dataset comprising motion capture clips of human-human interactions in assistive tasks; and (2) a conditional Transformer-based denoising diffusion model for predicting the poses of interacting agents. Our model effectively captures the coupled dynamics between caregivers and care receivers, demonstrating improvements over baselines and strong generalization to unseen scenarios. By advancing interaction-aware motion prediction and introducing a new dataset, our work has the potential to significantly enhance robotic assistance policies. The dataset and code are available at: https://sites.google.com/view/hhi-assist/home
comment: Accepted to RA-L 2025
☆ Leveraging Multi-View Weak Supervision for Occlusion-Aware Multi-Human Parsing
Multi-human parsing is the task of segmenting human body parts while associating each part to the person it belongs to, combining instance-level and part-level information for fine-grained human understanding. In this work, we demonstrate that, while state-of-the-art approaches achieved notable results on public datasets, they struggle considerably in segmenting people with overlapping bodies. From the intuition that overlapping people may appear separated from a different point of view, we propose a novel training framework exploiting multi-view information to improve multi-human parsing models under occlusions. Our method integrates such knowledge during the training process, introducing a novel approach based on weak supervision on human instances and a multi-view consistency loss. Given the lack of suitable datasets in the literature, we propose a semi-automatic annotation strategy to generate human instance segmentation masks from multi-view RGB+D data and 3D human skeletons. The experiments demonstrate that the approach can achieve up to a 4.20\% relative improvement on human parsing over the baseline model in occlusion scenarios.
comment: ICIAP 2025
☆ BEVTraj: Map-Free End-to-End Trajectory Prediction in Bird's-Eye View with Deformable Attention and Sparse Goal Proposals
In autonomous driving, trajectory prediction is essential for ensuring safe and efficient navigation. To improve prediction accuracy, recent approaches often rely on pre-built high-definition (HD) maps or real-time local map construction modules to incorporate static environmental information. However, pre-built HD maps are limited to specific regions and cannot adapt to transient changes. In addition, local map construction modules, which recognize only predefined elements, may fail to capture critical scene details or introduce errors that degrade prediction performance. To overcome these limitations, we propose Bird's-Eye View Trajectory Prediction (BEVTraj), a novel trajectory prediction framework that operates directly in the bird's-eye view (BEV) space utilizing real-time sensor data without relying on any pre-built maps. The BEVTraj leverages deformable attention to efficiently extract relevant context from dense BEV features. Furthermore, we introduce a Sparse Goal Candidate Proposal (SGCP) module, which enables full end-to-end prediction without requiring any post-processing steps. Extensive experiments demonstrate that the BEVTraj achieves performance comparable to state-of-the-art HD map-based models while offering greater flexibility by eliminating the dependency on pre-built maps. The source code is available at https://github.com/Kongminsang/bevtraj.
comment: Submitted to IEEE Transactions on Intelligent Transportation Systems (under review)
☆ Multimodal Mathematical Reasoning Embedded in Aerial Vehicle Imagery: Benchmarking, Analysis, and Exploration
Mathematical reasoning is critical for tasks such as precise distance and area computations, trajectory estimations, and spatial analysis in unmanned aerial vehicle (UAV) based remote sensing, yet current vision-language models (VLMs) have not been adequately tested in this domain. To address this gap, we introduce AVI-Math, the first benchmark to rigorously evaluate multimodal mathematical reasoning in aerial vehicle imagery, moving beyond simple counting tasks to include domain-specific knowledge in areas such as geometry, logic, and algebra. The dataset comprises 3,773 high-quality vehicle-related questions captured from UAV views, covering 6 mathematical subjects and 20 topics. The data, collected at varying altitudes and from multiple UAV angles, reflects real-world UAV scenarios, ensuring the diversity and complexity of the constructed mathematical problems. In this paper, we benchmark 14 prominent VLMs through a comprehensive evaluation and demonstrate that, despite their success on previous multimodal benchmarks, these models struggle with the reasoning tasks in AVI-Math. Our detailed analysis highlights significant limitations in the mathematical reasoning capabilities of current VLMs and suggests avenues for future research. Furthermore, we explore the use of Chain-of-Thought prompting and fine-tuning techniques, which show promise in addressing the reasoning challenges in AVI-Math. Our findings not only expose the limitations of VLMs in mathematical reasoning but also offer valuable insights for advancing UAV-based trustworthy VLMs in real-world applications. The code, and datasets will be released at https://github.com/VisionXLab/avi-math
comment: 17 pages, 16 figures
☆ Color Me Correctly: Bridging Perceptual Color Spaces and Text Embeddings for Improved Diffusion Generation
Accurate color alignment in text-to-image (T2I) generation is critical for applications such as fashion, product visualization, and interior design, yet current diffusion models struggle with nuanced and compound color terms (e.g., Tiffany blue, lime green, hot pink), often producing images that are misaligned with human intent. Existing approaches rely on cross-attention manipulation, reference images, or fine-tuning but fail to systematically resolve ambiguous color descriptions. To precisely render colors under prompt ambiguity, we propose a training-free framework that enhances color fidelity by leveraging a large language model (LLM) to disambiguate color-related prompts and guiding color blending operations directly in the text embedding space. Our method first employs a large language model (LLM) to resolve ambiguous color terms in the text prompt, and then refines the text embeddings based on the spatial relationships of the resulting color terms in the CIELAB color space. Unlike prior methods, our approach improves color accuracy without requiring additional training or external reference images. Experimental results demonstrate that our framework improves color alignment without compromising image quality, bridging the gap between text semantics and visual generation.
comment: Accepted to ACM Multimedia 2025 (MM '25)
☆ LaV-CoT: Language-Aware Visual CoT with Multi-Aspect Reward Optimization for Real-World Multilingual VQA
As large vision language models (VLMs) advance, their capabilities in multilingual visual question answering (mVQA) have significantly improved. Chain-of-thought (CoT) reasoning has been proven to enhance interpretability and complex reasoning. However, most existing approaches rely primarily on textual CoT and provide limited support for multilingual multimodal reasoning, constraining their deployment in real-world applications. To address this gap, we introduce \textbf{LaV-CoT}, the first Language-aware Visual CoT framework with Multi-Aspect Reward Optimization. LaV-CoT incorporates an interpretable multi-stage reasoning pipeline consisting of Text Summary with Bounding Box (BBox), Language Identification, Spatial Object-level Captioning, and Step-by-step Logical Reasoning. Following this reasoning pipeline, we design an automated data curation method that generates multilingual CoT annotations through iterative generation, correction, and refinement, enabling scalable and high-quality training data. To improve reasoning and generalization, LaV-CoT adopts a two-stage training paradigm combining Supervised Fine-Tuning (SFT) with Language-aware Group Relative Policy Optimization (GRPO), guided by verifiable multi-aspect rewards including language consistency, structural accuracy, and semantic alignment. Extensive evaluations on public datasets including MMMB, Multilingual MMBench, and MTVQA show that LaV-CoT achieves up to \(\sim\)9.5\% accuracy improvements over open-source baselines of similar size and even surpasses models with 2$\times$ larger scales by \(\sim\)2.6\%. Moreover, LaV-CoT outperforms advanced proprietary models such as GPT-4o-0513 and Gemini-2.5-flash. We further conducted an online A/B test to validate our method on real-world data, highlighting its effectiveness for industrial deployment. Our code is available at this link: \href{https://github.com/HJNVR/LaV-CoT}
comment: 12 Pages, 12 Figures, 2 Tables
☆ Hierarchical MLANet: Multi-level Attention for 3D Face Reconstruction From Single Images
Recovering 3D face models from 2D in-the-wild images has gained considerable attention in the computer vision community due to its wide range of potential applications. However, the lack of ground-truth labeled datasets and the complexity of real-world environments remain significant challenges. In this chapter, we propose a convolutional neural network-based approach, the Hierarchical Multi-Level Attention Network (MLANet), for reconstructing 3D face models from single in-the-wild images. Our model predicts detailed facial geometry, texture, pose, and illumination parameters from a single image. Specifically, we employ a pre-trained hierarchical backbone network and introduce multi-level attention mechanisms at different stages of 2D face image feature extraction. A semi-supervised training strategy is employed, incorporating 3D Morphable Model (3DMM) parameters from publicly available datasets along with a differentiable renderer, enabling an end-to-end training process. Extensive experiments, including both comparative and ablation studies, were conducted on two benchmark datasets, AFLW2000-3D and MICC Florence, focusing on 3D face reconstruction and 3D face alignment tasks. The effectiveness of the proposed method was evaluated both quantitatively and qualitatively.
comment: This work was completed during the author's MPhil studies at the University of Manchester
☆ Efficient and Accurate Downfacing Visual Inertial Odometry
Visual Inertial Odometry (VIO) is a widely used computer vision method that determines an agent's movement through a camera and an IMU sensor. This paper presents an efficient and accurate VIO pipeline optimized for applications on micro- and nano-UAVs. The proposed design incorporates state-of-the-art feature detection and tracking methods (SuperPoint, PX4FLOW, ORB), all optimized and quantized for emerging RISC-V-based ultra-low-power parallel systems on chips (SoCs). Furthermore, by employing a rigid body motion model, the pipeline reduces estimation errors and achieves improved accuracy in planar motion scenarios. The pipeline's suitability for real-time VIO is assessed on an ultra-low-power SoC in terms of compute requirements and tracking accuracy after quantization. The pipeline, including the three feature tracking methods, was implemented on the SoC for real-world validation. This design bridges the gap between high-accuracy VIO pipelines that are traditionally run on computationally powerful systems and lightweight implementations suitable for microcontrollers. The optimized pipeline on the GAP9 low-power SoC demonstrates an average reduction in RMSE of up to a factor of 3.65x over the baseline pipeline when using the ORB feature tracker. The analysis of the computational complexity of the feature trackers further shows that PX4FLOW achieves on-par tracking accuracy with ORB at a lower runtime for movement speeds below 24 pixels/frame.
comment: This article has been accepted for publication in the IEEE Internet of Things Journal (IoT-J)
☆ Few-Part-Shot Font Generation ICDAR 2025
This paper proposes a novel model of few-part-shot font generation, which designs an entire font based on a set of partial design elements, i.e., partial shapes. Unlike conventional few-shot font generation, which requires entire character shapes for a couple of character classes, our approach only needs partial shapes as input. The proposed model not only improves the efficiency of font creation but also provides insights into how partial design details influence the entire structure of the individual characters.
comment: ICDAR 2025 Workshop on Machine Learning
☆ TUNI: Real-time RGB-T Semantic Segmentation with Unified Multi-Modal Feature Extraction and Cross-Modal Feature Fusion
RGB-thermal (RGB-T) semantic segmentation improves the environmental perception of autonomous platforms in challenging conditions. Prevailing models employ encoders pre-trained on RGB images to extract features from both RGB and infrared inputs, and design additional modules to achieve cross-modal feature fusion. This results in limited thermal feature extraction and suboptimal cross-modal fusion, while the redundant encoders further compromises the model's real-time efficiency. To address the above issues, we propose TUNI, with an RGB-T encoder consisting of multiple stacked blocks that simultaneously perform multi-modal feature extraction and cross-modal fusion. By leveraging large-scale pre-training with RGB and pseudo-thermal data, the RGB-T encoder learns to integrate feature extraction and fusion in a unified manner. By slimming down the thermal branch, the encoder achieves a more compact architecture. Moreover, we introduce an RGB-T local module to strengthen the encoder's capacity for cross-modal local feature fusion. The RGB-T local module employs adaptive cosine similarity to selectively emphasize salient consistent and distinct local features across RGB-T modalities. Experimental results show that TUNI achieves competitive performance with state-of-the-art models on FMB, PST900 and CART, with fewer parameters and lower computational cost. Meanwhile, it achieves an inference speed of 27 FPS on a Jetson Orin NX, demonstrating its real-time capability in deployment. Codes are available at https://github.com/xiaodonguo/TUNI.
☆ FLARE-SSM: Deep State Space Models with Influence-Balanced Loss for 72-Hour Solar Flare Prediction ICONIP2025
Accurate and reliable solar flare predictions are essential to mitigate potential impacts on critical infrastructure. However, the current performance of solar flare forecasting is insufficient. In this study, we address the task of predicting the class of the largest solar flare expected to occur within the next 72 hours. Existing methods often fail to adequately address the severe class imbalance across flare classes. To address this issue, we propose a solar flare prediction model based on multiple deep state space models. In addition, we introduce the frequency & local-boundary-aware reliability loss (FLARE loss) to improve predictive performance and reliability under class imbalance. Experiments were conducted on a multi-wavelength solar image dataset covering a full 11-year solar activity cycle. As a result, our method outperformed baseline approaches in terms of both the Gandin-Murphy-Gerrity score and the true skill statistic, which are standard metrics in terms of the performance and reliability.
comment: Accepted for presentation at ICONIP2025
☆ ISTASTrack: Bridging ANN and SNN via ISTA Adapter for RGB-Event Tracking
RGB-Event tracking has become a promising trend in visual object tracking to leverage the complementary strengths of both RGB images and dynamic spike events for improved performance. However, existing artificial neural networks (ANNs) struggle to fully exploit the sparse and asynchronous nature of event streams. Recent efforts toward hybrid architectures combining ANNs and spiking neural networks (SNNs) have emerged as a promising solution in RGB-Event perception, yet effectively fusing features across heterogeneous paradigms remains a challenge. In this work, we propose ISTASTrack, the first transformer-based \textbf{A}NN-\textbf{S}NN hybrid \textbf{Track}er equipped with \textbf{ISTA} adapters for RGB-Event tracking. The two-branch model employs a vision transformer to extract spatial context from RGB inputs and a spiking transformer to capture spatio-temporal dynamics from event streams. To bridge the modality and paradigm gap between ANN and SNN features, we systematically design a model-based ISTA adapter for bidirectional feature interaction between the two branches, derived from sparse representation theory by unfolding the iterative shrinkage thresholding algorithm. Additionally, we incorporate a temporal downsampling attention module within the adapter to align multi-step SNN features with single-step ANN features in the latent space, improving temporal fusion. Experimental results on RGB-Event tracking benchmarks, such as FE240hz, VisEvent, COESOT, and FELT, have demonstrated that ISTASTrack achieves state-of-the-art performance while maintaining high energy efficiency, highlighting the effectiveness and practicality of hybrid ANN-SNN designs for robust visual tracking. The code is publicly available at https://github.com/lsying009/ISTASTrack.git.
comment: 15 pages, 8 figures
☆ Drone-Based Multispectral Imaging and Deep Learning for Timely Detection of Branched Broomrape in Tomato Farms SP
This study addresses the escalating threat of branched broomrape (Phelipanche ramosa) to California's tomato industry, which supplies over 90 percent of U.S. processing tomatoes. The parasite's largely underground life cycle makes early detection difficult, while conventional chemical controls are costly, environmentally harmful, and often ineffective. To address this, we combined drone-based multispectral imagery with Long Short-Term Memory (LSTM) deep learning networks, using the Synthetic Minority Over-sampling Technique (SMOTE) to handle class imbalance. Research was conducted on a known broomrape-infested tomato farm in Woodland, Yolo County, CA, across five key growth stages determined by growing degree days (GDD). Multispectral images were processed to isolate tomato canopy reflectance. At 897 GDD, broomrape could be detected with 79.09 percent overall accuracy and 70.36 percent recall without integrating later stages. Incorporating sequential growth stages with LSTM improved detection substantially. The best-performing scenario, which integrated all growth stages with SMOTE augmentation, achieved 88.37 percent overall accuracy and 95.37 percent recall. These results demonstrate the strong potential of temporal multispectral analysis and LSTM networks for early broomrape detection. While further real-world data collection is needed for practical deployment, this study shows that UAV-based multispectral sensing coupled with deep learning could provide a powerful precision agriculture tool to reduce losses and improve sustainability in tomato production.
comment: Author-accepted version (no publisher header/footer). 10 pages + presentation. Published in Proceedings of SPIE Defense + Commercial Sensing 2024, Vol. 13053, Paper 1305304. Event: National Harbor, Maryland, USA. Official version: https://doi.org/10.1117/12.3021219
☆ Event Camera Guided Visual Media Restoration & 3D Reconstruction: A Survey
Event camera sensors are bio-inspired sensors which asynchronously capture per-pixel brightness changes and output a stream of events encoding the polarity, location and time of these changes. These systems are witnessing rapid advancements as an emerging field, driven by their low latency, reduced power consumption, and ultra-high capture rates. This survey explores the evolution of fusing event-stream captured with traditional frame-based capture, highlighting how this synergy significantly benefits various video restoration and 3D reconstruction tasks. The paper systematically reviews major deep learning contributions to image/video enhancement and restoration, focusing on two dimensions: temporal enhancement (such as frame interpolation and motion deblurring) and spatial enhancement (including super-resolution, low-light and HDR enhancement, and artifact reduction). This paper also explores how the 3D reconstruction domain evolves with the advancement of event driven fusion. Diverse topics are covered, with in-depth discussions on recent works for improving visual quality under challenging conditions. Additionally, the survey compiles a comprehensive list of openly available datasets, enabling reproducible research and benchmarking. By consolidating recent progress and insights, this survey aims to inspire further research into leveraging event camera systems, especially in combination with deep learning, for advanced visual media restoration and enhancement.
☆ An HMM-based framework for identity-aware long-term multi-object tracking from sparse and uncertain identification: use case on long-term tracking in livestock CVPR
The need for long-term multi-object tracking (MOT) is growing due to the demand for analyzing individual behaviors in videos that span several minutes. Unfortunately, due to identity switches between objects, the tracking performance of existing MOT approaches decreases over time, making them difficult to apply for long-term tracking. However, in many real-world applications, such as in the livestock sector, it is possible to obtain sporadic identifications for some of the animals from sources like feeders. To address the challenges of long-term MOT, we propose a new framework that combines both uncertain identities and tracking using a Hidden Markov Model (HMM) formulation. In addition to providing real-world identities to animals, our HMM framework improves the F1 score of ByteTrack, a leading MOT approach even with re-identification, on a 10 minute pig tracking dataset with 21 identifications at the pen's feeding station. We also show that our approach is robust to the uncertainty of identifications, with performance increasing as identities are provided more frequently. The improved performance of our HMM framework was also validated on the MOT17 and MOT20 benchmark datasets using both ByteTrack and FairMOT. The code for this new HMM framework and the new 10-minute pig tracking video dataset are available at: https://github.com/ngobibibnbe/uncertain-identity-aware-tracking
comment: 13 pages, 7 figures, 1 table, accepted at CVPR animal workshop 2024, submitted to IJCV
☆ Augment to Segment: Tackling Pixel-Level Imbalance in Wheat Disease and Pest Segmentation
Accurate segmentation of foliar diseases and insect damage in wheat is crucial for effective crop management and disease control. However, the insect damage typically occupies only a tiny fraction of annotated pixels. This extreme pixel-level imbalance poses a significant challenge to the segmentation performance, which can result in overfitting to common classes and insufficient learning of rare classes, thereby impairing overall performance. In this paper, we propose a Random Projected Copy-and-Paste (RPCP) augmentation technique to address the pixel imbalance problem. Specifically, we extract rare insect-damage patches from annotated training images and apply random geometric transformations to simulate variations. The transformed patches are then pasted in appropriate regions while avoiding overlaps with lesions or existing damaged regions. In addition, we apply a random projection filter to the pasted regions, refining local features and ensuring a natural blend with the new background. Experiments show that our method substantially improves segmentation performance on the insect damage class, while maintaining or even slightly enhancing accuracy on other categories. Our results highlight the effectiveness of targeted augmentation in mitigating extreme pixel imbalance, offering a straightforward yet effective solution for agricultural segmentation problems.
☆ Zero-Shot Referring Expression Comprehension via Visual-Language True/False Verification
Referring Expression Comprehension (REC) is usually addressed with task-trained grounding models. We show that a zero-shot workflow, without any REC-specific training, can achieve competitive or superior performance. Our approach reformulates REC as box-wise visual-language verification: given proposals from a COCO-clean generic detector (YOLO-World), a general-purpose VLM independently answers True/False queries for each region. This simple procedure reduces cross-box interference, supports abstention and multiple matches, and requires no fine-tuning. On RefCOCO, RefCOCO+, and RefCOCOg, our method not only surpasses a zero-shot GroundingDINO baseline but also exceeds reported results for GroundingDINO trained on REC and GroundingDINO+CRG. Controlled studies with identical proposals confirm that verification significantly outperforms selection-based prompting, and results hold with open VLMs. Overall, we show that workflow design, rather than task-specific pretraining, drives strong zero-shot REC performance.
☆ Adaptive Token Merging for Efficient Transformer Semantic Communication at the Edge
Large-scale transformers are central to modern semantic communication, yet their high computational and communication costs hinder deployment on resource-constrained edge devices. This paper introduces a training-free framework for adaptive token merging, a novel mechanism that compresses transformer representations at runtime by selectively merging semantically redundant tokens under per-layer similarity thresholds. Unlike prior fixed-ratio reduction, our approach couples merging directly to input redundancy, enabling data-dependent adaptation that balances efficiency and task relevance without retraining. We cast the discovery of merging strategies as a multi-objective optimization problem and leverage Bayesian optimization to obtain Pareto-optimal trade-offs between accuracy, inference cost, and communication cost. On ImageNet classification, we match the accuracy of the unmodified transformer with 30\% fewer floating-point operations per second and under 20\% of the original communication cost, while for visual question answering our method achieves performance competitive with the full LLaVA model at less than one-third of the compute and one-tenth of the bandwidth. Finally, we show that our adaptive merging is robust across varying channel conditions and provides inherent privacy benefits, substantially degrading the efficacy of model inversion attacks. Our framework provides a practical and versatile solution for deploying powerful transformer models in resource-limited edge intelligence scenarios.
comment: Submitted to IEEE Journals
☆ Chord: Chain of Rendering Decomposition for PBR Material Estimation from Generated Texture Images SIGGRAPH
Material creation and reconstruction are crucial for appearance modeling but traditionally require significant time and expertise from artists. While recent methods leverage visual foundation models to synthesize PBR materials from user-provided inputs, they often fall short in quality, flexibility, and user control. We propose a novel two-stage generate-and-estimate framework for PBR material generation. In the generation stage, a fine-tuned diffusion model synthesizes shaded, tileable texture images aligned with user input. In the estimation stage, we introduce a chained decomposition scheme that sequentially predicts SVBRDF channels by passing previously extracted representation as input into a single-step image-conditional diffusion model. Our method is efficient, high quality, and enables flexible user control. We evaluate our approach against existing material generation and estimation methods, demonstrating superior performance. Our material estimation method shows strong robustness on both generated textures and in-the-wild photographs. Furthermore, we highlight the flexibility of our framework across diverse applications, including text-to-material, image-to-material, structure-guided generation, and material editing.
comment: Accepted to SIGGRAPH Asia 2025. Project page: https://ubisoft-laforge.github.io/world/chord
☆ Online 3D Multi-Camera Perception through Robust 2D Tracking and Depth-based Late Aggregation ICCV
Multi-Target Multi-Camera Tracking (MTMC) is an essential computer vision task for automating large-scale surveillance. With camera calibration and depth information, the targets in the scene can be projected into 3D space, offering unparalleled levels of automatic perception of a 3D environment. However, tracking in the 3D space requires replacing all 2D tracking components from the ground up, which may be infeasible for existing MTMC systems. In this paper, we present an approach for extending any online 2D multi-camera tracking system into 3D space by utilizing depth information to reconstruct a target in point-cloud space, and recovering its 3D box through clustering and yaw refinement following tracking. We also introduced an enhanced online data association mechanism that leverages the target's local ID consistency to assign global IDs across frames. The proposed framework is evaluated on the 2025 AI City Challenge's 3D MTMC dataset, achieving 3rd place on the leaderboard.
comment: Accepted at ICCVW 2025
☆ Segment Anything for Cell Tracking
Tracking cells and detecting mitotic events in time-lapse microscopy image sequences is a crucial task in biomedical research. However, it remains highly challenging due to dividing objects, low signal-tonoise ratios, indistinct boundaries, dense clusters, and the visually similar appearance of individual cells. Existing deep learning-based methods rely on manually labeled datasets for training, which is both costly and time-consuming. Moreover, their generalizability to unseen datasets remains limited due to the vast diversity of microscopy data. To overcome these limitations, we propose a zero-shot cell tracking framework by integrating Segment Anything 2 (SAM2), a large foundation model designed for general image and video segmentation, into the tracking pipeline. As a fully-unsupervised approach, our method does not depend on or inherit biases from any specific training dataset, allowing it to generalize across diverse microscopy datasets without finetuning. Our approach achieves competitive accuracy in both 2D and large-scale 3D time-lapse microscopy videos while eliminating the need for dataset-specific adaptation.
☆ SCoDA: Self-supervised Continual Domain Adaptation
Source-Free Domain Adaptation (SFDA) addresses the challenge of adapting a model to a target domain without access to the data of the source domain. Prevailing methods typically start with a source model pre-trained with full supervision and distill the knowledge by aligning instance-level features. However, these approaches, relying on cosine similarity over L2-normalized feature vectors, inadvertently discard crucial geometric information about the latent manifold of the source model. We introduce Self-supervised Continual Domain Adaptation (SCoDA) to address these limitations. We make two key departures from standard practice: first, we avoid the reliance on supervised pre-training by initializing the proposed framework with a teacher model pre-trained entirely via self-supervision (SSL). Second, we adapt the principle of geometric manifold alignment to the SFDA setting. The student is trained with a composite objective combining instance-level feature matching with a Space Similarity Loss. To combat catastrophic forgetting, the teacher's parameters are updated via an Exponential Moving Average (EMA) of the student's parameters. Extensive experiments on benchmark datasets demonstrate that SCoDA significantly outperforms state-of-the-art SFDA methods.
comment: Submitted to ICVGIP 2025
☆ LoFT: Parameter-Efficient Fine-Tuning for Long-tailed Semi-Supervised Learning in Open-World Scenarios
Long-tailed learning has garnered increasing attention due to its wide applicability in real-world scenarios. Among existing approaches, Long-Tailed Semi-Supervised Learning (LTSSL) has emerged as an effective solution by incorporating a large amount of unlabeled data into the imbalanced labeled dataset. However, most prior LTSSL methods are designed to train models from scratch, which often leads to issues such as overconfidence and low-quality pseudo-labels. To address these challenges, we extend LTSSL into the foundation model fine-tuning paradigm and propose a novel framework: LoFT (Long-tailed semi-supervised learning via parameter-efficient Fine-Tuning). We demonstrate that fine-tuned foundation models can generate more reliable pseudolabels, thereby benefiting imbalanced learning. Furthermore, we explore a more practical setting by investigating semi-supervised learning under open-world conditions, where the unlabeled data may include out-of-distribution (OOD) samples. To handle this problem, we propose LoFT-OW (LoFT under Open-World scenarios) to improve the discriminative ability. Experimental results on multiple benchmarks demonstrate that our method achieves superior performance compared to previous approaches, even when utilizing only 1\% of the unlabeled data compared with previous works.
☆ An Autoencoder and Vision Transformer-based Interpretability Analysis of the Differences in Automated Staging of Second and Third Molars
The practical adoption of deep learning in high-stakes forensic applications, such as dental age estimation, is often limited by the 'black box' nature of the models. This study introduces a framework designed to enhance both performance and transparency in this context. We use a notable performance disparity in the automated staging of mandibular second (tooth 37) and third (tooth 38) molars as a case study. The proposed framework, which combines a convolutional autoencoder (AE) with a Vision Transformer (ViT), improves classification accuracy for both teeth over a baseline ViT, increasing from 0.712 to 0.815 for tooth 37 and from 0.462 to 0.543 for tooth 38. Beyond improving performance, the framework provides multi-faceted diagnostic insights. Analysis of the AE's latent space metrics and image reconstructions indicates that the remaining performance gap is data-centric, suggesting high intra-class morphological variability in the tooth 38 dataset is a primary limiting factor. This work highlights the insufficiency of relying on a single mode of interpretability, such as attention maps, which can appear anatomically plausible yet fail to identify underlying data issues. By offering a methodology that both enhances accuracy and provides evidence for why a model may be uncertain, this framework serves as a more robust tool to support expert decision-making in forensic age estimation.
comment: 21 pages, 11 figures, Scientific Reports
♻ ☆ JARVIS-VLA: Post-Training Large-Scale Vision Language Models to Play Visual Games with Keyboards and Mouse ACL 2025
Recently, action-based decision-making in open-world environments has gained significant attention. Visual Language Action (VLA) models, pretrained on large-scale web datasets, have shown promise in decision-making tasks. However, previous work has primarily focused on action post-training, often neglecting enhancements to the foundational model itself. In response, we introduce a novel approach, Act from Visual Language Post-Training, which refines Visual Language Models (VLMs) through visual and linguistic guidance in a self-supervised manner. This enhancement improves the models' capabilities in world knowledge, visual recognition, and spatial grounding in open-world environments. Following the above post-training paradigms, we obtain the first VLA models in Minecraft that can follow human instructions on over 1k different atomic tasks, including crafting, smelting, cooking, mining, and killing. Our experiments demonstrate that post-training on non-trajectory tasks leads to a significant 40% improvement over the best agent baseline on a diverse set of atomic tasks. Furthermore, we demonstrate that our approach surpasses traditional imitation learning-based policies in Minecraft, achieving state-of-the-art performance. We have open-sourced the code, models, and datasets to foster further research. The project page can be found in https://craftjarvis.github.io/JarvisVLA.
comment: Accepted by ACL 2025
♻ ☆ Bridging the Gap: A Framework for Real-World Video Deepfake Detection via Social Network Compression Emulation
The growing presence of AI-generated videos on social networks poses new challenges for deepfake detection, as detectors trained under controlled conditions often fail to generalize to real-world scenarios. A key factor behind this gap is the aggressive, proprietary compression applied by platforms like YouTube and Facebook, which launder low-level forensic cues. However, replicating these transformations at scale is difficult due to API limitations and data-sharing constraints. For these reasons, we propose a first framework that emulates the video sharing pipelines of social networks by estimating compression and resizing parameters from a small set of uploaded videos. These parameters enable a local emulator capable of reproducing platform-specific artifacts on large datasets without direct API access. Experiments on FaceForensics++ videos shared via social networks demonstrate that our emulated data closely matches the degradation patterns of real uploads. Furthermore, detectors fine-tuned on emulated videos achieve comparable performance to those trained on actual shared media. Our approach offers a scalable and practical solution for bridging the gap between lab-based training and real-world deployment of deepfake detectors, particularly in the underexplored domain of compressed video content.
♻ ☆ AdaFusion: Prompt-Guided Inference with Adaptive Fusion of Pathology Foundation Models
Pathology foundation models (PFMs) have demonstrated strong representational capabilities through self-supervised pre-training on large-scale, unannotated histopathology image datasets. However, their diverse yet opaque pretraining contexts, shaped by both data-related and structural/training factors, introduce latent biases that hinder generalisability and transparency in downstream applications. In this paper, we propose AdaFusion, a novel prompt-guided inference framework that, to our knowledge, is among the very first to dynamically integrate complementary knowledge from multiple PFMs. Our method compresses and aligns tile-level features from diverse models and employs a lightweight attention mechanism to adaptively fuse them based on tissue phenotype context. We evaluate AdaFusion on three real-world benchmarks spanning treatment response prediction, tumour grading, and spatial gene expression inference. Our approach consistently surpasses individual PFMs across both classification and regression tasks, while offering interpretable insights into each model's biosemantic specialisation. These results highlight AdaFusion's ability to bridge heterogeneous PFMs, achieving both enhanced performance and interpretability of model-specific inductive biases.
comment: 6 Tables, 11 Figures
♻ ☆ Talk2PC: Enhancing 3D Visual Grounding through LiDAR and Radar Point Clouds Fusion for Autonomous Driving
Embodied outdoor scene understanding forms the foundation for autonomous agents to perceive, analyze, and react to dynamic driving environments. However, existing 3D understanding is predominantly based on 2D Vision-Language Models (VLMs), which collect and process limited scene-aware contexts. In contrast, compared to the 2D planar visual information, point cloud sensors such as LiDAR provide rich depth and fine-grained 3D representations of objects. Even better the emerging 4D millimeter-wave radar detects the motion trend, velocity, and reflection intensity of each object. The integration of these two modalities provides more flexible querying conditions for natural language, thereby supporting more accurate 3D visual grounding. To this end, we propose a novel method called TPCNet, the first outdoor 3D visual grounding model upon the paradigm of prompt-guided point cloud sensor combination, including both LiDAR and radar sensors. To optimally combine the features of these two sensors required by the prompt, we design a multi-fusion paradigm called Two-Stage Heterogeneous Modal Adaptive Fusion. Specifically, this paradigm initially employs Bidirectional Agent Cross-Attention (BACA), which feeds both-sensor features, characterized by global receptive fields, to the text features for querying. Moreover, we design a Dynamic Gated Graph Fusion (DGGF) module to locate the regions of interest identified by the queries. To further enhance accuracy, we devise an C3D-RECHead, based on the nearest object edge to the ego-vehicle. Experimental results demonstrate that our TPCNet, along with its individual modules, achieves the state-of-the-art performance on both the Talk2Radar and Talk2Car datasets. We release the code at https://github.com/GuanRunwei/TPCNet.
comment: 13 pages, 12 figures
♻ ☆ Hybrid Swin Attention Networks for Simultaneously Low-Dose PET and CT Denoising
Low-dose computed tomography (LDCT) and positron emission tomography (PET) have emerged as safer alternatives to conventional imaging modalities by significantly reducing radiation exposure. However, this reduction often results in increased noise and artifacts, which can compromise diagnostic accuracy. Consequently, denoising for LDCT/PET has become a vital area of research aimed at enhancing image quality while maintaining radiation safety. In this study, we introduce a novel Hybrid Swin Attention Network (HSANet), which incorporates Efficient Global Attention (EGA) modules and a hybrid upsampling module. The EGA modules enhance both spatial and channel-wise interaction, improving the network's capacity to capture relevant features, while the hybrid upsampling module mitigates the risk of overfitting to noise. We validate the proposed approach using a publicly available LDCT/PET dataset. Experimental results demonstrate that HSANet achieves superior denoising performance compared to existing methods, while maintaining a lightweight model size suitable for deployment on GPUs with standard memory configurations. This makes our approach highly practical for real-world clinical applications.
♻ ☆ Dynamic Motion Blending for Versatile Motion Editing
Text-guided motion editing enables high-level semantic control and iterative modifications beyond traditional keyframe animation. Existing methods rely on limited pre-collected training triplets, which severely hinders their versatility in diverse editing scenarios. We introduce MotionCutMix, an online data augmentation technique that dynamically generates training triplets by blending body part motions based on input text. While MotionCutMix effectively expands the training distribution, the compositional nature introduces increased randomness and potential body part incoordination. To model such a rich distribution, we present MotionReFit, an auto-regressive diffusion model with a motion coordinator. The auto-regressive architecture facilitates learning by decomposing long sequences, while the motion coordinator mitigates the artifacts of motion composition. Our method handles both spatial and temporal motion edits directly from high-level human instructions, without relying on additional specifications or Large Language Models. Through extensive experiments, we show that MotionReFit achieves state-of-the-art performance in text-guided motion editing.
♻ ☆ Orientation Scores should be a Piece of Cake
We axiomatically derive a family of wavelets for an orientation score, lifting from position space $\mathbb{R}^2$ to position and orientation space $\mathbb{R}^2\times S^1$, with fast reconstruction property, that minimise position-orientation uncertainty. We subsequently show that these minimum uncertainty states are well-approximated by cake wavelets: for standard parameters, the uncertainty gap of cake wavelets is less than 1.1, and in the limit, we prove the uncertainty gap tends to the minimum of 1. Next, we complete a previous theoretical argument that one does not have to train the lifting layer in (PDE-)G-CNNs, but can instead use cake wavelets. Finally, we show experimentally that in this way we can reduce the network complexity and improve the interpretability of (PDE-)G-CNNs, with only a slight impact on the model's performance.
comment: Accepted in the 7th International Conference on Geometric Science of Information
♻ ☆ Earth Observation Foundation Model PhilEO: Pretraining on the MajorTOM and FastTOM Datasets
Today, Earth Observation (EO) satellites generate massive volumes of data, with the Copernicus Sentinel-2 constellation alone producing approximately 1.6TB per day. To fully exploit this information, it is essential to pretrain EO Foundation Models (FMs) on large unlabeled datasets, enabling efficient fine-tuning for several different downstream tasks with minimal labeled data. In this work, we present the scaling-up of our recently proposed EO Foundation Model, PhilEO Geo-Aware U-Net, on the unlabeled 23TB dataset MajorTOM, which covers the vast majority of the Earth's surface, as well as on the specialized subset FastTOM 2TB that does not include oceans and ice. We develop and study various PhilEO model variants with different numbers of parameters and architectures. We fine-tune the models on the PhilEO Bench for road density estimation, building density pixel-wise regression, and land cover semantic segmentation, and we evaluate the performance. Our results demonstrate that for all n-shots for road density regression, the PhilEO 44M MajorTOM 23TB model outperforms PhilEO Globe 0.5TB 44M. We also show that for most n-shots for road density estimation and building density regression, PhilEO 200M FastTOM outperforms all the other models. The effectiveness of both dataset and model scaling is validated using the PhilEO Bench. We also study the impact of architecture scaling, transitioning from U-Net Convolutional Neural Networks (CNN) to Vision Transformers (ViT).
comment: 15 pages, 22 figures, 2 tables, 64 references
♻ ☆ Building Age Estimation: A New Multi-Modal Benchmark Dataset and Community Challenge
Estimating the construction year of buildings is critical for advancing sustainability, as older structures often lack energy-efficient features. Sustainable urban planning relies on accurate building age data to reduce energy consumption and mitigate climate change. In this work, we introduce MapYourCity, a novel multi-modal benchmark dataset comprising top-view Very High Resolution (VHR) imagery, multi-spectral Earth Observation (EO) data from the Copernicus Sentinel-2 satellite constellation, and co-localized street-view images across various European cities. Each building is labeled with its construction epoch, and the task is formulated as a seven-class classification problem covering periods from 1900 to the present. To advance research in EO generalization and multi-modal learning, we organized a community-driven data challenge in 2024, hosted by ESA $\Phi$-lab, which ran for four months and attracted wide participation. This paper presents the Top-4 performing models from the challenge and their evaluation results. We assess model generalization on cities excluded from training to prevent data leakage, and evaluate performance under missing modality scenarios, particularly when street-view data is unavailable. Results demonstrate that building age estimation is both feasible and effective, even in previously unseen cities and when relying solely on top-view satellite imagery (i.e. with VHR and Sentinel-2 images). The MapYourCity dataset thus provides a valuable resource for developing scalable, real-world solutions in sustainable urban analytics.
comment: 16 pages, 20 figures, 1 table, Submitted
♻ ☆ OMGM: Orchestrate Multiple Granularities and Modalities for Efficient Multimodal Retrieval ACL 2025
Vision-language retrieval-augmented generation (RAG) has become an effective approach for tackling Knowledge-Based Visual Question Answering (KB-VQA), which requires external knowledge beyond the visual content presented in images. The effectiveness of Vision-language RAG systems hinges on multimodal retrieval, which is inherently challenging due to the diverse modalities and knowledge granularities in both queries and knowledge bases. Existing methods have not fully tapped into the potential interplay between these elements. We propose a multimodal RAG system featuring a coarse-to-fine, multi-step retrieval that harmonizes multiple granularities and modalities to enhance efficacy. Our system begins with a broad initial search aligning knowledge granularity for cross-modal retrieval, followed by a multimodal fusion reranking to capture the nuanced multimodal information for top entity selection. A text reranker then filters out the most relevant fine-grained section for augmented generation. Extensive experiments on the InfoSeek and Encyclopedic-VQA benchmarks show our method achieves state-of-the-art retrieval performance and highly competitive answering results, underscoring its effectiveness in advancing KB-VQA systems.
comment: Accepted to ACL 2025 Main Conference
♻ ☆ Geometry and Perception Guided Gaussians for Multiview-consistent 3D Generation from a Single Image
Generating realistic 3D objects from single-view images requires natural appearance, 3D consistency, and the ability to capture multiple plausible interpretations of unseen regions. Existing approaches often rely on fine-tuning pretrained 2D diffusion models or directly generating 3D information through fast network inference or 3D Gaussian Splatting, but their results generally suffer from poor multiview consistency and lack geometric detail. To tackle these issues, we present a novel method that seamlessly integrates geometry and perception information without requiring additional model training to reconstruct detailed 3D objects from a single image. Specifically, we incorporate geometry and perception priors to initialize the Gaussian branches and guide their parameter optimization. The geometry prior captures the rough 3D shapes, while the perception prior utilizes the 2D pretrained diffusion model to enhance multiview information. Subsequently, we introduce a stable Score Distillation Sampling for fine-grained prior distillation to ensure effective knowledge transfer. The model is further enhanced by a reprojection-based strategy that enforces depth consistency. Experimental results show that we outperform existing methods on novel view synthesis and 3D reconstruction, demonstrating robust and consistent 3D object generation.
comment: 10 pages, 5 figures
♻ ☆ Survivability of Backdoor Attacks on Unconstrained Face Recognition Systems
The widespread deployment of Deep Learning-based Face Recognition Systems raises multiple security concerns. While prior research has identified backdoor vulnerabilities on isolated components, Backdoor Attacks on real-world, unconstrained pipelines remain underexplored. This paper presents the first comprehensive system-level analysis of Backdoor Attacks targeting Face Recognition Systems and provides three contributions. We first show that face feature extractors trained with large margin metric learning losses are susceptible to Backdoor Attacks. By analyzing 20 pipeline configurations and 15 attack scenarios, we then reveal that a single backdoor can compromise an entire Face Recognition System. Finally, we propose effective best practices and countermeasures for stakeholders.
♻ ☆ Similarity-based Outlier Detection for Noisy Object Re-Identification Using Beta Mixtures
Object re-identification (Re-ID) methods are highly sensitive to label noise, which typically leads to significant performance degradation. We address this challenge by reframing Re-ID as a supervised image similarity task and adopting a Siamese network architecture trained to capture discriminative pairwise relationships. Central to our approach is a novel statistical outlier detection (OD) framework, termed Beta-SOD (Beta mixture Similarity-based Outlier Detection), which models the distribution of cosine similarities between embedding pairs using a two-component Beta distribution mixture model. We establish a novel identifiability result for mixtures of two Beta distributions, ensuring that our learning task is well-posed. The proposed OD step complements the Re-ID architecture combining binary cross-entropy, contrastive, and cosine embedding losses that jointly optimize feature-level similarity learning.We demonstrate the effectiveness of Beta-SOD in de-noising and Re-ID tasks for person Re-ID, on CUHK03 and Market-1501 datasets, and vehicle Re-ID, on VeRi-776 dataset. Our method shows superior performance compared to the state-of-the-art methods across various noise levels (10-30\%), demonstrating both robustness and broad applicability in noisy Re-ID scenarios. The implementation of Beta-SOD is available at: github.com/waqar3411/Beta-SOD
♻ ☆ Backdoor Poisoning Attack Against Face Spoofing Attack Detection Methods SC
Face recognition systems are robust against environmental changes and noise, and thus may be vulnerable to illegal authentication attempts using user face photos, such as spoofing attacks. To prevent such spoofing attacks, it is crucial to discriminate whether the input image is a live user image or a spoofed image prior to the face recognition process. Most existing spoofing attack detection methods utilize deep learning, which necessitates a substantial amount of training data. Consequently, if malicious data is injected into a portion of the training dataset, a specific spoofing attack may be erroneously classified as live, leading to false positives. In this paper, we propose a novel backdoor poisoning attack method to demonstrate the latent threat of backdoor poisoning within face anti-spoofing detection. The proposed method enables certain spoofing attacks to bypass detection by embedding features extracted from the spoofing attack's face image into a live face image without inducing any perceptible visual alterations. Through experiments conducted on public datasets, we demonstrate that the proposed method constitutes a realistic threat to existing spoofing attack detection systems.
comment: 2025 Asia Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)
♻ ☆ Afford-X: Generalizable and Slim Affordance Reasoning for Task-oriented Manipulation
Object affordance reasoning, the ability to infer object functionalities based on physical properties, is fundamental for task-oriented planning and activities in both humans and Artificial Intelligence (AI). This capability, required for planning and executing daily activities in a task-oriented manner, relies on commonsense knowledge of object physics and functionalities, extending beyond simple object recognition. Current computational models for affordance reasoning from perception lack generalizability, limiting their applicability in novel scenarios. Meanwhile, comprehensive Large Language Models (LLMs) with emerging reasoning capabilities are challenging to deploy on local devices for task-oriented manipulations. Here, we introduce LVIS-Aff, a large-scale dataset comprising 1,496 tasks and 119k images, designed to enhance the generalizability of affordance reasoning from perception. Utilizing this dataset, we develop Afford-X, an end-to-end trainable affordance reasoning model that incorporates Verb Attention and Bi-Fusion modules to improve multi-modal understanding. This model achieves up to a 12.1% performance improvement over the best-reported results from non-LLM methods, while also demonstrating a 1.2% enhancement compared to our previous conference paper. Additionally, it maintains a compact 187M parameter size and infers nearly 50 times faster than the GPT-4V API. Our work demonstrates the potential for efficient, generalizable affordance reasoning models that can be deployed on local devices for task-oriented manipulations. We showcase Afford-X's effectiveness in enabling task-oriented manipulations for robots across various tasks and environments, underscoring its efficiency and broad implications for advancing robotics and AI systems in real-world applications.
♻ ☆ Evaluating the Evaluators: Towards Human-aligned Metrics for Missing Markers Reconstruction
Animation data is often obtained through optical motion capture systems, which utilize a multitude of cameras to establish the position of optical markers. However, system errors or occlusions can result in missing markers, the manual cleaning of which can be time-consuming. This has sparked interest in machine learning-based solutions for missing marker reconstruction in the academic community. Most academic papers utilize a simplistic mean square error as the main metric. In this paper, we show that this metric does not correlate with subjective perception of the fill quality. Additionally, we introduce and evaluate a set of better-correlated metrics that can drive progress in the field.
comment: Accepted at the ACM International Conference on Multimedia 2025 (ACM MM'25)
♻ ☆ The Weighting Game: Evaluating Quality of Explainability Methods SC
The objective of this paper is to assess the quality of explanation heatmaps for image classification tasks. To assess the quality of explainability methods, we approach the task through the lens of accuracy and stability. In this work, we make the following contributions. Firstly, we introduce the Weighting Game, which measures how much of a class-guided explanation is contained within the correct class' segmentation mask. Secondly, we introduce a metric for explanation stability, using zooming/panning transformations to measure differences between saliency maps with similar contents. Quantitative experiments are produced, using these new metrics, to evaluate the quality of explanations provided by commonly used CAM methods. The quality of explanations is also contrasted between different model architectures, with findings highlighting the need to consider model architecture when choosing an explainability method.
comment: Published in: Image Analysis (SCIA 2025), Lecture Notes in Computer Science (LNCS), vol. 15726, pp. 325-338 (2025). This is the submitted-manuscript (pre-review) version. v2: added required preprint notice and updated metadata. Version of Record: see DOI 10.1007/978-3-031-95918-9_23
♻ ☆ Efficient and Effective Adaptation of Multimodal Foundation Models in Sequential Recommendation
Multimodal foundation models (MFMs) have revolutionized sequential recommender systems through advanced representation learning. While Parameter-efficient Fine-tuning (PEFT) is commonly used to adapt these models, studies often prioritize parameter efficiency, neglecting GPU memory and training speed. To address this, we introduced the IISAN framework, significantly enhancing efficiency. However, IISAN was limited to symmetrical MFMs and identical text and image encoders, preventing the use of state-of-the-art Large Language Models. To overcome this, we developed IISAN-Versa, a versatile plug-and-play architecture compatible with both symmetrical and asymmetrical MFMs. IISAN-Versa employs a Decoupled PEFT structure and utilizes both intra- and inter-modal adaptation. It effectively handles asymmetry through a simple yet effective combination of group layer-dropping and dimension transformation alignment. Our research demonstrates that IISAN-Versa effectively adapts large text encoders, and we further identify a scaling effect where larger encoders generally perform better. IISAN-Versa also demonstrates strong versatility in our defined multimodal scenarios, which include raw titles and captions generated from images and videos. Additionally, IISAN-Versa achieved state-of-the-art performance on the Microlens public benchmark. We release our code at https://github.com/GAIR-Lab/IISAN.
comment: Accepted by IEEE Transactions on Knowledge and Data Engineering (TKDE)
♻ ☆ GROVE: A Generalized Reward for Learning Open-Vocabulary Physical Skill
Learning open-vocabulary physical skills for simulated agents presents a significant challenge in artificial intelligence. Current reinforcement learning approaches face critical limitations: manually designed rewards lack scalability across diverse tasks, while demonstration-based methods struggle to generalize beyond their training distribution. We introduce GROVE, a generalized reward framework that enables open-vocabulary physical skill learning without manual engineering or task-specific demonstrations. Our key insight is that Large Language Models(LLMs) and Vision Language Models(VLMs) provide complementary guidance -- LLMs generate precise physical constraints capturing task requirements, while VLMs evaluate motion semantics and naturalness. Through an iterative design process, VLM-based feedback continuously refines LLM-generated constraints, creating a self-improving reward system. To bridge the domain gap between simulation and natural images, we develop Pose2CLIP, a lightweight mapper that efficiently projects agent poses directly into semantic feature space without computationally expensive rendering. Extensive experiments across diverse embodiments and learning paradigms demonstrate GROVE's effectiveness, achieving 22.2% higher motion naturalness and 25.7% better task completion scores while training 8.4x faster than previous methods. These results establish a new foundation for scalable physical skill acquisition in simulated environments.
♻ ☆ Taccel: Scaling Up Vision-based Tactile Robotics via High-performance GPU Simulation
Tactile sensing is crucial for achieving human-level robotic capabilities in manipulation tasks. As a promising solution, Vision-Based Tactile Sensors (VBTSs) offer high spatial resolution and cost-effectiveness, but present unique challenges in robotics for their complex physical characteristics and visual signal processing requirements. The lack of efficient and accurate simulation tools for VBTSs has significantly limited the scale and scope of tactile robotics research. We present Taccel, a high-performance simulation platform that integrates IPC and ABD to model robots, tactile sensors, and objects with both accuracy and unprecedented speed, achieving an 18-fold acceleration over real-time across thousands of parallel environments. Unlike previous simulators that operate at sub-real-time speeds with limited parallelization, Taccel provides precise physics simulation and realistic tactile signals while supporting flexible robot-sensor configurations through user-friendly APIs. Through extensive validation in object recognition, robotic grasping, and articulated object manipulation, we demonstrate precise simulation and successful sim-to-real transfer. These capabilities position Taccel as a powerful tool for scaling up tactile robotics research and development, potentially transforming how robots interact with and understand their physical environment.
♻ ☆ DRespNeT: A UAV Dataset and YOLOv8-DRN Model for Aerial Instance Segmentation of Building Access Points for Post-Earthquake Search-and-Rescue Missions
Recent advancements in computer vision and deep learning have enhanced disaster-response capabilities, particularly in the rapid assessment of earthquake-affected urban environments. Timely identification of accessible entry points and structural obstacles is essential for effective search-and-rescue (SAR) operations. To address this need, we introduce DRespNeT, a high-resolution dataset specifically developed for aerial instance segmentation of post-earthquake structural environments. Unlike existing datasets, which rely heavily on satellite imagery or coarse semantic labeling, DRespNeT provides detailed polygon-level instance segmentation annotations derived from high-definition (1080p) aerial footage captured in disaster zones, including the 2023 Turkiye earthquake and other impacted regions. The dataset comprises 28 operationally critical classes, including structurally compromised buildings, access points such as doors, windows, and gaps, multiple debris levels, rescue personnel, vehicles, and civilian visibility. A distinctive feature of DRespNeT is its fine-grained annotation detail, enabling differentiation between accessible and obstructed areas, thereby improving operational planning and response efficiency. Performance evaluations using YOLO-based instance segmentation models, specifically YOLOv8-seg, demonstrate significant gains in real-time situational awareness and decision-making. Our optimized YOLOv8-DRN model achieves 92.7% mAP50 with an inference speed of 27 FPS on an RTX-4090 GPU for multi-target detection, meeting real-time operational requirements. The dataset and models support SAR teams and robotic systems, providing a foundation for enhancing human-robot collaboration, streamlining emergency response, and improving survivor outcomes.
comment: Technical Paper of Scientific data paper: UAV imagery dataset from 2023 Turkiye earthquakes, annotated for instance segmentation to support SAR robotics. Initial version of the Dataset is released: https://figshare.com/s/66d3116a0de5b7d827fb and https://universe.roboflow.com/cranfield-university-dwusz/phd-project-instance-segmentation
♻ ☆ PATS: Proficiency-Aware Temporal Sampling for Multi-View Sports Skill Assessment
Automated sports skill assessment requires capturing fundamental movement patterns that distinguish expert from novice performance, yet current video sampling methods disrupt the temporal continuity essential for proficiency evaluation. To this end, we introduce Proficiency-Aware Temporal Sampling (PATS), a novel sampling strategy that preserves complete fundamental movements within continuous temporal segments for multi-view skill assessment. PATS adaptively segments videos to ensure each analyzed portion contains full execution of critical performance components, repeating this process across multiple segments to maximize information coverage while maintaining temporal coherence. Evaluated on the EgoExo4D benchmark with SkillFormer, PATS surpasses the state-of-the-art accuracy across all viewing configurations (+0.65% to +3.05%) and delivers substantial gains in challenging domains (+26.22% bouldering, +2.39% music, +1.13% basketball). Systematic analysis reveals that PATS successfully adapts to diverse activity characteristics-from high-frequency sampling for dynamic sports to fine-grained segmentation for sequential skills-demonstrating its effectiveness as an adaptive approach to temporal sampling that advances automated skill assessment for real-world applications.
comment: Accepted at the 2025 4th IEEE International Workshop on Sport Technology and Research
♻ ☆ MedM-VL: What Makes a Good Medical LVLM?
Medical image analysis is essential in modern healthcare. Deep learning has redirected research focus toward complex medical multimodal tasks, including report generation and visual question answering. Traditional task-specific models often fall short in handling these challenges. Large vision-language models (LVLMs) offer new solutions for solving such tasks. In this study, we build on the popular LLaVA framework to systematically explore model architectures and training strategies for both 2D and 3D medical LVLMs. We present extensive empirical findings and practical guidance. To support reproducibility and future research, we release a modular codebase, MedM-VL, and two pre-trained models: MedM-VL-2D for 2D medical image analysis and MedM-VL-CT-Chest for 3D CT-based applications. The code is available at: https://github.com/MSIIP/MedM-VL
♻ ☆ When and How Does CLIP Enable Domain and Compositional Generalization? ICML 2025
The remarkable generalization performance of contrastive vision-language models like CLIP is often attributed to the diversity of their training distributions. However, key questions remain unanswered: Can CLIP generalize to an entirely unseen domain when trained on a diverse mixture of domains (domain generalization)? Can it generalize to unseen classes within partially seen domains (compositional generalization)? What factors affect such generalization? To answer these questions, we trained CLIP models on systematically constructed training distributions with controlled domain diversity and object class exposure. Our experiments show that domain diversity is essential for both domain and compositional generalization, yet compositional generalization can be surprisingly weaker than domain generalization when the training distribution contains a suboptimal subset of the test domain. Through data-centric and mechanistic analyses, we find that successful generalization requires the learning of sufficiently shared representations in intermediate layers and circuits.
comment: ICML 2025 (Spotlight)
♻ ☆ Can Generative Geospatial Diffusion Models Excel as Discriminative Geospatial Foundation Models? ICCV 2025
Self-supervised learning (SSL) has revolutionized representation learning in Remote Sensing (RS), advancing Geospatial Foundation Models (GFMs) to leverage vast unlabeled satellite imagery for diverse downstream tasks. Currently, GFMs primarily employ objectives like contrastive learning or masked image modeling, owing to their proven success in learning transferable representations. However, generative diffusion models, which demonstrate the potential to capture multi-grained semantics essential for RS tasks during image generation, remain underexplored for discriminative applications. This prompts the question: can generative diffusion models also excel and serve as GFMs with sufficient discriminative power? In this work, we answer this question with SatDiFuser, a framework that transforms a diffusion-based generative geospatial foundation model into a powerful pretraining tool for discriminative RS. By systematically analyzing multi-stage, noise-dependent diffusion features, we develop three fusion strategies to effectively leverage these diverse representations. Extensive experiments on remote sensing benchmarks show that SatDiFuser outperforms state-of-the-art GFMs, achieving gains of up to +5.7% mIoU in semantic segmentation and +7.9% F1-score in classification, demonstrating the capacity of diffusion-based generative foundation models to rival or exceed discriminative GFMs. The source code is available at: https://github.com/yurujaja/SatDiFuser.
comment: ICCV 2025, camera ready
♻ ☆ OmniEVA: Embodied Versatile Planner via Task-Adaptive 3D-Grounded and Embodiment-aware Reasoning
Recent advances in multimodal large language models (MLLMs) have opened new opportunities for embodied intelligence, enabling multimodal understanding, reasoning, and interaction, as well as continuous spatial decision-making. Nevertheless, current MLLM-based embodied systems face two critical limitations. First, Geometric Adaptability Gap: models trained solely on 2D inputs or with hard-coded 3D geometry injection suffer from either insufficient spatial information or restricted 2D generalization, leading to poor adaptability across tasks with diverse spatial demands. Second, Embodiment Constraint Gap: prior work often neglects the physical constraints and capacities of real robots, resulting in task plans that are theoretically valid but practically infeasible. To address these gaps, we introduce OmniEVA -- an embodied versatile planner that enables advanced embodied reasoning and task planning through two pivotal innovations: (1) a Task-Adaptive 3D Grounding mechanism, which introduces a gated router to perform explicit selective regulation of 3D fusion based on contextual requirements, enabling context-aware 3D grounding for diverse embodied tasks. (2) an Embodiment-Aware Reasoning framework that jointly incorporates task goals and embodiment constraints into the reasoning loop, resulting in planning decisions that are both goal-directed and executable. Extensive experimental results demonstrate that OmniEVA not only achieves state-of-the-art general embodied reasoning performance, but also exhibits a strong ability across a wide range of downstream scenarios. Evaluations of a suite of proposed embodied benchmarks, including both primitive and composite tasks, confirm its robust and versatile planning capabilities. Project page: https://omnieva.github.io
♻ ☆ OneCAT: Decoder-Only Auto-Regressive Model for Unified Understanding and Generation
We introduce OneCAT, a unified multimodal model that seamlessly integrates understanding, generation, and editing within a novel, pure decoder-only transformer architecture. Our framework uniquely eliminates the need for external components such as Vision Transformers (ViT) or vision tokenizer during inference, leading to significant efficiency gains, especially for high-resolution inputs. This is achieved through a modality-specific Mixture-of-Experts (MoE) structure trained with a single autoregressive (AR) objective, which also natively supports dynamic resolutions. Furthermore, we pioneer a multi-scale visual autoregressive mechanism within the Large Language Model (LLM) that drastically reduces decoding steps compared to diffusion-based methods while maintaining state-of-the-art performance. Our findings demonstrate the powerful potential of pure autoregressive modeling as a sufficient and elegant foundation for unified multimodal intelligence. As a result, OneCAT sets a new performance standard, outperforming existing open-source unified multimodal models across benchmarks for multimodal generation, editing, and understanding.
comment: technical report, project url:https://onecat-ai.github.io/
♻ ☆ LoFi: Vision-Aided Label Generator for Wi-Fi Localization and Tracking
Data-driven Wi-Fi localization and tracking have shown great promise due to their lower reliance on specialized hardware compared to model-based methods. However, most existing data collection techniques provide only coarse-grained ground truth or a limited number of labeled points, significantly hindering the advancement of data-driven approaches. While systems like lidar can deliver precise ground truth, their high costs make them inaccessible to many users. To address these challenges, we propose LoFi, a vision-aided label generator for Wi-Fi localization and tracking. LoFi can generate ground truth position coordinates solely from 2D images, offering high precision, low cost, and ease of use. Utilizing our method, we have compiled a Wi-Fi tracking and localization dataset using the ESP32-S3 and a webcam. The code and dataset of this paper are available at https://github.com/RS2002/LoFi.
♻ ☆ PL-Net: Progressive Learning Network for Medical Image Segmentation
In recent years, deep convolutional neural network-based segmentation methods have achieved state-of-the-art performance for many medical analysis tasks. However, most of these approaches rely on optimizing the U-Net structure or adding new functional modules, which overlooks the complementation and fusion of coarse-grained and fine-grained semantic information. To address these issues, we propose a 2D medical image segmentation framework called Progressive Learning Network (PL-Net), which comprises Internal Progressive Learning (IPL) and External Progressive Learning (EPL). PL-Net offers the following advantages: (1) IPL divides feature extraction into two steps, allowing for the mixing of different size receptive fields and capturing semantic information from coarse to fine granularity without introducing additional parameters; (2) EPL divides the training process into two stages to optimize parameters and facilitate the fusion of coarse-grained information in the first stage and fine-grained information in the second stage. We conducted comprehensive evaluations of our proposed method on five medical image segmentation datasets, and the experimental results demonstrate that PL-Net achieves competitive segmentation performance. It is worth noting that PL-Net does not introduce any additional learnable parameters compared to other U-Net variants.
♻ ☆ MoPD: Mixture-of-Prompts Distillation for Vision-Language Models
Soft prompt learning methods are effective for adapting vision-language models (VLMs) to downstream tasks. Nevertheless, empirical evidence reveals a tendency of existing methods that they overfit seen classes and exhibit degraded performance on unseen classes. This limitation is due to the inherent bias in the training data towards the seen classes. To address this issue, we propose a novel soft prompt learning method, named Mixture-of-Prompts Distillation (MoPD), which can effectively transfer useful knowledge from hard prompts manually hand-crafted (a.k.a. teacher prompts) to the learnable soft prompt (a.k.a. student prompt), thereby enhancing the generalization ability of soft prompts on unseen classes. Moreover, the proposed MoPD method utilizes a gating network that learns to select hard prompts used for prompt distillation. Extensive experiments demonstrate that the proposed MoPD method outperforms state-of-the-art baselines especially on on unseen classes.
♻ ☆ SPECS: Specificity-Enhanced CLIP-Score for Long Image Caption Evaluation
As interest grows in generating long, detailed image captions, standard evaluation metrics become increasingly unreliable. N-gram-based metrics though efficient, fail to capture semantic correctness. Representational Similarity (RS) metrics, designed to address this, initially saw limited use due to high computational costs, while today, despite advances in hardware, they remain unpopular due to low correlation to human judgments. Meanwhile, metrics based on large language models (LLMs) show strong correlation with human judgments, but remain too expensive for iterative use during model development. We introduce SPECS (Specificity-Enhanced CLIPScore), a reference-free RS metric tailored to long image captioning. SPECS modifies CLIP with a new objective that emphasizes specificity: rewarding correct details and penalizing incorrect ones. We show that SPECS matches the performance of open-source LLM-based metrics in correlation to human judgments, while being far more efficient. This makes it a practical alternative for iterative checkpoint evaluation during image captioning model development.Our code can be found at https://github.com/mbzuai-nlp/SPECS.
♻ ☆ Region-Wise Correspondence Prediction between Manga Line Art Images
Understanding region-wise correspondence between manga line art images is a fundamental task in manga processing, enabling downstream applications such as automatic line art colorization and in-between frame generation. However, this task remains largely unexplored, especially in realistic scenarios without pre-existing segmentation or annotations. In this paper, we introduce a novel and practical task: predicting region-wise correspondence between raw manga line art images without any pre-existing labels or masks. To tackle this problem, we divide each line art image into a set of patches and propose a Transformer-based framework that learns patch-level similarities within and across images. We then apply edge-aware clustering and a region matching algorithm to convert patch-level predictions into coherent region-level correspondences. To support training and evaluation, we develop an automatic annotation pipeline and manually refine a subset of the data to construct benchmark datasets. Experiments on multiple datasets demonstrate that our method achieves high patch-level accuracy (e.g., 96.34%) and generates consistent region-level correspondences, highlighting its potential for real-world manga applications.
♻ ☆ Self-Rewarding Large Vision-Language Models for Optimizing Prompts in Text-to-Image Generation ACL2025
Text-to-image models are powerful for producing high-quality images based on given text prompts, but crafting these prompts often requires specialized vocabulary. To address this, existing methods train rewriting models with supervision from large amounts of manually annotated data and trained aesthetic assessment models. To alleviate the dependence on data scale for model training and the biases introduced by trained models, we propose a novel prompt optimization framework, designed to rephrase a simple user prompt into a sophisticated prompt to a text-to-image model. Specifically, we employ the large vision language models (LVLMs) as the solver to rewrite the user prompt, and concurrently, employ LVLMs as a reward model to score the aesthetics and alignment of the images generated by the optimized prompt. Instead of laborious human feedback, we exploit the prior knowledge of the LVLM to provide rewards, i.e., AI feedback. Simultaneously, the solver and the reward model are unified into one model and iterated in reinforcement learning to achieve self-improvement by giving a solution and judging itself. Results on two popular datasets demonstrate that our method outperforms other strong competitors.
comment: Accepted by ACL2025 Findings
♻ ☆ Integrative Variational Autoencoders for Generative Modeling of an Image Outcome with Multiple Input Images
Understanding relationships across multiple imaging modalities is central to neuroimaging research. We introduce the Integrative Variational Autoencoder (InVA), the first hierarchical VAE framework for image-on-image regression in multimodal neuroimaging. Unlike standard VAEs, which are not designed for predictive integration across modalities, InVA models outcome images as functions of both shared and modality-specific features. This flexible, data-driven approach avoids rigid assumptions of classical tensor regression and outperforms conventional VAEs and nonlinear models such as BART. As a key application, InVA accurately predicts costly PET scans from structural MRI, offering an efficient and powerful tool for multimodal neuroimaging.
♻ ☆ TSGCNeXt: Dynamic-Static Multi-Graph Convolution for Efficient Skeleton-Based Action Recognition with Long-term Learning Potential
Skeleton-based action recognition has achieved remarkable results in human action recognition with the development of graph convolutional networks (GCNs). However, the recent works tend to construct complex learning mechanisms with redundant training and exist a bottleneck for long time-series. To solve these problems, we propose the Temporal-Spatio Graph ConvNeXt (TSGCNeXt) to explore efficient learning mechanism of long temporal skeleton sequences. Firstly, a new graph learning mechanism with simple structure, Dynamic-Static Separate Multi-graph Convolution (DS-SMG) is proposed to aggregate features of multiple independent topological graphs and avoid the node information being ignored during dynamic convolution. Next, we construct a graph convolution training acceleration mechanism to optimize the back-propagation computing of dynamic graph learning with 55.08\% speed-up. Finally, the TSGCNeXt restructure the overall structure of GCN with three Spatio-temporal learning modules,efficiently modeling long temporal features. In comparison with existing previous methods on large-scale datasets NTU RGB+D 60 and 120, TSGCNeXt outperforms on single-stream networks. In addition, with the ema model introduced into the multi-stream fusion, TSGCNeXt achieves SOTA levels. On the cross-subject and cross-set of the NTU 120, accuracies reach 90.22% and 91.74%.
♻ ☆ HiddenObject: Modality-Agnostic Fusion for Multimodal Hidden Object Detection
Detecting hidden or partially concealed objects remains a fundamental challenge in multimodal environments, where factors like occlusion, camouflage, and lighting variations significantly hinder performance. Traditional RGB-based detection methods often fail under such adverse conditions, motivating the need for more robust, modality-agnostic approaches. In this work, we present HiddenObject, a fusion framework that integrates RGB, thermal, and depth data using a Mamba-based fusion mechanism. Our method captures complementary signals across modalities, enabling enhanced detection of obscured or camouflaged targets. Specifically, the proposed approach identifies modality-specific features and fuses them in a unified representation that generalizes well across challenging scenarios. We validate HiddenObject across multiple benchmark datasets, demonstrating state-of-the-art or competitive performance compared to existing methods. These results highlight the efficacy of our fusion design and expose key limitations in current unimodal and na\"ive fusion strategies. More broadly, our findings suggest that Mamba-based fusion architectures can significantly advance the field of multimodal object detection, especially under visually degraded or complex conditions.
comment: fix typos
♻ ☆ SFD-Mamba2Net: Structure-Guided Frequency-Enhanced Dual-Stream Mamba2 Network for Coronary Artery Segmentation
Background: Coronary Artery Disease (CAD) is one of the leading causes of death worldwide. Invasive Coronary Angiography (ICA), regarded as the gold standard for CAD diagnosis, necessitates precise vessel segmentation and stenosis detection. However, ICA images are typically characterized by low contrast, high noise levels, and complex, fine-grained vascular structures, which pose significant challenges to the clinical adoption of existing segmentation and detection methods. Objective: This study aims to improve the accuracy of coronary artery segmentation and stenosis detection in ICA images by integrating multi-scale structural priors, state-space-based long-range dependency modeling, and frequency-domain detail enhancement strategies. Methods: We propose SFD-Mamba2Net, an end-to-end framework tailored for ICA-based vascular segmentation and stenosis detection. In the encoder, a Curvature-Aware Structural Enhancement (CASE) module is embedded to leverage multi-scale responses for highlighting slender tubular vascular structures, suppressing background interference, and directing attention toward vascular regions. In the decoder, we introduce a Progressive High-Frequency Perception (PHFP) module that employs multi-level wavelet decomposition to progressively refine high-frequency details while integrating low-frequency global structures. Results and Conclusions: SFD-Mamba2Net consistently outperformed state-of-the-art methods across eight segmentation metrics, and achieved the highest true positive rate and positive predictive value in stenosis detection.
♻ ☆ Out-Of-Distribution Detection for Audio-visual Generalized Zero-Shot Learning: A General Framework BMVC 2024
Generalized Zero-Shot Learning (GZSL) is a challenging task requiring accurate classification of both seen and unseen classes. Within this domain, Audio-visual GZSL emerges as an extremely exciting yet difficult task, given the inclusion of both visual and acoustic features as multi-modal inputs. Existing efforts in this field mostly utilize either embedding-based or generative-based methods. However, generative training is difficult and unstable, while embedding-based methods often encounter domain shift problem. Thus, we find it promising to integrate both methods into a unified framework to leverage their advantages while mitigating their respective disadvantages. Our study introduces a general framework employing out-of-distribution (OOD) detection, aiming to harness the strengths of both approaches. We first employ generative adversarial networks to synthesize unseen features, enabling the training of an OOD detector alongside classifiers for seen and unseen classes. This detector determines whether a test feature belongs to seen or unseen classes, followed by classification utilizing separate classifiers for each feature type. We test our framework on three popular audio-visual datasets and observe a significant improvement comparing to existing state-of-the-art works. Codes can be found in https://github.com/liuyuan-wen/AV-OOD-GZSL.
comment: Accepted to BMVC 2024
♻ ☆ DiFlow-TTS: Discrete Flow Matching with Factorized Speech Tokens for Low-Latency Zero-Shot Text-To-Speech
Zero-shot Text-to-Speech (TTS) aims to synthesize high-quality speech that mimics the voice of an unseen speaker using only a short reference sample, requiring not only speaker adaptation but also accurate modeling of prosodic attributes. Recent approaches based on language models, diffusion, and flow matching have shown promising results in zero-shot TTS, but still suffer from slow inference and repetition artifacts. Discrete codec representations have been widely adopted for speech synthesis, and recent works have begun to explore diffusion models in purely discrete settings, suggesting the potential of discrete generative modeling for speech synthesis. However, existing flow-matching methods typically embed these discrete tokens into a continuous space and apply continuous flow matching, which may not fully leverage the advantages of discrete representations. To address these challenges, we introduce DiFlow-TTS, which, to the best of our knowledge, is the first model to explore purely Discrete Flow Matching for speech synthesis. DiFlow-TTS explicitly models factorized speech attributes within a compact and unified architecture. It leverages in-context learning by conditioning on textual content, along with prosodic and acoustic attributes extracted from a reference speech, enabling effective attribute cloning in a zero-shot setting. In addition, the model employs a factorized flow prediction mechanism with distinct heads for prosody and acoustic details, allowing it to learn aspect-specific distributions. Experimental results demonstrate that DiFlow-TTS achieves promising performance in several key metrics, including naturalness, prosody, preservation of speaker style, and energy control. It also maintains a compact model size and achieves low-latency inference, generating speech up to 25.8 times faster than the latest existing baselines.
Machine Learning 129
☆ SSL-AD: Spatiotemporal Self-Supervised Learning for Generalizability and Adaptability Across Alzheimer's Prediction Tasks and Datasets
Alzheimer's disease is a progressive, neurodegenerative disorder that causes memory loss and cognitive decline. While there has been extensive research in applying deep learning models to Alzheimer's prediction tasks, these models remain limited by lack of available labeled data, poor generalization across datasets, and inflexibility to varying numbers of input scans and time intervals between scans. In this study, we adapt three state-of-the-art temporal self-supervised learning (SSL) approaches for 3D brain MRI analysis, and add novel extensions designed to handle variable-length inputs and learn robust spatial features. We aggregate four publicly available datasets comprising 3,161 patients for pre-training, and show the performance of our model across multiple Alzheimer's prediction tasks including diagnosis classification, conversion detection, and future conversion prediction. Importantly, our SSL model implemented with temporal order prediction and contrastive learning outperforms supervised learning on six out of seven downstream tasks. It demonstrates adaptability and generalizability across tasks and number of input images with varying time intervals, highlighting its capacity for robust performance across clinical applications. We release our code and model publicly at https://github.com/emilykaczmarek/SSL-AD.
☆ WhisTLE: Deeply Supervised, Text-Only Domain Adaptation for Pretrained Speech Recognition Transformers
Pretrained automatic speech recognition (ASR) models such as Whisper perform well but still need domain adaptation to handle unseen vocabulary and parlance. In many real-world settings, collecting speech data is impractical, necessitating text-only adaptation. We propose WhisTLE, a deeply supervised, text-only adaptation method for pretrained encoder-decoder ASR models. WhisTLE trains a variational autoencoder (VAE) to model encoder outputs from text and fine-tunes the decoder using the learned text-to-latent encoder, optionally combined with text-to-speech (TTS) adaptation. At inference, the original encoder is restored, incurring no extra runtime cost. Across four out-of-domain datasets and four ASR models, WhisTLE with TTS reduces word error rate (WER) by 12.3% relative to TTS-only adaptation and outperforms all non-WhisTLE baselines in 27 of 32 scenarios.
comment: 5 pages, 2 figures
☆ Understanding Outer Optimizers in Local SGD: Learning Rates, Momentum, and Acceleration
Modern machine learning often requires training with large batch size, distributed data, and massively parallel compute hardware (like mobile and other edge devices or distributed data centers). Communication becomes a major bottleneck in such settings but methods like Local Stochastic Gradient Descent (Local SGD) show great promise in reducing this additional communication overhead. Local SGD consists of three parts: a local optimization process, an aggregation mechanism, and an outer optimizer that uses the aggregated updates from the nodes to produce a new model. While there exists an extensive literature on understanding the impact of hyperparameters in the local optimization process, the choice of outer optimizer and its hyperparameters is less clear. We study the role of the outer optimizer in Local SGD, and prove new convergence guarantees for the algorithm. In particular, we show that tuning the outer learning rate allows us to (a) trade off between optimization error and stochastic gradient noise variance, and (b) make up for ill-tuning of the inner learning rate. Our theory suggests that the outer learning rate should sometimes be set to values greater than $1$. We extend our results to settings where we use momentum in the outer optimizer, and we show a similar role for the momentum-adjusted outer learning rate. We also study acceleration in the outer optimizer and show that it improves the convergence rate as a function of the number of communication rounds, improving upon the convergence rate of prior algorithms that apply acceleration locally. Finally, we also introduce a novel data-dependent analysis of Local SGD that yields further insights on outer learning rate tuning. We conduct comprehensive experiments with standard language models and various outer optimizers to validate our theory.
☆ Mutual Information Tracks Policy Coherence in Reinforcement Learning
Reinforcement Learning (RL) agents deployed in real-world environments face degradation from sensor faults, actuator wear, and environmental shifts, yet lack intrinsic mechanisms to detect and diagnose these failures. We present an information-theoretic framework that reveals both the fundamental dynamics of RL and provides practical methods for diagnosing deployment-time anomalies. Through analysis of state-action mutual information patterns in a robotic control task, we first demonstrate that successful learning exhibits characteristic information signatures: mutual information between states and actions steadily increases from 0.84 to 2.83 bits (238% growth) despite growing state entropy, indicating that agents develop increasingly selective attention to task-relevant patterns. Intriguingly, states, actions and next states joint mutual information, MI(S,A;S'), follows an inverted U-curve, peaking during early learning before declining as the agent specializes suggesting a transition from broad exploration to efficient exploitation. More immediately actionable, we show that information metrics can differentially diagnose system failures: observation-space, i.e., states noise (sensor faults) produces broad collapses across all information channels with pronounced drops in state-action coupling, while action-space noise (actuator faults) selectively disrupts action-outcome predictability while preserving state-action relationships. This differential diagnostic capability demonstrated through controlled perturbation experiments enables precise fault localization without architectural modifications or performance degradation. By establishing information patterns as both signatures of learning and diagnostic for system health, we provide the foundation for adaptive RL systems capable of autonomous fault detection and policy adjustment based on information-theoretic principles.
comment: 10 pages, 4 figures, 1 table
☆ Run-Time Monitoring of ERTMS/ETCS Control Flow by Process Mining
Ensuring the resilience of computer-based railways is increasingly crucial to account for uncertainties and changes due to the growing complexity and criticality of those systems. Although their software relies on strict verification and validation processes following well-established best-practices and certification standards, anomalies can still occur at run-time due to residual faults, system and environmental modifications that were unknown at design-time, or other emergent cyber-threat scenarios. This paper explores run-time control-flow anomaly detection using process mining to enhance the resilience of ERTMS/ETCS L2 (European Rail Traffic Management System / European Train Control System Level 2). Process mining allows learning the actual control flow of the system from its execution traces, thus enabling run-time monitoring through online conformance checking. In addition, anomaly localization is performed through unsupervised machine learning to link relevant deviations to critical system components. We test our approach on a reference ERTMS/ETCS L2 scenario, namely the RBC/RBC Handover, to show its capability to detect and localize anomalies with high accuracy, efficiency, and explainability.
comment: Accepted to the 6th International Conference on Reliability, Safety, and Security of Railway Systems (RSSRail2025)
☆ Is In-Context Learning Learning?
In-context learning (ICL) allows some autoregressive models to solve tasks via next-token prediction and without needing further training. This has led to claims about these model's ability to solve (learn) unseen tasks with only a few shots (exemplars) in the prompt. However, deduction does not always imply learning, as ICL does not explicitly encode a given observation. Instead, the models rely on their prior knowledge and the exemplars given, if any. We argue that, mathematically, ICL does constitute learning, but its full characterisation requires empirical work. We then carry out a large-scale analysis of ICL ablating out or accounting for memorisation, pretraining, distributional shifts, and prompting style and phrasing. We find that ICL is an effective learning paradigm, but limited in its ability to learn and generalise to unseen tasks. We note that, in the limit where exemplars become more numerous, accuracy is insensitive to exemplar distribution, model, prompt style, and the input's linguistic features. Instead, it deduces patterns from regularities in the prompt, which leads to distributional sensitivity, especially in prompting styles such as chain-of-thought. Given the varied accuracies on formally similar tasks, we conclude that autoregression's ad-hoc encoding is not a robust mechanism, and suggests limited all-purpose generalisability.
comment: Director's cut
☆ Multipole Semantic Attention: A Fast Approximation of Softmax Attention for Pretraining
We present Multipole Semantic Attention (MuSe), an efficient approximation of softmax attention that combines semantic clustering with multipole expansions from computational physics. Our method addresses the quadratic computational complexity of transformers in the context length by clustering queries and keys separately in their learned representation spaces, enabling a hierarchical two-stage attention mechanism. Unlike prior clustering approaches that group only keys or use unified clustering, we maintain separate clusterings that respect attention's asymmetric treatment of these spaces. We augment centroid-based (monopole) approximations with dipole corrections that capture directional variance within clusters, preserving richer information during training. The method operates as a drop-in replacement for standard attention, requiring only hyperparameter specification without architectural modifications. Our approach achieves $\mathcal{O}(NCD)$ complexity for acausal attention with $C$ clusters and $\mathcal{O}(NCD \log N)$ for causal attention. On isolated attention layers, we demonstrate $3\times$ speedup over CUDNN Flash Attention at 8k context length, with relative squared errors below 20%. For causal attention, we develop a hierarchical block decomposition that combines exact local computation with efficient long-range approximation. In end-to-end pretraining of a 30M parameter model on book-length texts with 16k context, we achieve 12.2% runtime reduction with only 0.36% loss degradation, establishing the viability of multipole approximations for efficient transformer pretraining.
☆ Inpainting-Guided Policy Optimization for Diffusion Large Language Models
Masked diffusion large language models (dLLMs) are emerging as promising alternatives to autoregressive LLMs, offering competitive performance while supporting unique generation capabilities such as inpainting. We explore how inpainting can inform RL algorithm design for dLLMs. Aligning LLMs with reinforcement learning faces an exploration challenge: sparse reward signals and sample waste when models fail to discover correct solutions. While this inefficiency affects LLMs broadly, dLLMs offer a distinctive opportunity--their inpainting ability can guide exploration. We introduce IGPO (Inpainting Guided Policy Optimization), an RL framework that strategically inserts partial ground-truth reasoning traces during online sampling. Unlike providing full solutions, inpainting steers exploration toward promising trajectory spaces while preserving self-generated reasoning, bridging supervised fine-tuning and reinforcement learning. We apply IGPO to group-based optimization methods such as GRPO, where exploration failures cause zero advantages and gradients. IGPO restores meaningful gradients while improving sample efficiency. We also propose supervised fine-tuning on synthetically rewritten concise traces that better align with dLLM generation patterns. With additional techniques including entropy-based filtering, our training recipe yields substantial gains across three mathematical benchmarks--GSM8K, Math500, and AMC--achieving new state-of-the-art results for full-attention masked dLLMs.
comment: preprint; 21 pages
☆ Vendi Information Gain for Active Learning and its Application to Ecology
While monitoring biodiversity through camera traps has become an important endeavor for ecological research, identifying species in the captured image data remains a major bottleneck due to limited labeling resources. Active learning -- a machine learning paradigm that selects the most informative data to label and train a predictive model -- offers a promising solution, but typically focuses on uncertainty in the individual predictions without considering uncertainty across the entire dataset. We introduce a new active learning policy, Vendi information gain (VIG), that selects images based on their impact on dataset-wide prediction uncertainty, capturing both informativeness and diversity. Applied to the Snapshot Serengeti dataset, VIG achieves impressive predictive accuracy close to full supervision using less than 10% of the labels. It consistently outperforms standard baselines across metrics and batch sizes, collecting more diverse data in the feature space. VIG has broad applicability beyond ecology, and our results highlight its value for biodiversity monitoring in data-limited environments.
☆ Differentially Private Decentralized Dataset Synthesis Through Randomized Mixing with Correlated Noise
In this work, we explore differentially private synthetic data generation in a decentralized-data setting by building on the recently proposed Differentially Private Class-Centric Data Aggregation (DP-CDA). DP-CDA synthesizes data in a centralized setting by mixing multiple randomly-selected samples from the same class and injecting carefully calibrated Gaussian noise, ensuring ({\epsilon}, {\delta})-differential privacy. When deployed in a decentralized or federated setting, where each client holds only a small partition of the data, DP-CDA faces new challenges. The limited sample size per client increases the sensitivity of local computations, requiring higher noise injection to maintain the differential privacy guarantee. This, in turn, leads to a noticeable degradation in the utility compared to the centralized setting. To mitigate this issue, we integrate the Correlation-Assisted Private Estimation (CAPE) protocol into the federated DP-CDA framework and propose CAPE Assisted Federated DP-CDA algorithm. CAPE enables limited collaboration among the clients by allowing them to generate jointly distributed (anti-correlated) noise that cancels out in aggregate, while preserving privacy at the individual level. This technique significantly improves the privacy-utility trade-off in the federated setting. Extensive experiments on MNIST and FashionMNIST datasets demonstrate that the proposed CAPE Assisted Federated DP-CDA approach can achieve utility comparable to its centralized counterpart under some parameter regime, while maintaining rigorous differential privacy guarantees.
comment: This work has been submitted to the IEEE for possible publication
☆ Flow Straight and Fast in Hilbert Space: Functional Rectified Flow
Many generative models originally developed in finite-dimensional Euclidean space have functional generalizations in infinite-dimensional settings. However, the extension of rectified flow to infinite-dimensional spaces remains unexplored. In this work, we establish a rigorous functional formulation of rectified flow in an infinite-dimensional Hilbert space. Our approach builds upon the superposition principle for continuity equations in an infinite-dimensional space. We further show that this framework extends naturally to functional flow matching and functional probability flow ODEs, interpreting them as nonlinear generalizations of rectified flow. Notably, our extension to functional flow matching removes the restrictive measure-theoretic assumptions in the existing theory of \citet{kerrigan2024functional}. Furthermore, we demonstrate experimentally that our method achieves superior performance compared to existing functional generative models.
☆ Matrix-free Neural Preconditioner for the Dirac Operator in Lattice Gauge Theory
Linear systems arise in generating samples and in calculating observables in lattice quantum chromodynamics~(QCD). Solving the Hermitian positive definite systems, which are sparse but ill-conditioned, involves using iterative methods, such as Conjugate Gradient (CG), which are time-consuming and computationally expensive. Preconditioners can effectively accelerate this process, with the state-of-the-art being multigrid preconditioners. However, constructing useful preconditioners can be challenging, adding additional computational overhead, especially in large linear systems. We propose a framework, leveraging operator learning techniques, to construct linear maps as effective preconditioners. The method in this work does not rely on explicit matrices from either the original linear systems or the produced preconditioners, allowing efficient model training and application in the CG solver. In the context of the Schwinger model U(1) gauge theory in 1+1 spacetime dimensions with two degenerate-mass fermions), this preconditioning scheme effectively decreases the condition number of the linear systems and approximately halves the number of iterations required for convergence in relevant parameter ranges. We further demonstrate the framework learns a general mapping dependent on the lattice structure which leads to zero-shot learning ability for the Dirac operators constructed from gauge field configurations of different sizes.
☆ Characterizing the Efficiency of Distributed Training: A Power, Performance, and Thermal Perspective
The rapid scaling of Large Language Models (LLMs) has pushed training workloads far beyond the limits of single-node analysis, demanding a deeper understanding of how these models behave across large-scale, multi-GPU systems. In this paper, we present a comprehensive characterization of LLM training across diverse real-world workloads and hardware platforms, including NVIDIA H100/H200 and AMD MI250 GPUs. We analyze dense and sparse models under various parallelism strategies -- tensor, pipeline, data, and expert -- and evaluate their effects on hardware utilization, power consumption, and thermal behavior. We further evaluate the effectiveness of optimizations such as activation recomputation and compute-communication overlap. Our findings show that performance is not determined solely by scaling hardware capacity. Scale-up systems with fewer, higher-memory GPUs can outperform scale-out systems in communication-bound regimes, but only under carefully tuned configurations; in other cases, scale-out deployments achieve superior throughput. We also show that certain parallelism combinations, such as tensor with pipeline, lead to bandwidth underutilization due to inefficient data chunking, while increasing microbatch sizes beyond a certain point induces bursty execution and peak power excursions that worsen thermal throttling. These insights reveal how training performance is shaped by complex interactions between hardware, system topology, and model execution. We conclude by offering recommendations for system and hardware design to improve the scalability and reliability of future LLM systems and workloads. The source code of this project is available at https://github.com/sitar-lab/CharLLM-PPT.
☆ Data distribution impacts the performance and generalisability of contrastive learning-based foundation models of electrocardiograms
Contrastive learning is a widely adopted self-supervised pretraining strategy, yet its dependence on cohort composition remains underexplored. We present Contrasting by Patient Augmented Electrocardiograms (CAPE) foundation model and pretrain on four cohorts (n = 5,203,352), from diverse populations across three continents (North America, South America, Asia). We systematically assess how cohort demographics, health status, and population diversity influence the downstream performance for prediction tasks also including two additional cohorts from another continent (Europe). We find that downstream performance depends on the distributional properties of the pretraining cohort, including demographics and health status. Moreover, while pretraining with a multi-centre, demographically diverse cohort improves in-distribution accuracy, it reduces out-of-distribution (OOD) generalisation of our contrastive approach by encoding cohort-specific artifacts. To address this, we propose the In-Distribution Batch (IDB) strategy, which preserves intra-cohort consistency during pretraining and enhances OOD robustness. This work provides important insights for developing clinically fair and generalisable foundation models.
comment: Currently under review at npj Digital Medicine
☆ A Discrepancy-Based Perspective on Dataset Condensation
Given a dataset of finitely many elements $\mathcal{T} = \{\mathbf{x}_i\}_{i = 1}^N$, the goal of dataset condensation (DC) is to construct a synthetic dataset $\mathcal{S} = \{\tilde{\mathbf{x}}_j\}_{j = 1}^M$ which is significantly smaller ($M \ll N$) such that a model trained from scratch on $\mathcal{S}$ achieves comparable or even superior generalization performance to a model trained on $\mathcal{T}$. Recent advances in DC reveal a close connection to the problem of approximating the data distribution represented by $\mathcal{T}$ with a reduced set of points. In this work, we present a unified framework that encompasses existing DC methods and extend the task-specific notion of DC to a more general and formal definition using notions of discrepancy, which quantify the distance between probability distribution in different regimes. Our framework broadens the objective of DC beyond generalization, accommodating additional objectives such as robustness, privacy, and other desirable properties.
comment: 30 pages, 4 tables, 1 figure
☆ Physics-informed sensor coverage through structure preserving machine learning
We present a machine learning framework for adaptive source localization in which agents use a structure-preserving digital twin of a coupled hydrodynamic-transport system for real-time trajectory planning and data assimilation. The twin is constructed with conditional neural Whitney forms (CNWF), coupling the numerical guarantees of finite element exterior calculus (FEEC) with transformer-based operator learning. The resulting model preserves discrete conservation, and adapts in real time to streaming sensor data. It employs a conditional attention mechanism to identify: a reduced Whitney-form basis; reduced integral balance equations; and a source field, each compatible with given sensor measurements. The induced reduced-order environmental model retains the stability and consistency of standard finite-element simulation, yielding a physically realizable, regular mapping from sensor data to the source field. We propose a staggered scheme that alternates between evaluating the digital twin and applying Lloyd's algorithm to guide sensor placement, with analysis providing conditions for monotone improvement of a coverage functional. Using the predicted source field as an importance function within an optimal-recovery scheme, we demonstrate recovery of point sources under continuity assumptions, highlighting the role of regularity as a sufficient condition for localization. Experimental comparisons with physics-agnostic transformer architectures show improved accuracy in complex geometries when physical constraints are enforced, indicating that structure preservation provides an effective inductive bias for source identification.
☆ Multi-pathology Chest X-ray Classification with Rejection Mechanisms
Overconfidence in deep learning models poses a significant risk in high-stakes medical imaging tasks, particularly in multi-label classification of chest X-rays, where multiple co-occurring pathologies must be detected simultaneously. This study introduces an uncertainty-aware framework for chest X-ray diagnosis based on a DenseNet-121 backbone, enhanced with two selective prediction mechanisms: entropy-based rejection and confidence interval-based rejection. Both methods enable the model to abstain from uncertain predictions, improving reliability by deferring ambiguous cases to clinical experts. A quantile-based calibration procedure is employed to tune rejection thresholds using either global or class-specific strategies. Experiments conducted on three large public datasets (PadChest, NIH ChestX-ray14, and MIMIC-CXR) demonstrate that selective rejection improves the trade-off between diagnostic accuracy and coverage, with entropy-based rejection yielding the highest average AUC across all pathologies. These results support the integration of selective prediction into AI-assisted diagnostic workflows, providing a practical step toward safer, uncertainty-aware deployment of deep learning in clinical settings.
comment: 12 pages, 4 figures
☆ GLAM: Geometry-Guided Local Alignment for Multi-View VLP in Mammography MICCAI 2025
Mammography screening is an essential tool for early detection of breast cancer. The speed and accuracy of mammography interpretation have the potential to be improved with deep learning methods. However, the development of a foundation visual language model (VLM) is hindered by limited data and domain differences between natural and medical images. Existing mammography VLMs, adapted from natural images, often ignore domain-specific characteristics, such as multi-view relationships in mammography. Unlike radiologists who analyze both views together to process ipsilateral correspondence, current methods treat them as independent images or do not properly model the multi-view correspondence learning, losing critical geometric context and resulting in suboptimal prediction. We propose GLAM: Global and Local Alignment for Multi-view mammography for VLM pretraining using geometry guidance. By leveraging the prior knowledge about the multi-view imaging process of mammograms, our model learns local cross-view alignments and fine-grained local features through joint global and local, visual-visual, and visual-language contrastive learning. Pretrained on EMBED [14], one of the largest open mammography datasets, our model outperforms baselines across multiple datasets under different settings.
comment: Accepted by MICCAI 2025
☆ Why does your graph neural network fail on some graphs? Insights from exact generalisation error
Graph Neural Networks (GNNs) are widely used in learning on graph-structured data, yet a principled understanding of why they succeed or fail remains elusive. While prior works have examined architectural limitations such as over-smoothing and over-squashing, these do not explain what enables GNNs to extract meaningful representations or why performance varies drastically between similar architectures. These questions are related to the role of generalisation: the ability of a model to make accurate predictions on unlabelled data. Although several works have derived generalisation error bounds for GNNs, these are typically loose, restricted to a single architecture, and offer limited insight into what governs generalisation in practice. In this work, we take a different approach by deriving the exact generalisation error for GNNs in a transductive fixed-design setting through the lens of signal processing. From this viewpoint, GNNs can be interpreted as graph filter operators that act on node features via the graph structure. By focusing on linear GNNs while allowing non-linearity in the graph filters, we derive the first exact generalisation error for a broad range of GNNs, including convolutional, PageRank-based, and attention-based models. The exact characterisation of the generalisation error reveals that only the aligned information between node features and graph structure contributes to generalisation. Furthermore, we quantify the effect of homophily on generalisation. Our work provides a framework that explains when and why GNNs can effectively leverage structural and feature information, offering practical guidance for model selection.
☆ I-Segmenter: Integer-Only Vision Transformer for Efficient Semantic Segmentation
Vision Transformers (ViTs) have recently achieved strong results in semantic segmentation, yet their deployment on resource-constrained devices remains limited due to their high memory footprint and computational cost. Quantization offers an effective strategy to improve efficiency, but ViT-based segmentation models are notoriously fragile under low precision, as quantization errors accumulate across deep encoder-decoder pipelines. We introduce I-Segmenter, the first fully integer-only ViT segmentation framework. Building on the Segmenter architecture, I-Segmenter systematically replaces floating-point operations with integer-only counterparts. To further stabilize both training and inference, we propose $\lambda$-ShiftGELU, a novel activation function that mitigates the limitations of uniform quantization in handling long-tailed activation distributions. In addition, we remove the L2 normalization layer and replace bilinear interpolation in the decoder with nearest neighbor upsampling, ensuring integer-only execution throughout the computational graph. Extensive experiments show that I-Segmenter achieves accuracy within a reasonable margin of its FP32 baseline (5.1 % on average), while reducing model size by up to 3.8x and enabling up to 1.2x faster inference with optimized runtimes. Notably, even in one-shot PTQ with a single calibration image, I-Segmenter delivers competitive accuracy, underscoring its practicality for real-world deployment.
☆ ARMA Block: A CNN-Based Autoregressive and Moving Average Module for Long-Term Time Series Forecasting
This paper proposes a simple yet effective convolutional module for long-term time series forecasting. The proposed block, inspired by the Auto-Regressive Integrated Moving Average (ARIMA) model, consists of two convolutional components: one for capturing the trend (autoregression) and the other for refining local variations (moving average). Unlike conventional ARIMA, which requires iterative multi-step forecasting, the block directly performs multi-step forecasting, making it easily extendable to multivariate settings. Experiments on nine widely used benchmark datasets demonstrate that our method ARMA achieves competitive accuracy, particularly on datasets exhibiting strong trend variations, while maintaining architectural simplicity. Furthermore, analysis shows that the block inherently encodes absolute positional information, suggesting its potential as a lightweight replacement for positional embeddings in sequential models.
☆ Robot guide with multi-agent control and automatic scenario generation with LLM
The work describes the development of a hybrid control architecture for an anthropomorphic tour guide robot, combining a multi-agent resource management system with automatic behavior scenario generation based on large language models. The proposed approach aims to overcome the limitations of traditional systems, which rely on manual tuning of behavior scenarios. These limitations include manual configuration, low flexibility, and lack of naturalness in robot behavior. The process of preparing tour scenarios is implemented through a two-stage generation: first, a stylized narrative is created, then non-verbal action tags are integrated into the text. The multi-agent system ensures coordination and conflict resolution during the execution of parallel actions, as well as maintaining default behavior after the completion of main operations, contributing to more natural robot behavior. The results obtained from the trial demonstrate the potential of the proposed approach for automating and scaling social robot control systems.
comment: 14 pages, 5 figures, 2 tables, 1 demo-video and repository link
☆ GraphCSVAE: Graph Categorical Structured Variational Autoencoder for Spatiotemporal Auditing of Physical Vulnerability Towards Sustainable Post-Disaster Risk Reduction
In the aftermath of disasters, many institutions worldwide face challenges in continually monitoring changes in disaster risk, limiting the ability of key decision-makers to assess progress towards the UN Sendai Framework for Disaster Risk Reduction 2015-2030. While numerous efforts have substantially advanced the large-scale modeling of hazard and exposure through Earth observation and data-driven methods, progress remains limited in modeling another equally important yet challenging element of the risk equation: physical vulnerability. To address this gap, we introduce Graph Categorical Structured Variational Autoencoder (GraphCSVAE), a novel probabilistic data-driven framework for modeling physical vulnerability by integrating deep learning, graph representation, and categorical probabilistic inference, using time-series satellite-derived datasets and prior expert belief systems. We introduce a weakly supervised first-order transition matrix that reflects the changes in the spatiotemporal distribution of physical vulnerability in two disaster-stricken and socioeconomically disadvantaged areas: (1) the cyclone-impacted coastal Khurushkul community in Bangladesh and (2) the mudslide-affected city of Freetown in Sierra Leone. Our work reveals post-disaster regional dynamics in physical vulnerability, offering valuable insights into localized spatiotemporal auditing and sustainable strategies for post-disaster risk reduction.
comment: Accepted full paper at the 8th International Disaster and Risk Conference, IDRC 2025 | Keywords: weakly supervised, graph deep learning, categorical distribution, physical vulnerability, remote sensing, spatiotemporal disaster risk, transition matrix | The data and code are respectively available at https://doi.org/10.5281/zenodo.16656471 and https://github.com/riskaudit/GraphCSVAE
☆ Generalizing Beyond Suboptimality: Offline Reinforcement Learning Learns Effective Scheduling through Random Data
The Job-Shop Scheduling Problem (JSP) and Flexible Job-Shop Scheduling Problem (FJSP), are canonical combinatorial optimization problems with wide-ranging applications in industrial operations. In recent years, many online reinforcement learning (RL) approaches have been proposed to learn constructive heuristics for JSP and FJSP. Although effective, these online RL methods require millions of interactions with simulated environments that may not capture real-world complexities, and their random policy initialization leads to poor sample efficiency. To address these limitations, we introduce Conservative Discrete Quantile Actor-Critic (CDQAC), a novel offline RL algorithm that learns effective scheduling policies directly from historical data, eliminating the need for costly online interactions, while maintaining the ability to improve upon suboptimal training data. CDQAC couples a quantile-based critic with a delayed policy update, estimating the return distribution of each machine-operation pair rather than selecting pairs outright. Our extensive experiments demonstrate CDQAC's remarkable ability to learn from diverse data sources. CDQAC consistently outperforms the original data-generating heuristics and surpasses state-of-the-art offline and online RL baselines. In addition, CDQAC is highly sample efficient, requiring only 10-20 training instances to learn high-quality policies. Surprisingly, we find that CDQAC performs better when trained on data generated by a random heuristic than when trained on higher-quality data from genetic algorithms and priority dispatching rules.
☆ Proof of AutoML: SDN based Secure Energy Trading with Blockchain in Disaster Case
In disaster scenarios where conventional energy infrastructure is compromised, secure and traceable energy trading between solar-powered households and mobile charging units becomes a necessity. To ensure the integrity of such transactions over a blockchain network, robust and unpredictable nonce generation is vital. This study proposes an SDN-enabled architecture where machine learning regressors are leveraged not for their accuracy, but for their potential to generate randomized values suitable as nonce candidates. Therefore, it is newly called Proof of AutoML. Here, SDN allows flexible control over data flows and energy routing policies even in fragmented or degraded networks, ensuring adaptive response during emergencies. Using a 9000-sample dataset, we evaluate five AutoML-selected regression models - Gradient Boosting, LightGBM, Random Forest, Extra Trees, and K-Nearest Neighbors - not by their prediction accuracy, but by their ability to produce diverse and non-deterministic outputs across shuffled data inputs. Randomness analysis reveals that Random Forest and Extra Trees regressors exhibit complete dependency on randomness, whereas Gradient Boosting, K-Nearest Neighbors and LightGBM show strong but slightly lower randomness scores (97.6%, 98.8% and 99.9%, respectively). These findings highlight that certain machine learning models, particularly tree-based ensembles, may serve as effective and lightweight nonce generators within blockchain-secured, SDN-based energy trading infrastructures resilient to disaster conditions.
comment: 6 pages, 3 figures, 7th International Conference on Blockchain Computing and Applications (BCCA 2025), \c{opyright}2025 IEEE
☆ MCL-AD: Multimodal Collaboration Learning for Zero-Shot 3D Anomaly Detection
Zero-shot 3D (ZS-3D) anomaly detection aims to identify defects in 3D objects without relying on labeled training data, making it especially valuable in scenarios constrained by data scarcity, privacy, or high annotation cost. However, most existing methods focus exclusively on point clouds, neglecting the rich semantic cues available from complementary modalities such as RGB images and texts priors. This paper introduces MCL-AD, a novel framework that leverages multimodal collaboration learning across point clouds, RGB images, and texts semantics to achieve superior zero-shot 3D anomaly detection. Specifically, we propose a Multimodal Prompt Learning Mechanism (MPLM) that enhances the intra-modal representation capability and inter-modal collaborative learning by introducing an object-agnostic decoupled text prompt and a multimodal contrastive loss. In addition, a collaborative modulation mechanism (CMM) is proposed to fully leverage the complementary representations of point clouds and RGB images by jointly modulating the RGB image-guided and point cloud-guided branches. Extensive experiments demonstrate that the proposed MCL-AD framework achieves state-of-the-art performance in ZS-3D anomaly detection.
comment: Page 14, 5 pictures
☆ Targeted Test Selection Approach in Continuous Integration
In modern software development change-based testing plays a crucial role. However, as codebases expand and test suites grow, efficiently managing the testing process becomes increasingly challenging, especially given the high frequency of daily code commits. We propose Targeted Test Selection (T-TS), a machine learning approach for industrial test selection. Our key innovation is a data representation that represent commits as Bags-of-Words of changed files, incorporates cross-file and additional predictive features, and notably avoids the use of coverage maps. Deployed in production, T-TS was comprehensively evaluated against industry standards and recent methods using both internal and public datasets, measuring time efficiency and fault detection. On live industrial data, T-TS selects only 15% of tests, reduces execution time by $5.9\times$, accelerates the pipeline by $5.6\times$, and detects over 95% of test failures. The implementation is publicly available to support further research and practical adoption.
comment: Accepted at ICSME 2025
☆ Property prediction for ionic liquids without prior structural knowledge using limited experimental data: A data-driven neural recommender system leveraging transfer learning
Ionic liquids (ILs) have emerged as versatile replacements for traditional solvents because their physicochemical properties can be precisely tailored to various applications. However, accurately predicting key thermophysical properties remains challenging due to the vast chemical design space and the limited availability of experimental data. In this study, we present a data-driven transfer learning framework that leverages a neural recommender system (NRS) to enable reliable property prediction for ILs using sparse experimental datasets. The approach involves a two-stage process: first, pre-training NRS models on COSMO-RS-based simulated data at fixed temperature and pressure to learn property-specific structural embeddings for cations and anions; and second, fine-tuning simple feedforward neural networks using these embeddings with experimental data at varying temperatures and pressures. In this work, five essential IL properties are considered: density, viscosity, surface tension, heat capacity, and melting point. The framework supports both within-property and cross-property knowledge transfer. Notably, pre-trained models for density, viscosity, and heat capacity are used to fine-tune models for all five target properties, achieving improved performance by a substantial margin for four of them. The model exhibits robust extrapolation to previously unseen ILs. Moreover, the final trained models enable property prediction for over 700,000 IL combinations, offering a scalable solution for IL screening in process design. This work highlights the effectiveness of combining simulated data and transfer learning to overcome sparsity in the experimental data.
Prompt Injection Attacks on LLM Generated Reviews of Scientific Publications
The ongoing intense discussion on rising LLM usage in the scientific peer-review process has recently been mingled by reports of authors using hidden prompt injections to manipulate review scores. Since the existence of such "attacks" - although seen by some commentators as "self-defense" - would have a great impact on the further debate, this paper investigates the practicability and technical success of the described manipulations. Our systematic evaluation uses 1k reviews of 2024 ICLR papers generated by a wide range of LLMs shows two distinct results: I) very simple prompt injections are indeed highly effective, reaching up to 100% acceptance scores. II) LLM reviews are generally biased toward acceptance (>95% in many models). Both results have great impact on the ongoing discussions on LLM usage in peer-review.
☆ Model-agnostic post-hoc explainability for recommender systems
Recommender systems often benefit from complex feature embeddings and deep learning algorithms, which deliver sophisticated recommendations that enhance user experience, engagement, and revenue. However, these methods frequently reduce the interpretability and transparency of the system. In this research, we develop a systematic application, adaptation, and evaluation of deletion diagnostics in the recommender setting. The method compares the performance of a model to that of a similar model trained without a specific user or item, allowing us to quantify how that observation influences the recommender, either positively or negatively. To demonstrate its model-agnostic nature, the proposal is applied to both Neural Collaborative Filtering (NCF), a widely used deep learning-based recommender, and Singular Value Decomposition (SVD), a classical collaborative filtering technique. Experiments on the MovieLens and Amazon Reviews datasets provide insights into model behavior and highlight the generality of the approach across different recommendation paradigms.
☆ A Certifiable Machine Learning-Based Pipeline to Predict Fatigue Life of Aircraft Structures
Fatigue life prediction is essential in both the design and operational phases of any aircraft, and in this sense safety in the aerospace industry requires early detection of fatigue cracks to prevent in-flight failures. Robust and precise fatigue life predictors are thus essential to ensure safety. Traditional engineering methods, while reliable, are time consuming and involve complex workflows, including steps such as conducting several Finite Element Method (FEM) simulations, deriving the expected loading spectrum, and applying cycle counting techniques like peak-valley or rainflow counting. These steps often require collaboration between multiple teams and tools, added to the computational time and effort required to achieve fatigue life predictions. Machine learning (ML) offers a promising complement to traditional fatigue life estimation methods, enabling faster iterations and generalization, providing quick estimates that guide decisions alongside conventional simulations. In this paper, we present a ML-based pipeline that aims to estimate the fatigue life of different aircraft wing locations given the flight parameters of the different missions that the aircraft will be operating throughout its operational life. We validate the pipeline in a realistic use case of fatigue life estimation, yielding accurate predictions alongside a thorough statistical validation and uncertainty quantification. Our pipeline constitutes a complement to traditional methodologies by reducing the amount of costly simulations and, thereby, lowering the required computational and human resources.
comment: 29 pages, 15 figures
☆ RFSeek and Ye Shall Find
Requests for Comments (RFCs) are extensive specification documents for network protocols, but their prose-based format and their considerable length often impede precise operational understanding. We present RFSeek, an interactive tool that automatically extracts visual summaries of protocol logic from RFCs. RFSeek leverages large language models (LLMs) to generate provenance-linked, explorable diagrams, surfacing both official state machines and additional logic found only in the RFC text. Compared to existing RFC visualizations, RFSeek's visual summaries are more transparent and easier to audit against their textual source. We showcase the tool's potential through a series of use cases, including guided knowledge extraction and semantic diffing, applied to protocols such as TCP, QUIC, PPTP, and DCCP. In practice, RFSeek not only reconstructs the RFC diagrams included in some specifications, but, more interestingly, also uncovers important logic such as nodes or edges described in the text but missing from those diagrams. RFSeek further derives new visualization diagrams for complex RFCs, with QUIC as a representative case. Our approach, which we term \emph{Summary Visualization}, highlights a promising direction: combining LLMs with formal, user-customized visualizations to enhance protocol comprehension and support robust implementations.
comment: 7 pages
☆ Investigating Feature Attribution for 5G Network Intrusion Detection
With the rise of fifth-generation (5G) networks in critical applications, it is urgent to move from detection of malicious activity to systems capable of providing a reliable verdict suitable for mitigation. In this regard, understanding and interpreting machine learning (ML) models' security alerts is crucial for enabling actionable incident response orchestration. Explainable Artificial Intelligence (XAI) techniques are expected to enhance trust by providing insights into why alerts are raised. A dominant approach statistically associates feature sets that can be correlated to a given alert. This paper starts by questioning whether such attribution is relevant for future generation communication systems, and investigates its merits in comparison with an approach based on logical explanations. We extensively study two methods, SHAP and VoTE-XAI, by analyzing their interpretations of alerts generated by an XGBoost model in three different use cases with several 5G communication attacks. We identify three metrics for assessing explanations: sparsity, how concise they are; stability, how consistent they are across samples from the same attack type; and efficiency, how fast an explanation is generated. As an example, in a 5G network with 92 features, 6 were deemed important by VoTE-XAI for a Denial of Service (DoS) variant, ICMPFlood, while SHAP identified over 20. More importantly, we found a significant divergence between features selected by SHAP and VoTE-XAI. However, none of the top-ranked features selected by SHAP were missed by VoTE-XAI. When it comes to efficiency of providing interpretations, we found that VoTE-XAI is significantly more responsive, e.g. it provides a single explanation in under 0.002 seconds, in a high-dimensional setting (478 features).
☆ Hadamard-Riemannian Optimization for Margin-Variance Ensemble
Ensemble learning has been widely recognized as a pivotal technique for boosting predictive performance by combining multiple base models. Nevertheless, conventional margin-based ensemble methods predominantly focus on maximizing the expected margin while neglecting the critical role of margin variance, which inherently restricts the generalization capability of the model and heightens its vulnerability to overfitting, particularly in noisy or imbalanced datasets. Additionally, the conventional approach of optimizing ensemble weights within the probability simplex often introduces computational inefficiency and scalability challenges, complicating its application to large-scale problems. To tackle these limitations, this paper introduces a novel ensemble learning framework that explicitly incorporates margin variance into the loss function. Our method jointly optimizes the negative expected margin and its variance, leading to enhanced robustness and improved generalization performance. Moreover, by reparameterizing the ensemble weights onto the unit sphere, we substantially simplify the optimization process and improve computational efficiency. Extensive experiments conducted on multiple benchmark datasets demonstrate that the proposed approach consistently outperforms traditional margin-based ensemble techniques, underscoring its effectiveness and practical utility.
☆ P3D: Scalable Neural Surrogates for High-Resolution 3D Physics Simulations with Global Context
We present a scalable framework for learning deterministic and probabilistic neural surrogates for high-resolution 3D physics simulations. We introduce a hybrid CNN-Transformer backbone architecture targeted for 3D physics simulations, which significantly outperforms existing architectures in terms of speed and accuracy. Our proposed network can be pretrained on small patches of the simulation domain, which can be fused to obtain a global solution, optionally guided via a fast and scalable sequence-to-sequence model to include long-range dependencies. This setup allows for training large-scale models with reduced memory and compute requirements for high-resolution datasets. We evaluate our backbone architecture against a large set of baseline methods with the objective to simultaneously learn the dynamics of 14 different types of PDEs in 3D. We demonstrate how to scale our model to high-resolution isotropic turbulence with spatial resolutions of up to $512^3$. Finally, we demonstrate the versatility of our network by training it as a diffusion model to produce probabilistic samples of highly turbulent 3D channel flows across varying Reynolds numbers, accurately capturing the underlying flow statistics.
☆ The Hidden Width of Deep ResNets: Tight Error Bounds and Phase Diagrams
We study the gradient-based training of large-depth residual networks (ResNets) from standard random initializations. We show that with a diverging depth $L$, a fixed embedding dimension $D$, and an arbitrary hidden width $M$, the training dynamics converges to a Neural Mean ODE training dynamics. Remarkably, the limit is independent of the scaling of $M$, covering practical cases of, say, Transformers, where $M$ (the number of hidden units or attention heads per layer) is typically of the order of $D$. For a residual scale $\Theta_D\big(\frac{\alpha}{LM}\big)$, we obtain the error bound $O_D\big(\frac{1}{L}+ \frac{\alpha}{\sqrt{LM}}\big)$ between the model's output and its limit after a fixed number gradient of steps, and we verify empirically that this rate is tight. When $\alpha=\Theta(1)$, the limit exhibits complete feature learning, i.e. the Mean ODE is genuinely non-linearly parameterized. In contrast, we show that $\alpha \to \infty$ yields a \lazy ODE regime where the Mean ODE is linearly parameterized. We then focus on the particular case of ResNets with two-layer perceptron blocks, for which we study how these scalings depend on the embedding dimension $D$. We show that for this model, the only residual scale that leads to complete feature learning is $\Theta\big(\frac{\sqrt{D}}{LM}\big)$. In this regime, we prove the error bound $O\big(\frac{1}{L}+ \frac{\sqrt{D}}{\sqrt{LM}}\big)$ between the ResNet and its limit after a fixed number of gradient steps, which is also empirically tight. Our convergence results rely on a novel mathematical perspective on ResNets : (i) due to the randomness of the initialization, the forward and backward pass through the ResNet behave as the stochastic approximation of certain mean ODEs, and (ii) by propagation of chaos (that is, asymptotic independence of the units) this behavior is preserved through the training dynamics.
☆ Repulsive Monte Carlo on the sphere for the sliced Wasserstein distance
In this paper, we consider the problem of computing the integral of a function on the unit sphere, in any dimension, using Monte Carlo methods. Although the methods we present are general, our guiding thread is the sliced Wasserstein distance between two measures on $\mathbb{R}^d$, which is precisely an integral on the $d$-dimensional sphere. The sliced Wasserstein distance (SW) has gained momentum in machine learning either as a proxy to the less computationally tractable Wasserstein distance, or as a distance in its own right, due in particular to its built-in alleviation of the curse of dimensionality. There has been recent numerical benchmarks of quadratures for the sliced Wasserstein, and our viewpoint differs in that we concentrate on quadratures where the nodes are repulsive, i.e. negatively dependent. Indeed, negative dependence can bring variance reduction when the quadrature is adapted to the integration task. Our first contribution is to extract and motivate quadratures from the recent literature on determinantal point processes (DPPs) and repelled point processes, as well as repulsive quadratures from the literature specific to the sliced Wasserstein distance. We then numerically benchmark these quadratures. Moreover, we analyze the variance of the UnifOrtho estimator, an orthogonal Monte Carlo estimator. Our analysis sheds light on UnifOrtho's success for the estimation of the sliced Wasserstein in large dimensions, as well as counterexamples from the literature. Our final recommendation for the computation of the sliced Wasserstein distance is to use randomized quasi-Monte Carlo in low dimensions and \emph{UnifOrtho} in large dimensions. DPP-based quadratures only shine when quasi-Monte Carlo also does, while repelled quadratures show moderate variance reduction in general, but more theoretical effort is needed to make them robust.
☆ A Symmetry-Integrated Approach to Surface Code Decoding
Quantum error correction, which utilizes logical qubits that are encoded as redundant multiple physical qubits to find and correct errors in physical qubits, is indispensable for practical quantum computing. Surface code is considered to be a promising encoding method with a high error threshold that is defined by stabilizer generators. However, previous methods have suffered from the problem that the decoder acquires solely the error probability distribution because of the non-uniqueness of correct prediction obtained from the input. To circumvent this problem, we propose a technique to reoptimize the decoder model by approximating syndrome measurements with a continuous function that is mathematically interpolated by neural network. We evaluated the improvement in accuracy of a multilayer perceptron based decoder for code distances of 5 and 7 as well as for decoders based on convolutional and recurrent neural networks and transformers for a code distance of 5. In all cases, the reoptimized decoder gave better accuracy than the original models, demonstrating the universal effectiveness of the proposed method that is independent of code distance or network architecture. These results suggest that re-framing the problem of surface code decoding into a regression problem that can be tackled by deep learning is a useful strategy.
comment: 12 pages, 6 figures
☆ Federated Multi-Agent Reinforcement Learning for Privacy-Preserving and Energy-Aware Resource Management in 6G Edge Networks
As sixth-generation (6G) networks move toward ultra-dense, intelligent edge environments, efficient resource management under stringent privacy, mobility, and energy constraints becomes critical. This paper introduces a novel Federated Multi-Agent Reinforcement Learning (Fed-MARL) framework that incorporates cross-layer orchestration of both the MAC layer and application layer for energy-efficient, privacy-preserving, and real-time resource management across heterogeneous edge devices. Each agent uses a Deep Recurrent Q-Network (DRQN) to learn decentralized policies for task offloading, spectrum access, and CPU energy adaptation based on local observations (e.g., queue length, energy, CPU usage, and mobility). To protect privacy, we introduce a secure aggregation protocol based on elliptic curve Diffie Hellman key exchange, which ensures accurate model updates without exposing raw data to semi-honest adversaries. We formulate the resource management problem as a partially observable multi-agent Markov decision process (POMMDP) with a multi-objective reward function that jointly optimizes latency, energy efficiency, spectral efficiency, fairness, and reliability under 6G-specific service requirements such as URLLC, eMBB, and mMTC. Simulation results demonstrate that Fed-MARL outperforms centralized MARL and heuristic baselines in task success rate, latency, energy efficiency, and fairness, while ensuring robust privacy protection and scalability in dynamic, resource-constrained 6G edge networks.
☆ FedBiF: Communication-Efficient Federated Learning via Bits Freezing
Federated learning (FL) is an emerging distributed machine learning paradigm that enables collaborative model training without sharing local data. Despite its advantages, FL suffers from substantial communication overhead, which can affect training efficiency. Recent efforts have mitigated this issue by quantizing model updates to reduce communication costs. However, most existing methods apply quantization only after local training, introducing quantization errors into the trained parameters and potentially degrading model accuracy. In this paper, we propose Federated Bit Freezing (FedBiF), a novel FL framework that directly learns quantized model parameters during local training. In each communication round, the server first quantizes the model parameters and transmits them to the clients. FedBiF then allows each client to update only a single bit of the multi-bit parameter representation, freezing the remaining bits. This bit-by-bit update strategy reduces each parameter update to one bit while maintaining high precision in parameter representation. Extensive experiments are conducted on five widely used datasets under both IID and Non-IID settings. The results demonstrate that FedBiF not only achieves superior communication compression but also promotes sparsity in the resulting models. Notably, FedBiF attains accuracy comparable to FedAvg, even when using only 1 bit-per-parameter (bpp) for uplink and 3 bpp for downlink communication. The code is available at https://github.com/Leopold1423/fedbif-tpds25.
comment: Accepted by TPDS
☆ BenchECG and xECG: a benchmark and baseline for ECG foundation models
Electrocardiograms (ECGs) are inexpensive, widely used, and well-suited to deep learning. Recently, interest has grown in developing foundation models for ECGs - models that generalise across diverse downstream tasks. However, consistent evaluation has been lacking: prior work often uses narrow task selections and inconsistent datasets, hindering fair comparison. Here, we introduce BenchECG, a standardised benchmark comprising a comprehensive suite of publicly available ECG datasets and versatile tasks. We also propose xECG, an xLSTM-based recurrent model trained with SimDINOv2 self-supervised learning, which achieves the best BenchECG score compared to publicly available state-of-the-art models. In particular, xECG is the only publicly available model to perform strongly on all datasets and tasks. By standardising evaluation, BenchECG enables rigorous comparison and aims to accelerate progress in ECG representation learning. xECG achieves superior performance over earlier approaches, defining a new baseline for future ECG foundation models.
comment: 32 pages, 4 figures, 22 tables
☆ Error Analysis in a Modular Meeting Transcription System
Meeting transcription is a field of high relevance and remarkable progress in recent years. Still, challenges remain that limit its performance. In this work, we extend a previously proposed framework for analyzing leakage in speech separation with proper sensitivity to temporal locality. We show that there is significant leakage to the cross channel in areas where only the primary speaker is active. At the same time, the results demonstrate that this does not affect the final performance much as these leaked parts are largely ignored by the voice activity detection (VAD). Furthermore, different segmentations are compared showing that advanced diarization approaches are able to reduce the gap to oracle segmentation by a third compared to a simple energy-based VAD. We additionally reveal what factors contribute to the remaining difference. The results represent state-of-the-art performance on LibriCSS among systems that train the recognition module on LibriSpeech data only.
comment: Accepted at ITG Conference on Speech Communication 2025
☆ Cost-Free Personalization via Information-Geometric Projection in Bayesian Federated Learning
Bayesian Federated Learning (BFL) combines uncertainty modeling with decentralized training, enabling the development of personalized and reliable models under data heterogeneity and privacy constraints. Existing approaches typically rely on Markov Chain Monte Carlo (MCMC) sampling or variational inference, often incorporating personalization mechanisms to better adapt to local data distributions. In this work, we propose an information-geometric projection framework for personalization in parametric BFL. By projecting the global model onto a neighborhood of the user's local model, our method enables a tunable trade-off between global generalization and local specialization. Under mild assumptions, we show that this projection step is equivalent to computing a barycenter on the statistical manifold, allowing us to derive closed-form solutions and achieve cost-free personalization. We apply the proposed approach to a variational learning setup using the Improved Variational Online Newton (IVON) optimizer and extend its application to general aggregation schemes in BFL. Empirical evaluations under heterogeneous data distributions confirm that our method effectively balances global and local performance with minimal computational overhead.
☆ Population-Aligned Persona Generation for LLM-based Social Simulation
Recent advances in large language models (LLMs) have enabled human-like social simulations at unprecedented scale and fidelity, offering new opportunities for computational social science. A key challenge, however, is the construction of persona sets that authentically represent the diversity and distribution of real-world populations. Most existing LLM-based social simulation studies focus primarily on designing agentic frameworks and simulation environments, often overlooking the complexities of persona generation and the potential biases introduced by unrepresentative persona sets. In this paper, we propose a systematic framework for synthesizing high-quality, population-aligned persona sets for LLM-driven social simulation. Our approach begins by leveraging LLMs to generate narrative personas from long-term social media data, followed by rigorous quality assessment to filter out low-fidelity profiles. We then apply importance sampling to achieve global alignment with reference psychometric distributions, such as the Big Five personality traits. To address the needs of specific simulation contexts, we further introduce a task-specific module that adapts the globally aligned persona set to targeted subpopulations. Extensive experiments demonstrate that our method significantly reduces population-level bias and enables accurate, flexible social simulation for a wide range of research and policy applications.
☆ KAN-SR: A Kolmogorov-Arnold Network Guided Symbolic Regression Framework
We introduce a novel symbolic regression framework, namely KAN-SR, built on Kolmogorov Arnold Networks (KANs) which follows a divide-and-conquer approach. Symbolic regression searches for mathematical equations that best fit a given dataset and is commonly solved with genetic programming approaches. We show that by using deep learning techniques, more specific KANs, and combining them with simplification strategies such as translational symmetries and separabilities, we are able to recover ground-truth equations of the Feynman Symbolic Regression for Scientific Discovery (SRSD) dataset. Additionally, we show that by combining the proposed framework with neural controlled differential equations, we are able to model the dynamics of an in-silico bioprocess system precisely, opening the door for the dynamic modeling of other engineering systems.
☆ FetalSleepNet: A Transfer Learning Framework with Spectral Equalisation Domain Adaptation for Fetal Sleep Stage Classification
Introduction: This study presents FetalSleepNet, the first published deep learning approach to classifying sleep states from the ovine electroencephalogram (EEG). Fetal EEG is complex to acquire and difficult and laborious to interpret consistently. However, accurate sleep stage classification may aid in the early detection of abnormal brain maturation associated with pregnancy complications (e.g. hypoxia or intrauterine growth restriction). Methods: EEG electrodes were secured onto the ovine dura over the parietal cortices of 24 late gestation fetal sheep. A lightweight deep neural network originally developed for adult EEG sleep staging was trained on the ovine EEG using transfer learning from adult EEG. A spectral equalisation-based domain adaptation strategy was used to reduce cross-domain mismatch. Results: We demonstrated that while direct transfer performed poorly, full fine tuning combined with spectral equalisation achieved the best overall performance (accuracy: 86.6 percent, macro F1-score: 62.5), outperforming baseline models. Conclusions: To the best of our knowledge, FetalSleepNet is the first deep learning framework specifically developed for automated sleep staging from the fetal EEG. Beyond the laboratory, the EEG-based sleep stage classifier functions as a label engine, enabling large scale weak/semi supervised labeling and distillation to facilitate training on less invasive signals that can be acquired in the clinic, such as Doppler Ultrasound or electrocardiogram data. FetalSleepNet's lightweight design makes it well suited for deployment in low power, real time, and wearable fetal monitoring systems.
comment: 13 pages, 4 tables, 5 figures, submitted to IEEE Journal of Biomedical and Health Informatics
☆ Predictive Spike Timing Enables Distributed Shortest Path Computation in Spiking Neural Networks
Efficient planning and sequence selection are central to intelligence, yet current approaches remain largely incompatible with biological computation. Classical graph algorithms like Dijkstra's or A* require global state and biologically implausible operations such as backtracing, while reinforcement learning methods rely on slow gradient-based policy updates that appear inconsistent with rapid behavioral adaptation observed in natural systems. We propose a biologically plausible algorithm for shortest-path computation that operates through local spike-based message-passing with realistic processing delays. The algorithm exploits spike-timing coincidences to identify nodes on optimal paths: Neurons that receive inhibitory-excitatory message pairs earlier than predicted reduce their response delays, creating a temporal compression that propagates backwards from target to source. Through analytical proof and simulations on random spatial networks, we demonstrate that the algorithm converges and discovers all shortest paths using purely timing-based mechanisms. By showing how short-term timing dynamics alone can compute shortest paths, this work provides new insights into how biological networks might solve complex computational problems through purely local computation and relative spike-time prediction. These findings open new directions for understanding distributed computation in biological and artificial systems, with possible implications for computational neuroscience, AI, reinforcement learning, and neuromorphic systems.
☆ Prototypical Contrastive Learning For Improved Few-Shot Audio Classification
Few-shot learning has emerged as a powerful paradigm for training models with limited labeled data, addressing challenges in scenarios where large-scale annotation is impractical. While extensive research has been conducted in the image domain, few-shot learning in audio classification remains relatively underexplored. In this work, we investigate the effect of integrating supervised contrastive loss into prototypical few shot training for audio classification. In detail, we demonstrate that angular loss further improves the performance compared to the standard contrastive loss. Our method leverages SpecAugment followed by a self-attention mechanism to encapsulate diverse information of augmented input versions into one unified embedding. We evaluate our approach on MetaAudio, a benchmark including five datasets with predefined splits, standardized preprocessing, and a comprehensive set of few-shot learning models for comparison. The proposed approach achieves state-of-the-art performance in a 5-way, 5-shot setting.
comment: Accepted and Presented at IEEE International Workshop on Machine Learning for Signal Processing, Aug.\ 31-- Sep.\ 3, 2025, Istanbul, Turkey , 6 pages, 2 figures, 1 table
☆ Reinforcement learning for spin torque oscillator tasks
We address the problem of automatic synchronisation of the spintronic oscillator (STO) by means of reinforcement learning (RL). A numerical solution of the macrospin Landau-Lifschitz-Gilbert-Slonczewski equation is used to simulate the STO and we train the two types of RL agents to synchronise with a target frequency within a fixed number of steps. We explore modifications to this base task and show an improvement in both convergence and energy efficiency of the synchronisation that can be easily achieved in the simulated environment.
comment: 3 figures, 6 pages
☆ Uncertainty-Aware Tabular Prediction: Evaluating VBLL-Enhanced TabPFN in Safety-Critical Medical Data
Predictive models are being increasingly used across a wide range of domains, including safety-critical applications such as medical diagnosis and criminal justice. Reliable uncertainty estimation is a crucial task in such settings. Tabular Prior-data Fitted Network (TabPFN) is a recently proposed machine learning foundation model for tabular dataset, which uses a generative transformer architecture. Variational Bayesian Last Layers (VBLL) is a state-of-the-art lightweight variational formulation that effectively improves uncertainty estimation with minimal computational overhead. In this work we aim to evaluate the performance of VBLL integrated with the recently proposed TabPFN in uncertainty calibration. Our experiments, conducted on three benchmark medical tabular datasets, compare the performance of the original TabPFN and the VBLL-integrated version. Contrary to expectations, we observed that original TabPFN consistently outperforms VBLL integrated TabPFN in uncertainty calibration across all datasets.
☆ FedRP: A Communication-Efficient Approach for Differentially Private Federated Learning Using Random Projection
Federated learning (FL) offers an innovative paradigm for collaborative model training across decentralized devices, such as smartphones, balancing enhanced predictive performance with the protection of user privacy in sensitive areas like Internet of Things (IoT) and medical data analysis. Despite its advantages, FL encounters significant challenges related to user privacy protection against potential attacks and the management of communication costs. This paper introduces a novel federated learning algorithm called FedRP, which integrates random projection techniques with the Alternating Direction Method of Multipliers (ADMM) optimization framework. This approach enhances privacy by employing random projection to reduce the dimensionality of model parameters prior to their transmission to a central server, reducing the communication cost. The proposed algorithm offers a strong $(\epsilon, \delta)$-differential privacy guarantee, demonstrating resilience against data reconstruction attacks. Experimental results reveal that FedRP not only maintains high model accuracy but also outperforms existing methods, including conventional differential privacy approaches and FedADMM, in terms of both privacy preservation and communication efficiency.
☆ Symbolic Feedforward Networks for Probabilistic Finite Automata: Exact Simulation and Learnability
We present a formal and constructive theory showing that probabilistic finite automata (PFAs) can be exactly simulated using symbolic feedforward neural networks. Our architecture represents state distributions as vectors and transitions as stochastic matrices, enabling probabilistic state propagation via matrix-vector products. This yields a parallel, interpretable, and differentiable simulation of PFA dynamics using soft updates-without recurrence. We formally characterize probabilistic subset construction, $\varepsilon$-closure, and exact simulation via layered symbolic computation, and prove equivalence between PFAs and specific classes of neural networks. We further show that these symbolic simulators are not only expressive but learnable: trained with standard gradient descent-based optimization on labeled sequence data, they recover the exact behavior of ground-truth PFAs. This learnability, formalized in Proposition 5.1, is the crux of this work. Our results unify probabilistic automata theory with neural architectures under a rigorous algebraic framework, bridging the gap between symbolic computation and deep learning.
comment: 19 pages, 2 figures
☆ Sparse Coding Representation of 2-way Data
Sparse dictionary coding represents signals as linear combinations of a few dictionary atoms. It has been applied to images, time series, graph signals and multi-way spatio-temporal data by jointly employing temporal and spatial dictionaries. Data-agnostic analytical dictionaries, such as the discrete Fourier transform, wavelets and graph Fourier, have seen wide adoption due to efficient implementations and good practical performance. On the other hand, dictionaries learned from data offer sparser and more accurate solutions but require learning of both the dictionaries and the coding coefficients. This becomes especially challenging for multi-dictionary scenarios since encoding coefficients correspond to all atom combinations from the dictionaries. To address this challenge, we propose a low-rank coding model for 2-dictionary scenarios and study its data complexity. Namely, we establish a bound on the number of samples needed to learn dictionaries that generalize to unseen samples from the same distribution. We propose a convex relaxation solution, called AODL, whose exact solution we show also solves the original problem. We then solve this relaxation via alternating optimization between the sparse coding matrices and the learned dictionaries, which we prove to be convergent. We demonstrate its quality for data reconstruction and missing value imputation in both synthetic and real-world datasets. For a fixed reconstruction quality, AODL learns up to 90\% sparser solutions compared to non-low-rank and analytical (fixed) dictionary baselines. In addition, the learned dictionaries reveal interpretable insights into patterns present within the samples used for training.
☆ Unified Learnable 2D Convolutional Feature Extraction for ASR
Neural front-ends represent a promising approach to feature extraction for automatic speech recognition (ASR) systems as they enable to learn specifically tailored features for different tasks. Yet, many of the existing techniques remain heavily influenced by classical methods. While this inductive bias may ease the system design, our work aims to develop a more generic front-end for feature extraction. Furthermore, we seek to unify the front-end architecture contrasting with existing approaches that apply a composition of several layer topologies originating from different sources. The experiments systematically show how to reduce the influence of existing techniques to achieve a generic front-end. The resulting 2D convolutional front-end is parameter-efficient and suitable for a scenario with limited computational resources unlike large models pre-trained on unlabeled audio. The results demonstrate that this generic unified approach is not only feasible but also matches the performance of existing supervised learnable feature extractors.
comment: Accepted at ITG Conference on Speech Communication 2025
☆ Exploring Expert Specialization through Unsupervised Training in Sparse Mixture of Experts
Understanding the internal organization of neural networks remains a fundamental challenge in deep learning interpretability. We address this challenge by exploring a novel Sparse Mixture of Experts Variational Autoencoder (SMoE-VAE) architecture. We test our model on the QuickDraw dataset, comparing unsupervised expert routing against a supervised baseline guided by ground-truth labels. Surprisingly, we find that unsupervised routing consistently achieves superior reconstruction performance. The experts learn to identify meaningful sub-categorical structures that often transcend human-defined class boundaries. Through t-SNE visualizations and reconstruction analysis, we investigate how MoE models uncover fundamental data structures that are more aligned with the model's objective than predefined labels. Furthermore, our study on the impact of dataset size provides insights into the trade-offs between data quantity and expert specialization, offering guidance for designing efficient MoE architectures.
comment: 14 pages, 7 figures
☆ Intrinsic Dimension Estimating Autoencoder (IDEA) Using CancelOut Layer and a Projected Loss
This paper introduces the Intrinsic Dimension Estimating Autoencoder (IDEA), which identifies the underlying intrinsic dimension of a wide range of datasets whose samples lie on either linear or nonlinear manifolds. Beyond estimating the intrinsic dimension, IDEA is also able to reconstruct the original dataset after projecting it onto the corresponding latent space, which is structured using re-weighted double CancelOut layers. Our key contribution is the introduction of the projected reconstruction loss term, guiding the training of the model by continuously assessing the reconstruction quality under the removal of an additional latent dimension. We first assess the performance of IDEA on a series of theoretical benchmarks to validate its robustness. These experiments allow us to test its reconstruction ability and compare its performance with state-of-the-art intrinsic dimension estimators. The benchmarks show good accuracy and high versatility of our approach. Subsequently, we apply our model to data generated from the numerical solution of a vertically resolved one-dimensional free-surface flow, following a pointwise discretization of the vertical velocity profile in the horizontal direction, vertical direction, and time. IDEA succeeds in estimating the dataset's intrinsic dimension and then reconstructs the original solution by working directly within the projection space identified by the network.
comment: Preprint with 12 pages and 12 figures
☆ Neural Scaling Laws for Deep Regression
Neural scaling laws--power-law relationships between generalization errors and characteristics of deep learning models--are vital tools for developing reliable models while managing limited resources. Although the success of large language models highlights the importance of these laws, their application to deep regression models remains largely unexplored. Here, we empirically investigate neural scaling laws in deep regression using a parameter estimation model for twisted van der Waals magnets. We observe power-law relationships between the loss and both training dataset size and model capacity across a wide range of values, employing various architectures--including fully connected networks, residual networks, and vision transformers. Furthermore, the scaling exponents governing these relationships range from 1 to 2, with specific values depending on the regressed parameters and model details. The consistent scaling behaviors and their large scaling exponents suggest that the performance of deep regression models can improve substantially with increasing data size.
comment: Supplementary Information will be provided with the published manuscript
☆ Data-Driven Energy Estimation for Virtual Servers Using Combined System Metrics and Machine Learning
This paper presents a machine learning-based approach to estimate the energy consumption of virtual servers without access to physical power measurement interfaces. Using resource utilization metrics collected from guest virtual machines, we train a Gradient Boosting Regressor to predict energy consumption measured via RAPL on the host. We demonstrate, for the first time, guest-only resource-based energy estimation without privileged host access with experiments across diverse workloads, achieving high predictive accuracy and variance explained ($0.90 \leq R^2 \leq 0.97$), indicating the feasibility of guest-side energy estimation. This approach can enable energy-aware scheduling, cost optimization and physical host independent energy estimates in virtualized environments. Our approach addresses a critical gap in virtualized environments (e.g. cloud) where direct energy measurement is infeasible.
☆ Drone-Based Multispectral Imaging and Deep Learning for Timely Detection of Branched Broomrape in Tomato Farms SP
This study addresses the escalating threat of branched broomrape (Phelipanche ramosa) to California's tomato industry, which supplies over 90 percent of U.S. processing tomatoes. The parasite's largely underground life cycle makes early detection difficult, while conventional chemical controls are costly, environmentally harmful, and often ineffective. To address this, we combined drone-based multispectral imagery with Long Short-Term Memory (LSTM) deep learning networks, using the Synthetic Minority Over-sampling Technique (SMOTE) to handle class imbalance. Research was conducted on a known broomrape-infested tomato farm in Woodland, Yolo County, CA, across five key growth stages determined by growing degree days (GDD). Multispectral images were processed to isolate tomato canopy reflectance. At 897 GDD, broomrape could be detected with 79.09 percent overall accuracy and 70.36 percent recall without integrating later stages. Incorporating sequential growth stages with LSTM improved detection substantially. The best-performing scenario, which integrated all growth stages with SMOTE augmentation, achieved 88.37 percent overall accuracy and 95.37 percent recall. These results demonstrate the strong potential of temporal multispectral analysis and LSTM networks for early broomrape detection. While further real-world data collection is needed for practical deployment, this study shows that UAV-based multispectral sensing coupled with deep learning could provide a powerful precision agriculture tool to reduce losses and improve sustainability in tomato production.
comment: Author-accepted version (no publisher header/footer). 10 pages + presentation. Published in Proceedings of SPIE Defense + Commercial Sensing 2024, Vol. 13053, Paper 1305304. Event: National Harbor, Maryland, USA. Official version: https://doi.org/10.1117/12.3021219
☆ Limited Reference, Reliable Generation: A Two-Component Framework for Tabular Data Generation in Low-Data Regimes
Synthetic tabular data generation is increasingly essential in data management, supporting downstream applications when real-world and high-quality tabular data is insufficient. Existing tabular generation approaches, such as generative adversarial networks (GANs), diffusion models, and fine-tuned Large Language Models (LLMs), typically require sufficient reference data, limiting their effectiveness in domain-specific databases with scarce records. While prompt-based LLMs offer flexibility without parameter tuning, they often fail to capture dataset-specific feature-label dependencies and generate redundant data, leading to degradation in downstream task performance. To overcome these issues, we propose ReFine, a framework that (i) derives symbolic "if-then" rules from interpretable models and embeds them into prompts to explicitly guide generation toward domain-specific feature distribution, and (ii) applies a dual-granularity filtering strategy that suppresses over-sampling patterns and selectively refines rare but informative samples to reduce distributional imbalance. Extensive experiments on various regression and classification benchmarks demonstrate that ReFine consistently outperforms state-of-the-art methods, achieving up to 0.44 absolute improvement in R-squared for regression and 10.0 percent relative improvement in F1 score for classification tasks.
☆ Adaptive Token Merging for Efficient Transformer Semantic Communication at the Edge
Large-scale transformers are central to modern semantic communication, yet their high computational and communication costs hinder deployment on resource-constrained edge devices. This paper introduces a training-free framework for adaptive token merging, a novel mechanism that compresses transformer representations at runtime by selectively merging semantically redundant tokens under per-layer similarity thresholds. Unlike prior fixed-ratio reduction, our approach couples merging directly to input redundancy, enabling data-dependent adaptation that balances efficiency and task relevance without retraining. We cast the discovery of merging strategies as a multi-objective optimization problem and leverage Bayesian optimization to obtain Pareto-optimal trade-offs between accuracy, inference cost, and communication cost. On ImageNet classification, we match the accuracy of the unmodified transformer with 30\% fewer floating-point operations per second and under 20\% of the original communication cost, while for visual question answering our method achieves performance competitive with the full LLaVA model at less than one-third of the compute and one-tenth of the bandwidth. Finally, we show that our adaptive merging is robust across varying channel conditions and provides inherent privacy benefits, substantially degrading the efficacy of model inversion attacks. Our framework provides a practical and versatile solution for deploying powerful transformer models in resource-limited edge intelligence scenarios.
comment: Submitted to IEEE Journals
☆ DyKen-Hyena: Dynamic Kernel Generation via Cross-Modal Attention for Multimodal Intent Recognition
Though Multimodal Intent Recognition (MIR) proves effective by utilizing rich information from multiple sources (e.g., language, video, and audio), the potential for intent-irrelevant and conflicting information across modalities may hinder performance from being further improved. Most current models attempt to fuse modalities by applying mechanisms like multi-head attention to unimodal feature sequences and then adding the result back to the original representation. This process risks corrupting the primary linguistic features with noisy or irrelevant non-verbal signals, as it often fails to capture the fine-grained, token-level influence where non-verbal cues should modulate, not just augment, textual meaning. To address this, we introduce DyKen-Hyena, which reframes the problem from feature fusion to processing modulation. Our model translates audio-visual cues into dynamic, per-token convolutional kernels that directly modulate textual feature extraction. This fine-grained approach achieves state-of-the-art results on the MIntRec and MIntRec2.0 benchmarks. Notably, it yields a +10.46% F1-score improvement in out-of-scope detection, validating that our method creates a fundamentally more robust intent representation.
comment: 8 pages, 2 figures
☆ SciML Agents: Write the Solver, Not the Solution
Recent work in scientific machine learning aims to tackle scientific tasks directly by predicting target values with neural networks (e.g., physics-informed neural networks, neural ODEs, neural operators, etc.), but attaining high accuracy and robustness has been challenging. We explore an alternative view: use LLMs to write code that leverages decades of numerical algorithms. This shifts the burden from learning a solution function to making domain-aware numerical choices. We ask whether LLMs can act as SciML agents that, given a natural-language ODE description, generate runnable code that is scientifically appropriate, selecting suitable solvers (stiff vs. non-stiff), and enforcing stability checks. There is currently no benchmark to measure this kind of capability for scientific computing tasks. As such, we first introduce two new datasets: a diagnostic dataset of adversarial "misleading" problems; and a large-scale benchmark of 1,000 diverse ODE tasks. The diagnostic set contains problems whose superficial appearance suggests stiffness, and that require algebraic simplification to demonstrate non-stiffness; and the large-scale benchmark spans stiff and non-stiff ODE regimes. We evaluate open- and closed-source LLM models along two axes: (i) unguided versus guided prompting with domain-specific knowledge; and (ii) off-the-shelf versus fine-tuned variants. Our evaluation measures both executability and numerical validity against reference solutions. We find that with sufficient context and guided prompts, newer instruction-following models achieve high accuracy on both criteria. In many cases, recent open-source systems perform strongly without fine-tuning, while older or smaller models still benefit from fine-tuning. Overall, our preliminary results indicate that careful prompting and fine-tuning can yield a specialized LLM agent capable of reliably solving simple ODE problems.
☆ Multi-Play Combinatorial Semi-Bandit Problem
In the combinatorial semi-bandit (CSB) problem, a player selects an action from a combinatorial action set and observes feedback from the base arms included in the action. While CSB is widely applicable to combinatorial optimization problems, its restriction to binary decision spaces excludes important cases involving non-negative integer flows or allocations, such as the optimal transport and knapsack problems.To overcome this limitation, we propose the multi-play combinatorial semi-bandit (MP-CSB), where a player can select a non-negative integer action and observe multiple feedbacks from a single arm in each round. We propose two algorithms for the MP-CSB. One is a Thompson-sampling-based algorithm that is computationally feasible even when the action space is exponentially large with respect to the number of arms, and attains $O(\log T)$ distribution-dependent regret in the stochastic regime, where $T$ is the time horizon. The other is a best-of-both-worlds algorithm, which achieves $O(\log T)$ variance-dependent regret in the stochastic regime and the worst-case $\tilde{\mathcal{O}}\left( \sqrt{T} \right)$ regret in the adversarial regime. Moreover, its regret in adversarial one is data-dependent, adapting to the cumulative loss of the optimal action, the total quadratic variation, and the path-length of the loss sequence. Finally, we numerically show that the proposed algorithms outperform existing methods in the CSB literature.
☆ LoFT: Parameter-Efficient Fine-Tuning for Long-tailed Semi-Supervised Learning in Open-World Scenarios
Long-tailed learning has garnered increasing attention due to its wide applicability in real-world scenarios. Among existing approaches, Long-Tailed Semi-Supervised Learning (LTSSL) has emerged as an effective solution by incorporating a large amount of unlabeled data into the imbalanced labeled dataset. However, most prior LTSSL methods are designed to train models from scratch, which often leads to issues such as overconfidence and low-quality pseudo-labels. To address these challenges, we extend LTSSL into the foundation model fine-tuning paradigm and propose a novel framework: LoFT (Long-tailed semi-supervised learning via parameter-efficient Fine-Tuning). We demonstrate that fine-tuned foundation models can generate more reliable pseudolabels, thereby benefiting imbalanced learning. Furthermore, we explore a more practical setting by investigating semi-supervised learning under open-world conditions, where the unlabeled data may include out-of-distribution (OOD) samples. To handle this problem, we propose LoFT-OW (LoFT under Open-World scenarios) to improve the discriminative ability. Experimental results on multiple benchmarks demonstrate that our method achieves superior performance compared to previous approaches, even when utilizing only 1\% of the unlabeled data compared with previous works.
☆ Engineering Spatial and Molecular Features from Cellular Niches to Inform Predictions of Inflammatory Bowel Disease
Differentiating between the two main subtypes of Inflammatory Bowel Disease (IBD): Crohns disease (CD) and ulcerative colitis (UC) is a persistent clinical challenge due to overlapping presentations. This study introduces a novel computational framework that employs spatial transcriptomics (ST) to create an explainable machine learning model for IBD classification. We analyzed ST data from the colonic mucosa of healthy controls (HC), UC, and CD patients. Using Non-negative Matrix Factorization (NMF), we first identified four recurring cellular niches, representing distinct functional microenvironments within the tissue. From these niches, we systematically engineered 44 features capturing three key aspects of tissue pathology: niche composition, neighborhood enrichment, and niche-gene signals. A multilayer perceptron (MLP) classifier trained on these features achieved an accuracy of 0.774 +/- 0.161 for the more challenging three-class problem (HC, UC, and CD) and 0.916 +/- 0.118 in the two-class problem of distinguishing IBD from healthy tissue. Crucially, model explainability analysis revealed that disruptions in the spatial organization of niches were the strongest predictors of general inflammation, while the classification between UC and CD relied on specific niche-gene expression signatures. This work provides a robust, proof-of-concept pipeline that transforms descriptive spatial data into an accurate and explainable predictive tool, offering not only a potential new diagnostic paradigm but also deeper insights into the distinct biological mechanisms that drive IBD subtypes.
comment: 18 pages, 7 figures, 7 tables. Submitted to the 25th BNAIC Conference, Namur, Belgium, November 19 - 21, 2025
♻ ☆ Bayesian Sheaf Neural Networks
Equipping graph neural networks with a convolution operation defined in terms of a cellular sheaf offers advantages for learning expressive representations of heterophilic graph data. The most flexible approach to constructing the sheaf is to learn it as part of the network as a function of the node features. However, this leaves the network potentially overly sensitive to the learned sheaf. As a counter-measure, we propose a variational approach to learning cellular sheaves within sheaf neural networks, yielding an architecture we refer to as a Bayesian sheaf neural network. As part of this work, we define a novel family of reparameterizable probability distributions on the rotation group $SO(n)$ using the Cayley transform. We evaluate the Bayesian sheaf neural network on several graph datasets, and show that our Bayesian sheaf models achieve leading performance compared to baseline models and are less sensitive to the choice of hyperparameters under limited training data settings.
comment: 32 pages, 4 figures
♻ ☆ Evolving Voices Based on Temporal Poisson Factorisation
The world is evolving and so is the vocabulary used to discuss topics in speech. Analysing political speech data from more than 30 years requires the use of flexible topic models to uncover the latent topics and their change in prevalence over time as well as the change in the vocabulary of the topics. We propose the temporal Poisson factorisation (TPF) model as an extension to the Poisson factorisation model to model sparse count data matrices obtained based on the bag-of-words assumption from text documents with time stamps. We discuss and empirically compare different model specifications for the time-varying latent variables consisting either of a flexible auto-regressive structure of order one or a random walk. Estimation is based on variational inference where we consider a combination of coordinate ascent updates with automatic differentiation using batching of documents. Suitable variational families are proposed to ease inference. We compare results obtained using independent univariate variational distributions for the time-varying latent variables to those obtained with a multivariate variant. We discuss in detail the results of the TPF model when analysing speeches from 18 sessions in the U.S. Senate (1981-2016).
comment: main paper: 20 pages (2 single figures, 3 double figures, 3 tables), appendix: 2 pages, supplementary materials: 18 pages (2 plots, 4 quadruple plots, 2 tables), references: 3 pages
♻ ☆ Attacking Attention of Foundation Models Disrupts Downstream Tasks CVPR 2025
Foundation models represent the most prominent and recent paradigm shift in artificial intelligence. Foundation models are large models, trained on broad data that deliver high accuracy in many downstream tasks, often without fine-tuning. For this reason, models such as CLIP , DINO or Vision Transfomers (ViT), are becoming the bedrock of many industrial AI-powered applications. However, the reliance on pre-trained foundation models also introduces significant security concerns, as these models are vulnerable to adversarial attacks. Such attacks involve deliberately crafted inputs designed to deceive AI systems, jeopardizing their reliability. This paper studies the vulnerabilities of vision foundation models, focusing specifically on CLIP and ViTs, and explores the transferability of adversarial attacks to downstream tasks. We introduce a novel attack, targeting the structure of transformer-based architectures in a task-agnostic fashion. We demonstrate the effectiveness of our attack on several downstream tasks: classification, captioning, image/text retrieval, segmentation and depth estimation. Code available at:https://github.com/HondamunigePrasannaSilva/attack-attention
comment: Paper published at CVPR 2025 Workshop Advml
♻ ☆ Is Adversarial Training with Compressed Datasets Effective? SC
Dataset Condensation (DC) refers to the recent class of dataset compression methods that generate a smaller, synthetic, dataset from a larger dataset. This synthetic dataset aims to retain the essential information of the original dataset, enabling models trained on it to achieve performance levels comparable to those trained on the full dataset. Most current DC methods have mainly concerned with achieving high test performance with limited data budget, and have not directly addressed the question of adversarial robustness. In this work, we investigate the impact of adversarial robustness on models trained with compressed datasets. We show that the compressed datasets obtained from DC methods are not effective in transferring adversarial robustness to models. As a solution to improve dataset compression efficiency and adversarial robustness simultaneously, we present a robustness-aware dataset compression method based on finding the Minimal Finite Covering (MFC) of the dataset. The proposed method is (1) provably robust by minimizing the generalized adversarial loss, (2) more effective than DC methods when applying adversarial training over MFC, (3) obtained by a one-time computation and is applicable for any model.
comment: 22 pages, 10 figures, 3 tables, accepted at Scandinavian Conference on Image Analysis 2025 (SCIA 2025)
♻ ☆ A Conflicts-free, Speed-lossless KAN-based Reinforcement Learning Decision System for Interactive Driving in Roundabouts
Safety and efficiency are crucial for autonomous driving in roundabouts, especially mixed traffic with both autonomous vehicles (AVs) and human-driven vehicles. This paper presents a learning-based algorithm that promotes safe and efficient driving across varying roundabout traffic conditions. A deep Q-learning network is used to learn optimal strategies in complex multi-vehicle roundabout scenarios, while a Kolmogorov-Arnold Network (KAN) improves the AVs' environmental understanding. To further enhance safety, an action inspector filters unsafe actions, and a route planner optimizes driving efficiency. Moreover, model predictive control ensures stability and precision in execution. Experimental results demonstrate that the proposed system consistently outperforms state-of-the-art methods, achieving fewer collisions, reduced travel time, and stable training with smooth reward convergence.
comment: 14 pages, 11 figures, published in IEEE Transactions on Intelligent Transportation Systems
♻ ☆ A Survey on Group Fairness in Federated Learning: Challenges, Taxonomy of Solutions and Directions for Future Research
Group fairness in machine learning is an important area of research focused on achieving equitable outcomes across different groups defined by sensitive attributes such as race or gender. Federated Learning, a decentralized approach to training machine learning models across multiple clients, amplifies the need for fairness methodologies due to its inherent heterogeneous data distributions that can exacerbate biases. The intersection of Federated Learning and group fairness has attracted significant interest, with 48 research works specifically dedicated to addressing this issue. However, no comprehensive survey has specifically focused on group fairness in Federated Learning. In this work, we analyze the key challenges of this topic, propose practices for its identification and benchmarking, and create a novel taxonomy based on criteria such as data partitioning, location, and strategy. Furthermore, we analyze broader concerns, review how different approaches handle the complexities of various sensitive attributes, examine common datasets and applications, and discuss the ethical, legal, and policy implications of group fairness in FL. We conclude by highlighting key areas for future research, emphasizing the need for more methods to address the complexities of achieving group fairness in federated systems.
♻ ☆ Unveiling Group-Specific Distributed Concept Drift: A Fairness Imperative in Federated Learning
In the evolving field of machine learning, ensuring group fairness has become a critical concern, prompting the development of algorithms designed to mitigate bias in decision-making processes. Group fairness refers to the principle that a model's decisions should be equitable across different groups defined by sensitive attributes such as gender or race, ensuring that individuals from privileged groups and unprivileged groups are treated fairly and receive similar outcomes. However, achieving fairness in the presence of group-specific concept drift remains an unexplored frontier, and our research represents pioneering efforts in this regard. Group-specific concept drift refers to situations where one group experiences concept drift over time while another does not, leading to a decrease in fairness even if accuracy remains fairly stable. Within the framework of Federated Learning, where clients collaboratively train models, its distributed nature further amplifies these challenges since each client can experience group-specific concept drift independently while still sharing the same underlying concept, creating a complex and dynamic environment for maintaining fairness. The most significant contribution of our research is the formalization and introduction of the problem of group-specific concept drift and its distributed counterpart, shedding light on its critical importance in the field of fairness. Additionally, leveraging insights from prior research, we adapt an existing distributed concept drift adaptation algorithm to tackle group-specific distributed concept drift which uses a multi-model approach, a local group-specific drift detection mechanism, and continuous clustering of models over time. The findings from our experiments highlight the importance of addressing group-specific concept drift and its distributed counterpart to advance fairness in machine learning.
comment: accepted for publication in IEEE Transactions on Neural Networks and Learning Systems (early access, Sep. 2025)
♻ ☆ Deep Survival Analysis from Adult and Pediatric Electrocardiograms: A Multi-center Benchmark Study
Artificial intelligence applied to electrocardiography (AI-ECG) shows potential for mortality prediction, but heterogeneous approaches and private datasets have limited generalizable insights. To address this, we systematically evaluated model design choices across three large cohorts: Beth Israel Deaconess (MIMIC-IV: n = 795,546 ECGs, United States), Telehealth Network of Minas Gerais (Code-15: n = 345,779, Brazil), and Boston Children's Hospital (BCH: n = 255,379, United States). We evaluated models predicting all-cause mortality, comparing horizon-based classification and deep survival methods with neural architectures including convolutional networks and transformers, benchmarking against demographic-only and gradient boosting baselines. Top models performed well (median concordance: Code-15, 0.83; MIMIC-IV, 0.78; BCH, 0.81). Incorporating age and sex improved performance across all datasets. Classifier-Cox models showed site-dependent sensitivity to horizon choice (median Pearson's R: Code-15, 0.35; MIMIC-IV, -0.71; BCH, 0.37). External validation reduced concordance, and in some cases demographic-only models outperformed externally trained AI-ECG models on Code-15. However, models trained on multi-site data outperformed site-specific models by 5-22%. Findings highlight factors for robust AI-ECG deployment: deep survival methods outperformed horizon-based classifiers, demographic covariates improved predictive performance, classifier-based models required site-specific calibration, and cross-cohort training, even between adult and pediatric cohorts, substantially improved performance. These results emphasize the importance of model type, demographics, and training diversity in developing AI-ECG models reliably applicable across populations.
comment: 16 pages plus appendix
♻ ☆ Data-Driven Discovery of Mobility Periodicity for Understanding Urban Systems
Human mobility regularity is crucial for understanding urban dynamics and informing decision-making processes. This study first quantifies the periodicity in complex human mobility data as a sparse identification of dominant positive auto-correlations in time series autoregression and then discovers periodic patterns. We apply the framework to large-scale metro passenger flow data in Hangzhou, China and multi-modal mobility data in New York City and Chicago, USA, revealing the interpretable weekly periodicity across different spatial locations over past several years. The analysis of ridesharing data from 2019 to 2024 demonstrates the disruptive impact of the pandemic on mobility regularity and the subsequent recovery trends. In 2024, the periodic mobility patterns of ridesharing, taxi, subway, and bikesharing in Manhattan uncover the regularity and variability of these travel modes. Our findings highlight the potential of interpretable machine learning to discover spatiotemporal mobility patterns and offer a valuable tool for understanding urban systems.
♻ ☆ On Regression in Extreme Regions
We establish a statistical learning theoretical framework aimed at extrapolation, or out-of-domain generalization, on the unobserved tails of covariates in continuous regression problems. Our strategy involves performing statistical regression on a subsample of observations with continuous labels that are the furthest away from the origin, focusing specifically on their angular components. The underlying assumptions of our approach are grounded in the theory of multivariate regular variation, a cornerstone of extreme value theory. We address the stylized problem of nonparametric least squares regression with predictors chosen from a Vapnik-Chervonenkis class. This work contributes to a broader initiative to develop statistical learning theoretical foundations for supervised learning strategies that enhance performance on the supposedly heavy tails of covariates. Previous efforts in this area have focused exclusively on binary classification on extreme covariates. Although the continuous target setting necessitates different techniques and regularity assumptions, our main results echo findings from earlier studies. We quantify the predictive performance on tail regions in terms of excess risk, presenting it as a finite sample risk bound with a clear bias-variance decomposition. Numerical experiments with simulated and real data illustrate our theoretical findings.
comment: 30 pages (main paper), 12 pages (appendix), 3 figures, 2 tables. Accepted for publication in EJS
♻ ☆ Kriging prior Regression: A Case for Kriging-Based Spatial Features with TabPFN in Soil Mapping
Machine learning and geostatistics are two fundamentally different frameworks for predicting and spatially mapping soil properties. Geostatistics leverages the spatial structure of soil properties, while machine learning captures the relationship between available environmental features and soil properties. We propose a hybrid framework that enriches ML with spatial context through engineering of 'spatial lag' features from ordinary kriging. We call this approach 'kriging prior regression' (KpR), as it follows the inverse logic of regression kriging. To evaluate this approach, we assessed both the point and probabilistic prediction performance of KpR, using the TabPFN model across six fieldscale datasets from LimeSoDa. These datasets included soil organic carbon, clay content, and pH, along with features derived from remote sensing and in-situ proximal soil sensing. KpR with TabPFN demonstrated reliable uncertainty estimates and more accurate predictions in comparison to several other spatial techniques (e.g., regression/residual kriging with TabPFN), as well as to established non-spatial machine learning algorithms (e.g., random forest). Most notably, it significantly improved the average R2 by around 30% compared to machine learning algorithms without spatial context. This improvement was due to the strong prediction performance of the TabPFN algorithm itself and the complementary spatial information provided by KpR features. TabPFN is particularly effective for prediction tasks with small sample sizes, common in precision agriculture, whereas KpR can compensate for weak relationships between sensing features and soil properties when proximal soil sensing data are limited. Hence, we conclude that KpR with TabPFN is a very robust and versatile modelling framework for digital soil mapping in precision agriculture.
♻ ☆ Uncertainty Modeling in Graph Neural Networks via Stochastic Differential Equations ICLR 2025
We propose a novel Stochastic Differential Equation (SDE) framework to address the problem of learning uncertainty-aware representations for graph-structured data. While Graph Neural Ordinary Differential Equations (GNODEs) have shown promise in learning node representations, they lack the ability to quantify uncertainty. To address this, we introduce Latent Graph Neural Stochastic Differential Equations (LGNSDE), which enhance GNODE by embedding randomness through a Bayesian prior-posterior mechanism for epistemic uncertainty and Brownian motion for aleatoric uncertainty. By leveraging the existence and uniqueness of solutions to graph-based SDEs, we prove that the variance of the latent space bounds the variance of model outputs, thereby providing theoretically sensible guarantees for the uncertainty estimates. Furthermore, we show mathematically that LGNSDEs are robust to small perturbations in the input, maintaining stability over time. Empirical results across several benchmarks demonstrate that our framework is competitive in out-of-distribution detection, robustness to noise, and active learning, underscoring the ability of LGNSDEs to quantify uncertainty reliably. Code is available at \href{https://github.com/Richard-Bergna/GraphNeuralSDE}{\texttt{github.com/Richard-Bergna/GraphNeuralSDE}}.
comment: Accepted at ICLR 2025 as Spotlight. 18 pages including appendix
♻ ☆ LaDi-WM: A Latent Diffusion-based World Model for Predictive Manipulation
Predictive manipulation has recently gained considerable attention in the Embodied AI community due to its potential to improve robot policy performance by leveraging predicted states. However, generating accurate future visual states of robot-object interactions from world models remains a well-known challenge, particularly in achieving high-quality pixel-level representations. To this end, we propose LaDi-WM, a world model that predicts the latent space of future states using diffusion modeling. Specifically, LaDi-WM leverages the well-established latent space aligned with pre-trained Visual Foundation Models (VFMs), which comprises both geometric features (DINO-based) and semantic features (CLIP-based). We find that predicting the evolution of the latent space is easier to learn and more generalizable than directly predicting pixel-level images. Building on LaDi-WM, we design a diffusion policy that iteratively refines output actions by incorporating forecasted states, thereby generating more consistent and accurate results. Extensive experiments on both synthetic and real-world benchmarks demonstrate that LaDi-WM significantly enhances policy performance by 27.9\% on the LIBERO-LONG benchmark and 20\% on the real-world scenario. Furthermore, our world model and policies achieve impressive generalizability in real-world experiments.
comment: CoRL 2025
♻ ☆ Multi-Turn Human-LLM Interaction Through the Lens of a Two-Way Intelligibility Protocol
Our interest is in the design of software systems involving a human-expert interacting -- using natural language -- with a large language model (LLM) on data analysis tasks. For complex problems, it is possible that LLMs can harness human expertise and creativity to find solutions that were otherwise elusive. On one level, this interaction takes place through multiple turns of prompts from the human and responses from the LLM. Here we investigate a more structured approach based on an abstract protocol described in [3] for interaction between agents. The protocol is motivated by a notion of "two-way intelligibility" and is modelled by a pair of communicating finite-state machines. We provide an implementation of the protocol, and provide empirical evidence of using the implementation to mediate interactions between an LLM and a human-agent in two areas of scientific interest (radiology and drug design). We conduct controlled experiments with a human proxy (a database), and uncontrolled experiments with human subjects. The results provide evidence in support of the protocol's capability of capturing one- and two-way intelligibility in human-LLM interaction; and for the utility of two-way intelligibility in the design of human-machine systems.
♻ ☆ Space Group Informed Transformer for Crystalline Materials Generation
We introduce CrystalFormer, a transformer-based autoregressive model specifically designed for space group-controlled generation of crystalline materials. By explicitly incorporating space group symmetry, CrystalFormer greatly reduces the effective complexity of crystal space, which is essential for data-and compute-efficient generative modeling of crystalline materials. Leveraging the prominent discrete and sequential nature of the Wyckoff positions, CrystalFormer learns to generate crystals by directly predicting the species and coordinates of symmetry-inequivalent atoms in the unit cell. We demonstrate the advantages of CrystalFormer in standard tasks such as symmetric structure initialization and element substitution over widely used conventional approaches. Furthermore, we showcase its plug-and-play application to property-guided materials design, highlighting its flexibility. Our analysis reveals that CrystalFormer ingests sensible solid-state chemistry knowledge and heuristics by compressing the material dataset, thus enabling systematic exploration of crystalline materials space. The simplicity, generality, and adaptability of CrystalFormer position it as a promising architecture to be the foundational model of the entire crystalline materials space, heralding a new era in materials discovery and design.
comment: 29 pages, 12 figures
♻ ☆ Neural Force Field: Few-shot Learning of Generalized Physical Reasoning
Physical reasoning is a remarkable human ability that enables rapid learning and generalization from limited experience. Current AI models, despite extensive training, still struggle to achieve similar generalization, especially in Out-of-distribution (OOD) settings. This limitation stems from their inability to abstract core physical principles from observations. A key challenge is developing representations that can efficiently learn and generalize physical dynamics from minimal data. Here we present Neural Force Field (NFF), a framework extending Neural Ordinary Differential Equation (NODE) to learn complex object interactions through force field representations, which can be efficiently integrated through an Ordinary Differential Equation (ODE) solver to predict object trajectories. Unlike existing approaches that rely on discrete latent spaces, NFF captures fundamental physical concepts such as gravity, support, and collision in continuous explicit force fields. Experiments on three challenging physical reasoning tasks demonstrate that NFF, trained with only a few examples, achieves strong generalization to unseen scenarios. This physics-grounded representation enables efficient forward-backward planning and rapid adaptation through interactive refinement. Our work suggests that incorporating physics-inspired representations into learning systems can help bridge the gap between artificial and human physical reasoning capabilities.
comment: 31 pages
♻ ☆ Steering Protein Language Models ICML 2025
Protein Language Models (PLMs), pre-trained on extensive evolutionary data from natural proteins, have emerged as indispensable tools for protein design. While powerful, PLMs often struggle to produce proteins with precisely specified functionalities or properties due to inherent challenges in controlling their outputs. In this work, we investigate the potential of Activation Steering, a technique originally developed for controlling text generation in Large Language Models (LLMs), to direct PLMs toward generating protein sequences with targeted properties. We propose a simple yet effective method that employs activation editing to steer PLM outputs, and extend this approach to protein optimization through a novel editing site identification module. Through comprehensive experiments on lysozyme-like sequence generation and optimization, we demonstrate that our methods can be seamlessly integrated into both auto-encoding and autoregressive PLMs without requiring additional training. These results highlight a promising direction for precise protein engineering using foundation models.
comment: Accepted to ICML 2025
♻ ☆ DE-VAE: Revealing Uncertainty in Parametric and Inverse Projections with Variational Autoencoders using Differential Entropy
Recently, autoencoders (AEs) have gained interest for creating parametric and invertible projections of multidimensional data. Parametric projections make it possible to embed new, unseen samples without recalculating the entire projection, while invertible projections allow the synthesis of new data instances. However, existing methods perform poorly when dealing with out-of-distribution samples in either the data or embedding space. Thus, we propose DE-VAE, an uncertainty-aware variational AE using differential entropy (DE) to improve the learned parametric and invertible projections. Given a fixed projection, we train DE-VAE to learn a mapping into 2D space and an inverse mapping back to the original space. We conduct quantitative and qualitative evaluations on four well-known datasets, using UMAP and t-SNE as baseline projection methods. Our findings show that DE-VAE can create parametric and inverse projections with comparable accuracy to other current AE-based approaches while enabling the analysis of embedding uncertainty.
comment: 5 pages, 3 figures, LaTeX; fixed typos; to appear at the 2025 IEEE Workshop on Uncertainty Visualization
♻ ☆ Building Age Estimation: A New Multi-Modal Benchmark Dataset and Community Challenge
Estimating the construction year of buildings is critical for advancing sustainability, as older structures often lack energy-efficient features. Sustainable urban planning relies on accurate building age data to reduce energy consumption and mitigate climate change. In this work, we introduce MapYourCity, a novel multi-modal benchmark dataset comprising top-view Very High Resolution (VHR) imagery, multi-spectral Earth Observation (EO) data from the Copernicus Sentinel-2 satellite constellation, and co-localized street-view images across various European cities. Each building is labeled with its construction epoch, and the task is formulated as a seven-class classification problem covering periods from 1900 to the present. To advance research in EO generalization and multi-modal learning, we organized a community-driven data challenge in 2024, hosted by ESA $\Phi$-lab, which ran for four months and attracted wide participation. This paper presents the Top-4 performing models from the challenge and their evaluation results. We assess model generalization on cities excluded from training to prevent data leakage, and evaluate performance under missing modality scenarios, particularly when street-view data is unavailable. Results demonstrate that building age estimation is both feasible and effective, even in previously unseen cities and when relying solely on top-view satellite imagery (i.e. with VHR and Sentinel-2 images). The MapYourCity dataset thus provides a valuable resource for developing scalable, real-world solutions in sustainable urban analytics.
comment: 16 pages, 20 figures, 1 table, Submitted
♻ ☆ Diffusion Buffer: Online Diffusion-based Speech Enhancement with Sub-Second Latency
Diffusion models are a class of generative models that have been recently used for speech enhancement with remarkable success but are computationally expensive at inference time. Therefore, these models are impractical for processing streaming data in real-time. In this work, we adapt a sliding window diffusion framework to the speech enhancement task. Our approach progressively corrupts speech signals through time, assigning more noise to frames close to the present in a buffer. This approach outputs denoised frames with a delay proportional to the chosen buffer size, enabling a trade-off between performance and latency. Empirical results demonstrate that our method outperforms standard diffusion models and runs efficiently on a GPU, achieving an input-output latency in the order of 0.3 to 1 seconds. This marks the first practical diffusion-based solution for online speech enhancement.
comment: 5 pages, 2 figures, Accepted to Interspeech 2025
♻ ☆ Leveraging Data Augmentation and Siamese Learning for Predictive Process Monitoring
Predictive Process Monitoring (PPM) enables forecasting future events or outcomes of ongoing business process instances based on event logs. However, deep learning PPM approaches are often limited by the low variability and small size of real-world event logs. To address this, we introduce SiamSA-PPM, a novel self-supervised learning framework that combines Siamese learning with Statistical Augmentation for Predictive Process Monitoring. It employs three novel statistically grounded transformation methods that leverage control-flow semantics and frequent behavioral patterns to generate realistic, semantically valid new trace variants. These augmented views are used within a Siamese learning setup to learn generalizable representations of process prefixes without the need for labeled supervision. Extensive experiments on real-life event logs demonstrate that SiamSA-PPM achieves competitive or superior performance compared to the SOTA in both next activity and final outcome prediction tasks. Our results further show that statistical augmentation significantly outperforms random transformations and improves variability in the data, highlighting SiamSA-PPM as a promising direction for training data enrichment in process prediction.
♻ ☆ Survivability of Backdoor Attacks on Unconstrained Face Recognition Systems
The widespread deployment of Deep Learning-based Face Recognition Systems raises multiple security concerns. While prior research has identified backdoor vulnerabilities on isolated components, Backdoor Attacks on real-world, unconstrained pipelines remain underexplored. This paper presents the first comprehensive system-level analysis of Backdoor Attacks targeting Face Recognition Systems and provides three contributions. We first show that face feature extractors trained with large margin metric learning losses are susceptible to Backdoor Attacks. By analyzing 20 pipeline configurations and 15 attack scenarios, we then reveal that a single backdoor can compromise an entire Face Recognition System. Finally, we propose effective best practices and countermeasures for stakeholders.
♻ ☆ MAESTRO: Multi-modal Adaptive Estimation for Temporal Respiratory Disease Outbreak
Timely and robust influenza incidence forecasting is critical for public health decision-making. This paper presents MAESTRO (Multi-modal Adaptive Estimation for Temporal Respiratory Disease Outbreak), a novel, unified framework that synergistically integrates advanced spectro-temporal modeling with multi-modal data fusion, including surveillance, web search trends, and meteorological data. By adaptively weighting heterogeneous data sources and decomposing complex time series patterns, the model achieves robust and accurate forecasts. Evaluated on over 11 years of Hong Kong influenza data (excluding the COVID-19 period), MAESTRO demonstrates state-of-the-art performance, achieving a superior model fit with an R-square of 0.956. Extensive ablations confirm the significant contributions of its multi-modal and spectro-temporal components. The modular and reproducible pipeline is made publicly available to facilitate deployment and extension to other regions and pathogens, presenting a powerful tool for epidemiological forecasting.
♻ ☆ Similarity-based Outlier Detection for Noisy Object Re-Identification Using Beta Mixtures
Object re-identification (Re-ID) methods are highly sensitive to label noise, which typically leads to significant performance degradation. We address this challenge by reframing Re-ID as a supervised image similarity task and adopting a Siamese network architecture trained to capture discriminative pairwise relationships. Central to our approach is a novel statistical outlier detection (OD) framework, termed Beta-SOD (Beta mixture Similarity-based Outlier Detection), which models the distribution of cosine similarities between embedding pairs using a two-component Beta distribution mixture model. We establish a novel identifiability result for mixtures of two Beta distributions, ensuring that our learning task is well-posed. The proposed OD step complements the Re-ID architecture combining binary cross-entropy, contrastive, and cosine embedding losses that jointly optimize feature-level similarity learning.We demonstrate the effectiveness of Beta-SOD in de-noising and Re-ID tasks for person Re-ID, on CUHK03 and Market-1501 datasets, and vehicle Re-ID, on VeRi-776 dataset. Our method shows superior performance compared to the state-of-the-art methods across various noise levels (10-30\%), demonstrating both robustness and broad applicability in noisy Re-ID scenarios. The implementation of Beta-SOD is available at: github.com/waqar3411/Beta-SOD
♻ ☆ A Comprehensive Survey on Imbalanced Data Learning
With the expansion of data availability, machine learning (ML) has achieved remarkable breakthroughs in both academia and industry. However, imbalanced data distributions are prevalent in various types of raw data and severely hinder the performance of ML by biasing the decision-making processes. To deepen the understanding of imbalanced data and facilitate the related research and applications, this survey systematically analyzes various real-world data formats and concludes existing researches for different data formats into four distinct categories: data re-balancing, feature representation, training strategy, and ensemble learning. This structured analysis helps researchers comprehensively understand the pervasive nature of imbalance across diverse data formats, thereby paving a clearer path toward achieving specific research goals. We provide an overview of relevant open-source libraries, spotlight current challenges, and offer novel insights aimed at fostering future advancements in this critical area of study.
♻ ☆ Evaluating the Evaluators: Towards Human-aligned Metrics for Missing Markers Reconstruction
Animation data is often obtained through optical motion capture systems, which utilize a multitude of cameras to establish the position of optical markers. However, system errors or occlusions can result in missing markers, the manual cleaning of which can be time-consuming. This has sparked interest in machine learning-based solutions for missing marker reconstruction in the academic community. Most academic papers utilize a simplistic mean square error as the main metric. In this paper, we show that this metric does not correlate with subjective perception of the fill quality. Additionally, we introduce and evaluate a set of better-correlated metrics that can drive progress in the field.
comment: Accepted at the ACM International Conference on Multimedia 2025 (ACM MM'25)
♻ ☆ Multivariate Long-term Time Series Forecasting with Fourier Neural Filter
Multivariate long-term time series forecasting has been suffering from the challenge of capturing both temporal dependencies within variables and spatial correlations across variables simultaneously. Current approaches predominantly repurpose backbones from natural language processing or computer vision (e.g., Transformers), which fail to adequately address the unique properties of time series (e.g., periodicity). The research community lacks a dedicated backbone with temporal-specific inductive biases, instead relying on domain-agnostic backbones supplemented with auxiliary techniques (e.g., signal decomposition). We introduce FNF as the backbone and DBD as the architecture to provide excellent learning capabilities and optimal learning pathways for spatio-temporal modeling, respectively. Our theoretical analysis proves that FNF unifies local time-domain and global frequency-domain information processing within a single backbone that extends naturally to spatial modeling, while information bottleneck theory demonstrates that DBD provides superior gradient flow and representation capacity compared to existing unified or sequential architectures. Our empirical evaluation across 11 public benchmark datasets spanning five domains (energy, meteorology, transportation, environment, and nature) confirms state-of-the-art performance with consistent hyperparameter settings. Notably, our approach achieves these results without any auxiliary techniques, suggesting that properly designed neural architectures can capture the inherent properties of time series, potentially transforming time series modeling in scientific and industrial applications.
♻ ☆ Task-Oriented Multimodal Token Transmission in Resource-Constrained Multiuser Networks
Despite the promising paradigm enabled by integrating semantic communication (SemCom) with multimodal large models (MLMs) for transmitting and utilizing multimodal data, efficiently fusing and exploiting cross-modal information still remain challenging. Moreover, widely adopted transformer-based architectures inevitably produce excessively long token embeddings for transmission, which result in higher bandwidth consumption, increased power usage, and greater latency, rendering them impractical in resource-constrained networks. In this letter, we propose a task-oriented multimodal token transmission scheme for efficient multimodal information fusion and utilization. To improve inter-modal consistency and task-relevant token transmission, we design a two-stage training algotithm which involves cross-modal alignment followed by task-oriented fine-tuning. Meanwhile, token compression is performed using a sliding window pooling operation to conserve limited communication resources. To balance the trade-off between latency reduction and performance degradation caused by compression, we formulate a weighted-sum optimization problem over latency and inference performance. We jointly optimizes bandwidth, power allocation, and token length across users by using an alternating optimization method. Simulation results demonstrate that the proposed algorithm outperforms the baseline under different bandwidth and power budgets. Moreover, the two-stage training algorithm achieves higher accuracy across various signal-to-noise ratios than the method without cross-modal alignment.
♻ ☆ When and How Does CLIP Enable Domain and Compositional Generalization? ICML 2025
The remarkable generalization performance of contrastive vision-language models like CLIP is often attributed to the diversity of their training distributions. However, key questions remain unanswered: Can CLIP generalize to an entirely unseen domain when trained on a diverse mixture of domains (domain generalization)? Can it generalize to unseen classes within partially seen domains (compositional generalization)? What factors affect such generalization? To answer these questions, we trained CLIP models on systematically constructed training distributions with controlled domain diversity and object class exposure. Our experiments show that domain diversity is essential for both domain and compositional generalization, yet compositional generalization can be surprisingly weaker than domain generalization when the training distribution contains a suboptimal subset of the test domain. Through data-centric and mechanistic analyses, we find that successful generalization requires the learning of sufficiently shared representations in intermediate layers and circuits.
comment: ICML 2025 (Spotlight)
♻ ☆ Prior shift estimation for positive unlabeled data through the lens of kernel embedding
We study estimation of a class prior for unlabeled target samples which possibly differs from that of source population. Moreover, it is assumed that the source data is partially observable: only samples from the positive class and from the whole population are available (PU learning scenario). We introduce a novel direct estimator of a class prior which avoids estimation of posterior probabilities in both populations and has a simple geometric interpretation. It is based on a distribution matching technique together with kernel embedding in a Reproducing Kernel Hilbert Space and is obtained as an explicit solution to an optimisation task. We establish its asymptotic consistency as well as an explicit non-asymptotic bound on its deviation from the unknown prior, which is calculable in practice. We study finite sample behaviour for synthetic and real data and show that the proposal works consistently on par or better than its competitors.
♻ ☆ FedFitTech: A Baseline in Federated Learning for Fitness Tracking
The rapid evolution of sensors and resource-efficient machine learning models has spurred the widespread adoption of wearable fitness tracking devices. Equipped with inertial sensors, such devices can continuously capture physical movements for fitness technology (FitTech), enabling applications from sports optimization to preventive healthcare. Traditional Centralized Learning approaches to detect fitness activities struggle with data privacy concerns, regulatory restrictions, and communication inefficiencies. In contrast, Federated Learning (FL) enables a decentralized model training by communicating model updates rather than potentially private wearable sensor data. Applying FL to FitTech presents unique challenges, such as data imbalance, lack of labeled data, heterogeneous user activities, and trade-offs between personalization and generalization. To simplify research on FitTech in FL, we present the FedFitTech baseline, under the Flower framework, which is publicly available and widely used by both industry and academic researchers. Additionally, to illustrate its usage, this paper presents a case study that implements a system based on the FedFitTech baseline, incorporating a client-side early stopping strategy and comparing the results. For instance, this system allows wearable devices to optimize the trade-off between capturing common fitness activities and preserving individuals' nuances, thereby enhancing both the scalability and efficiency of privacy-aware fitness tracking applications. The results show that this reduces the overall redundant communications by 13%, while maintaining the overall recognition performance at a negligible recognition cost by 1%. Thus, the FedFitTech baseline creates a foundation for a wide range of new research and development opportunities in FitTech, and it is available as open source at: https://github.com/shreyaskorde16/FedFitTech
comment: This submission includes a total of 7 pages and 6 figures
♻ ☆ When Pattern-by-Pattern Works: Theoretical and Empirical Insights for Logistic Models with Missing Values
Predicting a response with partially missing inputs remains a challenging task even in parametric models, since parameter estimation in itself is not sufficient to predict on partially observed inputs. Several works study prediction in linear models. In this paper, we focus on logistic models, which present their own difficulties. From a theoretical perspective, we prove that a Pattern-by-Pattern strategy (PbP), which learns one logistic model per missingness pattern, accurately approximates Bayes probabilities in various missing data scenarios (MCAR, MAR and MNAR). Empirically, we thoroughly compare various methods (constant and iterative imputations, complete case analysis, PbP, and an EM algorithm) across classification, probability estimation, calibration, and parameter inference. Our analysis provides a comprehensive view on the logistic regression with missing values. It reveals that mean imputation can be used as baseline for low sample sizes, and improved performance is obtained via nonlinear multiple iterative imputation techniques with the labels (MICE.RF.Y). For large sample sizes, PbP is the best method for Gaussian mixtures, and we recommend MICE.RF.Y in presence of nonlinear features.
♻ ☆ The Overcooked Generalisation Challenge: Evaluating Cooperation with Novel Partners in Unknown Environments Using Unsupervised Environment Design
We introduce the Overcooked Generalisation Challenge (OGC) - a new benchmark for evaluating reinforcement learning (RL) agents on their ability to cooperate with unknown partners in unfamiliar environments. Existing work typically evaluated cooperative RL only in their training environment or with their training partners, thus seriously limiting our ability to understand agents' generalisation capacity - an essential requirement for future collaboration with humans. The OGC extends Overcooked-AI to support dual curriculum design (DCD). It is fully GPU-accelerated, open-source, and integrated into the minimax DCD benchmark suite. Compared to prior DCD benchmarks, where designers manipulate only minimal elements of the environment, OGC introduces a significantly richer design space: full kitchen layouts with multiple objects that require the designer to account for interaction dynamics between agents. We evaluate state-of-the-art DCD algorithms alongside scalable neural architectures and find that current methods fail to produce agents that generalise effectively to novel layouts and unfamiliar partners. Our results indicate that both agents and curriculum designers struggle with the joint challenge of partner and environment generalisation. These findings establish OGC as a demanding testbed for cooperative generalisation and highlight key directions for future research. We open-source our code.
comment: TMLR, 31 pages
♻ ☆ AReaL: A Large-Scale Asynchronous Reinforcement Learning System for Language Reasoning
Reinforcement learning (RL) has become a dominant paradigm for training large language models (LLMs), particularly for reasoning tasks. Effective RL for LLMs requires massive parallelization and poses an urgent need for efficient training systems. Most existing large-scale RL systems for LLMs are synchronous, alternating generation and training in a batch setting where rollouts in each training batch are generated by the same model. This approach stabilizes RL training but suffers from severe system-level inefficiency: generation must wait until the longest output in the batch is completed before model updates, resulting in GPU underutilization. We present AReaL, a fully asynchronous RL system that completely decouples generation from training. Rollout workers in AReaL continuously generate new outputs without waiting, while training workers update the model whenever a batch of data is collected. AReaL also incorporates a collection of system-level optimizations, leading to substantially higher GPU utilization. To stabilize RL training, AReaL balances the workload of rollout and training workers to control data staleness, and adopts a staleness-enhanced PPO variant to better handle outdated training samples. Extensive experiments on math and code reasoning benchmarks show that AReaL achieves up to 2.77$\times$ training speedup compared to synchronous systems with the same number of GPUs and matched or improved final performance. The code of AReaL is available at https://github.com/inclusionAI/AReaL/.
♻ ☆ EB-gMCR: Energy-Based Generative Modeling for Signal Unmixing and Multivariate Curve Resolution
Signal unmixing analysis decomposes data into basic patterns and is widely applied in chemical and biological research. Multivariate curve resolution (MCR), a branch of signal unmixing, separates mixed signals into components (base patterns) and their concentrations (intensity), playing a key role in understanding composition. Classical MCR is typically framed as matrix factorization (MF) and requires a user-specified number of components, usually unknown in real data. Once data or component number increases, the scalability of these MCR approaches face significant challenges. This study reformulates MCR as a data generative process (gMCR), and introduces an Energy-Based solver, EB-gMCR, that automatically discovers the smallest component set and their concentrations for reconstructing the mixed signals faithfully. On synthetic benchmarks with up to 256 components, EB-gMCR attains high reconstruction fidelity and recovers the component count within 5% at 20dB noise and near-exact at 30dB. On two public spectral datasets, it identifies the correct component count and improves component separation over MF-based MCR approaches (NMF variants, ICA, MCR-ALS). EB-gMCR is a general solver for fixed-pattern signal unmixing (components remain invariant across mixtures). Domain priors (non-negativity, nonlinear mixing) enter as plug-in modules, enabling adaptation to new instruments or domains without altering the core selection learning step. The source code is available at https://github.com/b05611038/ebgmcr_solver.
comment: 12 pages, 3 figures, 2 tables
♻ ☆ Analyzing the Impact of Adversarial Examples on Explainable Machine Learning
Adversarial attacks are a type of attack on machine learning models where an attacker deliberately modifies the inputs to cause the model to make incorrect predictions. Adversarial attacks can have serious consequences, particularly in applications such as autonomous vehicles, medical diagnosis, and security systems. Work on the vulnerability of deep learning models to adversarial attacks has shown that it is very easy to make samples that make a model predict things that it doesn't want to. In this work, we analyze the impact of model interpretability due to adversarial attacks on text classification problems. We develop an ML-based classification model for text data. Then, we introduce the adversarial perturbations on the text data to understand the classification performance after the attack. Subsequently, we analyze and interpret the model's explainability before and after the attack
♻ ☆ Constraint Guided Model Quantization of Neural Networks
Deploying neural networks on the edge has become increasingly important as deep learning is being applied in an increasing amount of applications. At the edge computing hardware typically has limited resources disallowing to run neural networks with high complexity. To reduce the complexity of neural networks a wide range of quantization methods have been proposed in recent years. This work proposes Constraint Guided Model Quantization (CGMQ), which is a quantization aware training algorithm that uses an upper bound on the computational resources and reduces the bit-widths of the parameters of the neural network. CGMQ does not require the tuning of a hyperparameter to result in a mixed precision neural network that satisfies the predefined computational cost constraint, while prior work does. It is shown on MNIST and CIFAR10 that the performance of CGMQ is competitive with state-of-the-art quantization aware training algorithms, while guaranteeing the satisfaction of an upper bound on the computational complexity defined by the computational resources of the on edge hardware.
comment: 16 pages, 8 tables, 1 figure
♻ ☆ Input-Time Scaling
Current Large Language Models (LLMs) are usually post-trained on large-scale carefully curated datasets (data & training scaling) and doing reasoning in test time (inference time scaling). In this work, we present a new scaling paradigm, Input-Time Scaling, to complement previous scaling methods by putting resources on queries (input time). During training and testing, we utilize meta-knowledge from LLMs to refine inputs with different strategies. We also discover a new phenomenon, train-test co-design. It requires us to apply query strategies during training and testing as a whole. Only applying strategies on training or testing would seriously degrade the performance gained. We are also surprised to find that seemingly low data quality datasets can perform better. We can get the best performance even by adding irrelevant information to the queries, with randomly selected 1k examples from a minimally filtered dataset. These findings contradict the widely held inductive bias, "garbage in, garbage out". Curating datasets with seemingly high-quality data can even potentially limit the performance ceiling. In addition, models trained on more data with similar quality (15k VS 1k) perform worse, the intuition of simply scaling the size should also be carefully inspected. The good news is that our findings are compatible with the Less is More phenomenon. 1K examples are enough to invoke high-level reasoning ability. With experiments on Qwen2.5-32B-Instruct, we are able to reach SOTA performance among 32B models on AIME24(76.7%) and AIME25(76.7%) pass@1. We can further achieve AIME24(76.7%) and AIME25(80%) with a majority vote of three models. Starting from DeepSeek-R1-Distill-Qwen-32B, the result would be 90.0% on AIME24 and 80.0% on AIME25. To facilitate reproducibility and further research, we are working on open-source our datasets, data pipelines, evaluation results, and checkpoints.
♻ ☆ Adaptive Rainfall Forecasting from Multiple Geographical Models Using Matrix Profile and Ensemble Learning
Rainfall forecasting in Vietnam is highly challenging due to its diverse climatic conditions and strong geographical variability across river basins, yet accurate and reliable forecasts are vital for flood management, hydropower operation, and disaster preparedness. In this work, we propose a Matrix Profile-based Weighted Ensemble (MPWE), a regime-switching framework that dynamically captures covariant dependencies among multiple geographical model forecasts while incorporating redundancy-aware weighting to balance contributions across models. We evaluate MPWE using rainfall forecasts from eight major basins in Vietnam, spanning five forecast horizons (1 hour and accumulated rainfall over 12, 24, 48, 72, and 84 hours). Experimental results show that MPWE consistently achieves lower mean and standard deviation of prediction errors compared to geographical models and ensemble baselines, demonstrating both improved accuracy and stability across basins and horizons.
♻ ☆ Semi-Supervised Learning for Dose Prediction in Targeted Radionuclide: A Synthetic Data Study
Targeted Radionuclide Therapy (TRT) is a modern strategy in radiation oncology that aims to administer a potent radiation dose specifically to cancer cells using cancer-targeting radiopharmaceuticals. Accurate radiation dose estimation tailored to individual patients is crucial. Deep learning, particularly with pre-therapy imaging, holds promise for personalizing TRT doses. However, current methods require large time series of SPECT imaging, which is hardly achievable in routine clinical practice, and thus raises issues of data availability. Our objective is to develop a semi-supervised learning (SSL) solution to personalize dosimetry using pre-therapy images. The aim is to develop an approach that achieves accurate results when PET/CT images are available, but are associated with only a few post-therapy dosimetry data provided by SPECT images. In this work, we introduce an SSL method using a pseudo-label generation approach for regression tasks inspired by the FixMatch framework. The feasibility of the proposed solution was preliminarily evaluated through an in-silico study using synthetic data and Monte Carlo simulation. Experimental results for organ dose prediction yielded promising outcomes, showing that the use of pseudo-labeled data provides better accuracy compared to using only labeled data.
comment: 12 pages, 13 figures, 5 tables
♻ ☆ Finite Scalar Quantization Enables Redundant and Transmission-Robust Neural Audio Compression at Low Bit-rates
Neural Audio Codecs (NACs) have become increasingly adopted in speech processing tasks due to their excellent rate-distortion performance and compatibility with Large Language Models (LLMs) as discrete feature representations for audio generation. While most existing codecs rely on Residual Vector Quantization (RVQ), Finite Scalar Quantization (FSQ) has recently emerged as a compelling alternative that simplifies training and natively supports single codebooks. We introduce NeuCodec, an FSQ-based NAC, and show that FSQ encodes baked-in redundancy which produces an encoding which is robust when transmitted through noisy channels. First, through an encoder distillation experiment, we show that two different encoders can learn to encode identical audio into vastly different code sequences whilst maintaining comparable reconstruction quality with the same quantizer and decoder. Second, we demonstrate that FSQ has vastly superior bit-level perturbation robustness by comparing the performance of RVQ and FSQ codecs when simulating the transmission of code sequences through a noisy channel.
♻ ☆ DivMerge: A divergence-based model merging method for multi-tasking
Multi-task learning (MTL) is often achieved by merging datasets before fine-tuning, but the growing availability of fine-tuned models has led to new approaches such as model merging via task arithmetic. A major challenge in this setting is task interference, which worsens as the number of tasks increases. We propose a method that merges models trained on different tasks into a single model, maintaining strong performance across all tasks. Our approach leverages Jensen-Shannon divergence to guide the merging process without requiring additional labelled data, and automatically balances task importance. Unlike existing methods, our approach remains robust as the number of tasks grows and consistently outperforms prior work.
♻ ☆ PL-Net: Progressive Learning Network for Medical Image Segmentation
In recent years, deep convolutional neural network-based segmentation methods have achieved state-of-the-art performance for many medical analysis tasks. However, most of these approaches rely on optimizing the U-Net structure or adding new functional modules, which overlooks the complementation and fusion of coarse-grained and fine-grained semantic information. To address these issues, we propose a 2D medical image segmentation framework called Progressive Learning Network (PL-Net), which comprises Internal Progressive Learning (IPL) and External Progressive Learning (EPL). PL-Net offers the following advantages: (1) IPL divides feature extraction into two steps, allowing for the mixing of different size receptive fields and capturing semantic information from coarse to fine granularity without introducing additional parameters; (2) EPL divides the training process into two stages to optimize parameters and facilitate the fusion of coarse-grained information in the first stage and fine-grained information in the second stage. We conducted comprehensive evaluations of our proposed method on five medical image segmentation datasets, and the experimental results demonstrate that PL-Net achieves competitive segmentation performance. It is worth noting that PL-Net does not introduce any additional learnable parameters compared to other U-Net variants.
♻ ☆ A Unified Framework for Diffusion Bridge Problems: Flow Matching and Schrödinger Matching into One
The bridge problem is to find an SDE (or sometimes an ODE) that bridges two given distributions. The application areas of the bridge problem are enormous, among which the recent generative modeling (e.g., conditional or unconditional image generation) is the most popular. Also the famous Schr\"{o}dinger bridge problem, a widely known problem for a century, is a special instance of the bridge problem. Two most popular algorithms to tackle the bridge problems in the deep learning era are: (conditional) flow matching and iterative fitting algorithms, where the former confined to ODE solutions, and the latter specifically for the Schr\"{o}dinger bridge problem. The main contribution of this article is in two folds: i) We provide concise reviews of these algorithms with technical details to some extent; ii) We propose a novel unified perspective and framework that subsumes these seemingly unrelated algorithms (and their variants) into one. In particular, we show that our unified framework can instantiate the Flow Matching (FM) algorithm, the (mini-batch) optimal transport FM algorithm, the (mini-batch) Schr\"{o}dinger bridge FM algorithm, and the deep Schr\"{o}dinger bridge matching (DSBM) algorithm as its special cases. We believe that this unified framework will be useful for viewing the bridge problems in a more general and flexible perspective, and in turn can help researchers and practitioners to develop new bridge algorithms in their fields.
♻ ☆ MoPD: Mixture-of-Prompts Distillation for Vision-Language Models
Soft prompt learning methods are effective for adapting vision-language models (VLMs) to downstream tasks. Nevertheless, empirical evidence reveals a tendency of existing methods that they overfit seen classes and exhibit degraded performance on unseen classes. This limitation is due to the inherent bias in the training data towards the seen classes. To address this issue, we propose a novel soft prompt learning method, named Mixture-of-Prompts Distillation (MoPD), which can effectively transfer useful knowledge from hard prompts manually hand-crafted (a.k.a. teacher prompts) to the learnable soft prompt (a.k.a. student prompt), thereby enhancing the generalization ability of soft prompts on unseen classes. Moreover, the proposed MoPD method utilizes a gating network that learns to select hard prompts used for prompt distillation. Extensive experiments demonstrate that the proposed MoPD method outperforms state-of-the-art baselines especially on on unseen classes.
♻ ☆ Open-sci-ref-0.01: open and reproducible reference baselines for language model and dataset comparison
We introduce open-sci-ref, a family of dense transformer models trained as research baselines across multiple model (0.13B to 1.7B parameters) and token scales (up to 1T) on 8 recent open reference datasets. Evaluating the models on various standardized benchmarks, our training runs set establishes reference points that enable researchers to assess the sanity and quality of alternative training approaches across scales and datasets. Intermediate checkpoints allow comparison and studying of the training dynamics. The established reference baselines allow training procedures to be compared through their scaling trends, aligning them on a common compute axis. Comparison of open reference datasets reveals that training on NemoTron-CC HQ consistently outperforms other reference datasets, followed by DCLM-baseline and FineWeb-Edu. In addition to intermediate training checkpoints, the release includes logs, code, and downstream evaluations to simplify reproduction, standardize comparison, and facilitate future research.
comment: Model weights and intermediate checkpoints are available at https://huggingface.co/collections/open-sci/open-sci-ref-001-685905e598be658fbcebff4f; code for reproducing training, evaluation and raw experiments data at https://github.com/LAION-AI/open-sci-ref-0.01
♻ ☆ Soft Diamond Regularizers for Deep Learning
This chapter presents the new family of soft diamond synaptic regularizers based on thick-tailed symmetric alpha stable $S{\alpha}S$ probability bell curves. These new parametrized weight priors improved deep-learning performance on image and language-translation test sets and increased the sparsity of the trained weights. They outperformed the state-of-the-art hard-diamond Laplacian regularizer of sparse lasso regression and classification. The $S{\alpha}S$ synaptic weight priors have power-law bell-curve tails that are thicker than the thin exponential tails of Gaussian bell curves that underly ridge regularizers. Their tails get thicker as the $\alpha$ parameter decreases. These thicker tails model more impulsive behavior and allow for occasional distant search in synaptic weight spaces of extremely high dimension. The geometry of their constraint sets has a diamond shape. The shape varies from a circle to a star or diamond that depends on the $\alpha$ tail thickness and dispersion of the $S{\alpha}S$ weight prior. These $S{\alpha}S$ bell curves lack a closed form in general and this makes direct training computationally intensive. We removed this computational bottleneck by using a precomputed look-up table. We tested the soft diamond regularizers with deep neural classifiers on both image test sets and German-to-English language translation. The image simulations used the three datasets CIFAR-10, CIFAR-100, and Caltech-256. The regularizers improved the accuracy and sparsity of the classifiers. We also tested with deep neural machine-translation models on the IWSLT-2016 Evaluation dataset for German-to-English text translation. They also outperformed ridge regularizers and lasso regularizers. These findings recommend the sub-Cauchy $\alpha = 0.5$ soft diamond regularizer as a competitive and sparse regularizer for large-scale machine learning.
comment: 25 pages, 15 figures. This version extends the earlier version titled "Training Deep Neural Classifiers with Soft Diamond Regularizers"
♻ ☆ Interpretable Data-driven Anomaly Detection in Industrial Processes with ExIFFI
Anomaly Detection (AD) is crucial in industrial settings to streamline operations by detecting underlying issues. Conventional methods merely label observations as normal or anomalous, lacking crucial insights. In Industry 5.0, interpretable outcomes become desirable to enable users to understand the rational under model decisions. This paper presents the first industrial application of ExIFFI, a recent approach for fast, efficient explanations for the Extended Isolation Forest (EIF) (AD) method. ExIFFI is tested on three industrial datasets, demonstrating superior explanation effectiveness and computational efficiency compared to other state-of-the-art explainable AD models.
comment: This is an extension of the previous version of the paper, submitted to IEEE Transaction for Industry Application. The extension consists in: improved text, new citations, new benchmark dataset `CoffeeData` and new figures
♻ ☆ Sufficient Invariant Learning for Distribution Shift CVPR 2025
Learning robust models under distribution shifts between training and test datasets is a fundamental challenge in machine learning. While learning invariant features across environments is a popular approach, it often assumes that these features are fully observed in both training and test sets, a condition frequently violated in practice. When models rely on invariant features absent in the test set, their robustness in new environments can deteriorate. To tackle this problem, we introduce a novel learning principle called the Sufficient Invariant Learning (SIL) framework, which focuses on learning a sufficient subset of invariant features rather than relying on a single feature. After demonstrating the limitation of existing invariant learning methods, we propose a new algorithm, Adaptive Sharpness-aware Group Distributionally Robust Optimization (ASGDRO), to learn diverse invariant features by seeking common flat minima across the environments. We theoretically demonstrate that finding a common flat minima enables robust predictions based on diverse invariant features. Empirical evaluations on multiple datasets, including our new benchmark, confirm ASGDRO's robustness against distribution shifts, highlighting the limitations of existing methods.
comment: Accepted by CVPR 2025. Corresponding author: Kyungwoo Song
♻ ☆ Local-Cloud Inference Offloading for LLMs in Multi-Modal, Multi-Task, Multi-Dialogue Settings
Compared to traditional machine learning models, recent large language models (LLMs) can exhibit multi-task-solving capabilities through multiple dialogues and multi-modal data sources. These unique characteristics of LLMs, together with their large model size, make their deployment more challenging. Specifically, (i) deploying LLMs on local devices faces computational, memory, and energy resource issues, while (ii) deploying them in the cloud cannot guarantee real-time service and incurs communication/usage costs. In this paper, we design TMO, a local-cloud LLM inference system with Three-M Offloading: Multi-modal, Multi-task, and Multi-dialogue. TMO incorporates (i) a lightweight local LLM that can process simple tasks at high speed and (ii) a large-scale cloud LLM that can handle multi-modal data sources. We develop a resource-constrained reinforcement learning (RCRL) strategy for TMO that optimizes the inference location (i.e., local vs. cloud) and multi-modal data sources to use for each task/dialogue, aiming to maximize the long-term reward (response quality, latency, and usage cost) while adhering to resource constraints. We also contribute M4A1, a new dataset we curated that contains reward and cost metrics across multiple modality, task, dialogue, and LLM configurations, enabling evaluation of offloading decisions. We demonstrate the effectiveness of TMO compared to several exploration-decision and LLM-as-Agent baselines, showing significant improvements in latency, cost, and response quality.
♻ ☆ Humanity's Last Exam
Benchmarks are important tools for tracking the rapid advancements in large language model (LLM) capabilities. However, benchmarks are not keeping pace in difficulty: LLMs now achieve over 90\% accuracy on popular benchmarks like MMLU, limiting informed measurement of state-of-the-art LLM capabilities. In response, we introduce Humanity's Last Exam (HLE), a multi-modal benchmark at the frontier of human knowledge, designed to be the final closed-ended academic benchmark of its kind with broad subject coverage. HLE consists of 2,500 questions across dozens of subjects, including mathematics, humanities, and the natural sciences. HLE is developed globally by subject-matter experts and consists of multiple-choice and short-answer questions suitable for automated grading. Each question has a known solution that is unambiguous and easily verifiable, but cannot be quickly answered via internet retrieval. State-of-the-art LLMs demonstrate low accuracy and calibration on HLE, highlighting a significant gap between current LLM capabilities and the expert human frontier on closed-ended academic questions. To inform research and policymaking upon a clear understanding of model capabilities, we publicly release HLE at https://lastexam.ai.
comment: 29 pages, 6 figures
♻ ☆ PCGBandit: One-shot acceleration of transient PDE solvers via online-learned preconditioners
Data-driven acceleration of scientific computing workflows has been a high-profile aim of machine learning (ML) for science, with numerical simulation of transient partial differential equations (PDEs) being one of the main applications. The focus thus far has been on methods that require classical simulations to train, which when combined with the data-hungriness and optimization challenges of neural networks has caused difficulties in demonstrating a convincing advantage against strong classical baselines. We consider an alternative paradigm in which the learner uses a classical solver's own data to accelerate it, enabling a one-shot speedup of the simulation. Concretely, since transient PDEs often require solving a sequence of related linear systems, the feedback from repeated calls to a linear solver such as preconditioned conjugate gradient (PCG) can be used by a bandit algorithm to online-learn an adaptive sequence of solver configurations (e.g. preconditioners). The method we develop, PCGBandit, is implemented directly on top of the popular open source software OpenFOAM, which we use to show its effectiveness on a set of fluid and magnetohydrodynamics (MHD) problems.
comment: code available at https://github.com/mkhodak/PCGBandit
♻ ☆ Quantum-Assisted Machine Learning Models for Enhanced Weather Prediction
Quantum Machine Learning (QML) presents as a revolutionary approach to weather forecasting by using quantum computing to improve predictive modeling capabilities. In this study, we apply QML models, including Quantum Gated Recurrent Units (QGRUs), Quantum Neural Networks (QNNs), Quantum Long Short-Term Memory(QLSTM), Variational Quantum Circuits(VQCs), and Quantum Support Vector Machines(QSVMs), to analyze meteorological time-series data from the ERA5 dataset. Our methodology includes preprocessing meteorological features, implementing QML architectures for both classification and regression tasks. The results demonstrate that QML models can achieve reasonable accuracy in both prediction and classification tasks, particularly in binary classification. However, challenges such as quantum hardware limitations and noise affect scalability and generalization. This research provides insights into the feasibility of QML for weather prediction, paving the way for further exploration of hybrid quantum-classical frameworks to enhance meteorological forecasting.
comment: Will require more permissions and data to be republished later for academic rigor
♻ ☆ Constructive Universal Approximation and Sure Convergence for Multi-Layer Neural Networks
We propose o1Neuro, a new neural network model built on sparse indicator activation neurons, with two key statistical properties. (1) Constructive universal approximation: At the population level, a deep o1Neuro can approximate any measurable function of $\boldsymbol{X}$, while a shallow o1Neuro suffices for additive models with two-way interaction components, including XOR and univariate terms, assuming $\boldsymbol{X} \in [0,1]^p$ has bounded density. Combined with prior work showing that a single-hidden-layer non-sparse network is a universal approximator, this highlights a trade-off between activation sparsity and network depth in approximation capability. (2) Sure convergence: At the sample level, the optimization of o1Neuro reaches an optimal model with probability approaching one after sufficiently many update rounds, and we provide an example showing that the required number of updates is well bounded under linear data-generating models. Empirically, o1Neuro is compared with XGBoost, Random Forests, and TabNet for learning complex regression functions with interactions, demonstrating superior predictive performance on several benchmark datasets from OpenML and the UCI Machine Learning Repository with $n = 10000$, as well as on synthetic datasets with $100 \le n \le 20000$.
comment: 34 pages, 3 figures, 7 tables
♻ ☆ A Novel Approach to Balance Convenience and Nutrition in Meals With Long-Term Group Recommendations and Reasoning on Multimodal Recipes and its Implementation in BEACON
A common decision made by people, whether healthy or with health conditions, is choosing meals like breakfast, lunch, and dinner, comprising combinations of foods for appetizer, main course, side dishes, desserts, and beverages. Often, this decision involves tradeoffs between nutritious choices (e.g., salt and sugar levels, nutrition content) and convenience (e.g., cost and accessibility, cuisine type, food source type). We present a data-driven solution for meal recommendations that considers customizable meal configurations and time horizons. This solution balances user preferences while accounting for food constituents and cooking processes. Our contributions include introducing goodness measures, a recipe conversion method from text to the recently introduced multimodal rich recipe representation (R3) format, learning methods using contextual bandits that show promising preliminary results, and the prototype, usage-inspired, BEACON system.
♻ ☆ Towards Developing Socially Compliant Automated Vehicles: Advances, Expert Insights, and A Conceptual Framework
Automated Vehicles (AVs) hold promise for revolutionizing transportation by improving road safety, traffic efficiency, and overall mobility. Despite the steady advancement in high-level AVs in recent years, the transition to full automation entails a period of mixed traffic, where AVs of varying automation levels coexist with human-driven vehicles (HDVs). Making AVs socially compliant and understood by human drivers is expected to improve the safety and efficiency of mixed traffic. Thus, ensuring AVs' compatibility with HDVs and social acceptance is crucial for their successful and seamless integration into mixed traffic. However, research in this critical area of developing Socially Compliant AVs (SCAVs) remains sparse. This study carries out the first comprehensive scoping review to assess the current state of the art in developing SCAVs, identifying key concepts, methodological approaches, and research gaps. An informal expert interview was also conducted to discuss the literature review results and identify critical research gaps and expectations towards SCAVs. Based on the scoping review and expert interview input, a conceptual framework is proposed for the development of SCAVs. The conceptual framework is evaluated using an online survey targeting researchers, technicians, policymakers, and other relevant professionals worldwide. The survey results provide valuable validation and insights, affirming the significance of the proposed conceptual framework in tackling the challenges of integrating AVs into mixed-traffic environments. Additionally, future research perspectives and suggestions are discussed, contributing to the research and development agenda of SCAVs.
comment: 23 pages, 13 figures, accepted by the Journal of Communications in Transportation Research
♻ ☆ Quantum-Enhanced Forecasting for Deep Reinforcement Learning in Algorithmic Trading
The convergence of quantum-inspired neural networks and deep reinforcement learning offers a promising avenue for financial trading. We implemented a trading agent for USD/TWD by integrating Quantum Long Short-Term Memory (QLSTM) for short-term trend prediction with Quantum Asynchronous Advantage Actor-Critic (QA3C), a quantum-enhanced variant of the classical A3C. Trained on data from 2000-01-01 to 2025-04-30 (80\% training, 20\% testing), the long-only agent achieves 11.87\% return over around 5 years with 0.92\% max drawdown, outperforming several currency ETFs. We detail state design (QLSTM features and indicators), reward function for trend-following/risk control, and multi-core training. Results show hybrid models yield competitive FX trading performance. Implications include QLSTM's effectiveness for small-profit trades with tight risk and future enhancements. Key hyperparameters: QLSTM sequence length$=$4, QA3C workers$=$8. Limitations: classical quantum simulation and simplified strategy. \footnote{The views expressed in this article are those of the authors and do not represent the views of Wells Fargo. This article is for informational purposes only. Nothing contained in this article should be construed as investment advice. Wells Fargo makes no express or implied warranties and expressly disclaims all legal, tax, and accounting implications related to this article.
♻ ☆ Balancing Utility and Privacy: Dynamically Private SGD with Random Projection
Stochastic optimization is a pivotal enabler in modern machine learning, producing effective models for various tasks. However, several existing works have shown that model parameters and gradient information are susceptible to privacy leakage. Although Differentially Private SGD (DPSGD) addresses privacy concerns, its static noise mechanism impacts the error bounds for model performance. Additionally, with the exponential increase in model parameters, efficient learning of these models using stochastic optimizers has become more challenging. To address these concerns, we introduce the Dynamically Differentially Private Projected SGD (D2P2-SGD) optimizer. In D2P2-SGD, we combine two important ideas: (i) dynamic differential privacy (DDP) with automatic gradient clipping and (ii) random projection with SGD, allowing dynamic adjustment of the tradeoff between utility and privacy of the model. It exhibits provably sub-linear convergence rates across different objective functions, matching the best available rate. The theoretical analysis further suggests that DDP leads to better utility at the cost of privacy, while random projection enables more efficient model learning. Extensive experiments across diverse datasets show that D2P2-SGD remarkably enhances accuracy while maintaining privacy. Our code is available here.
comment: 27 pages, 13 figures
♻ ☆ Self-Optimizing Machine Learning Potential Assisted Automated Workflow for Highly Efficient Complex Systems Material Design
Machine learning interatomic potentials have revolutionized complex materials design by enabling rapid exploration of material configurational spaces via crystal structure prediction with ab initio accuracy. However, critical challenges persist in ensuring robust generalization to unknown structures and minimizing the requirement for substantial expert knowledge and time-consuming manual interventions. Here, we propose an automated crystal structure prediction framework built upon the attention-coupled neural networks potential to address these limitations. The generalizability of the potential is achieved by sampling regions across the local minima of the potential energy surface, where the self-evolving pipeline autonomously refines the potential iteratively while minimizing human intervention. The workflow is validated on Mg-Ca-H ternary and Be-P-N-O quaternary systems by exploring nearly 10 million configurations, demonstrating substantial speedup compared to first-principles calculations. These results underscore the effectiveness of our approach in accelerating the exploration and discovery of complex multi-component functional materials.
♻ ☆ Atherosclerosis through Hierarchical Explainable Neural Network Analysis
In this work, we study the problem pertaining to personalized classification of subclinical atherosclerosis by developing a hierarchical graph neural network framework to leverage two characteristic modalities of a patient: clinical features within the context of the cohort, and molecular data unique to individual patients. Current graph-based methods for disease classification detect patient-specific molecular fingerprints, but lack consistency and comprehension regarding cohort-wide features, which are an essential requirement for understanding pathogenic phenotypes across diverse atherosclerotic trajectories. Furthermore, understanding patient subtypes often considers clinical feature similarity in isolation, without integration of shared pathogenic interdependencies among patients. To address these challenges, we introduce ATHENA: Atherosclerosis Through Hierarchical Explainable Neural Network Analysis, which constructs a novel hierarchical network representation through integrated modality learning; subsequently, it optimizes learned patient-specific molecular fingerprints that reflect individual omics data, enforcing consistency with cohort-wide patterns. With a primary clinical dataset of 391 patients, we demonstrate that this heterogeneous alignment of clinical features with molecular interaction patterns has significantly boosted subclinical atherosclerosis classification performance across various baselines by up to 13% in area under the receiver operating curve (AUC) and 20% in F1 score. Taken together, ATHENA enables mechanistically-informed patient subtype discovery through explainable AI (XAI)-driven subnetwork clustering; this novel integration framework strengthens personalized intervention strategies, thereby improving the prediction of atherosclerotic disease progression and management of their clinical actionable outcomes.
♻ ☆ ForTIFAI: Fending Off Recursive Training Induced Failure for AI Models
The increasing reliance on generative AI models has accelerated the generation rate of synthetic data, with some projections suggesting that most available new data for training could be machine-generated by 2030. This shift to a mainly synthetic content presents a critical challenge: repeated training in synthetic data leads to a phenomenon known as model collapse, where model performance degrades over generations of training, eventually rendering the models ineffective. Although prior studies have explored the causes and detection of model collapse, existing mitigation strategies remain limited. In this paper, we identify model overconfidence in their self-generated data as a key driver of collapse. Building on this observation, we propose a confidence-aware loss function that downweights high-confidence predictions during training. We introduce a novel loss function we call Truncated Cross Entropy (TCE). We demonstrate that TCE significantly delays model collapse in recursive training. We provide a model-agnostic framework that links the loss function design to model collapse mitigation and validate our approach both theoretically and empirically, showing that it can extend the model's fidelity interval before collapse by more than 2.3x. Finally, we show that our method generalizes across modalities. These findings suggest that the design of loss functions provides a simple yet powerful tool for preserving the quality of generative models in the era of increasing synthetic data.
♻ ☆ A Dataset for Distilling Knowledge Priors from Literature for Therapeutic Design
AI-driven discovery can greatly reduce design time and enhance new therapeutics' effectiveness. Models using simulators explore broad design spaces but risk violating implicit constraints due to a lack of experimental priors. For example, in a new analysis we performed on a diverse set of models on the GuacaMol benchmark using supervised classifiers, over 60\% of molecules proposed had high probability of being mutagenic. In this work, we introduce Medex, a dataset of priors for design problems extracted from literature describing compounds used in lab settings. It is constructed with LLM pipelines for discovering therapeutic entities in relevant paragraphs and summarizing information in concise fair-use facts. Medex consists of 32.3 million pairs of natural language facts, and appropriate entity representations (i.e. SMILES or refseq IDs). To demonstrate the potential of the data, we train LLM, CLIP, and LLava architectures to reason jointly about text and design targets and evaluate on tasks from the Therapeutic Data Commons (TDC). Medex is highly effective for creating models with strong priors: in supervised prediction problems that use our data as pretraining, our best models with 15M learnable parameters outperform larger 2B TxGemma on both regression and classification TDC tasks, and perform comparably to 9B models on average. Models built with Medex can be used as constraints while optimizing for novel molecules in GuacaMol, resulting in proposals that are safer and nearly as effective. We release our dataset at https://huggingface.co/datasets/medexanon/Medex, and will provide expanded versions as available literature grows.
♻ ☆ K2-Think: A Parameter-Efficient Reasoning System
K2-Think is a reasoning system that achieves state-of-the-art performance with a 32B parameter model, matching or surpassing much larger models like GPT-OSS 120B and DeepSeek v3.1. Built on the Qwen2.5 base model, our system shows that smaller models can compete at the highest levels by combining advanced post-training and test-time computation techniques. The approach is based on six key technical pillars: Long Chain-of-thought Supervised Finetuning, Reinforcement Learning with Verifiable Rewards (RLVR), Agentic planning prior to reasoning, Test-time Scaling, Speculative Decoding, and Inference-optimized Hardware, all using publicly available open-source datasets. K2-Think excels in mathematical reasoning, achieving state-of-the-art scores on public benchmarks for open-source models, while also performing strongly in other areas such as Code and Science. Our results confirm that a more parameter-efficient model like K2-Think 32B can compete with state-of-the-art systems through an integrated post-training recipe that includes long chain-of-thought training and strategic inference-time enhancements, making open-source reasoning systems more accessible and affordable. K2-Think is freely available at k2think.ai, offering best-in-class inference speeds of over 2,000 tokens per second per request via the Cerebras Wafer-Scale Engine.
comment: To access the K2-Think reasoning system, please visit www.k2think.ai
Computer Vision and Pattern Recognition 144
☆ FLUX-Reason-6M & PRISM-Bench: A Million-Scale Text-to-Image Reasoning Dataset and Comprehensive Benchmark
The advancement of open-source text-to-image (T2I) models has been hindered by the absence of large-scale, reasoning-focused datasets and comprehensive evaluation benchmarks, resulting in a performance gap compared to leading closed-source systems. To address this challenge, We introduce FLUX-Reason-6M and PRISM-Bench (Precise and Robust Image Synthesis Measurement Benchmark). FLUX-Reason-6M is a massive dataset consisting of 6 million high-quality FLUX-generated images and 20 million bilingual (English and Chinese) descriptions specifically designed to teach complex reasoning. The image are organized according to six key characteristics: Imagination, Entity, Text rendering, Style, Affection, and Composition, and design explicit Generation Chain-of-Thought (GCoT) to provide detailed breakdowns of image generation steps. The whole data curation takes 15,000 A100 GPU days, providing the community with a resource previously unattainable outside of large industrial labs. PRISM-Bench offers a novel evaluation standard with seven distinct tracks, including a formidable Long Text challenge using GCoT. Through carefully designed prompts, it utilizes advanced vision-language models for nuanced human-aligned assessment of prompt-image alignment and image aesthetics. Our extensive evaluation of 19 leading models on PRISM-Bench reveals critical performance gaps and highlights specific areas requiring improvement. Our dataset, benchmark, and evaluation code are released to catalyze the next wave of reasoning-oriented T2I generation. Project page: https://flux-reason-6m.github.io/ .
comment: Project page: https://flux-reason-6m.github.io/
☆ SpatialVID: A Large-Scale Video Dataset with Spatial Annotations
Significant progress has been made in spatial intelligence, spanning both spatial reconstruction and world exploration. However, the scalability and real-world fidelity of current models remain severely constrained by the scarcity of large-scale, high-quality training data. While several datasets provide camera pose information, they are typically limited in scale, diversity, and annotation richness, particularly for real-world dynamic scenes with ground-truth camera motion. To this end, we collect \textbf{SpatialVID}, a dataset consists of a large corpus of in-the-wild videos with diverse scenes, camera movements and dense 3D annotations such as per-frame camera poses, depth, and motion instructions. Specifically, we collect more than 21,000 hours of raw video, and process them into 2.7 million clips through a hierarchical filtering pipeline, totaling 7,089 hours of dynamic content. A subsequent annotation pipeline enriches these clips with detailed spatial and semantic information, including camera poses, depth maps, dynamic masks, structured captions, and serialized motion instructions. Analysis of SpatialVID's data statistics reveals a richness and diversity that directly foster improved model generalization and performance, establishing it as a key asset for the video and 3D vision research community.
comment: Project page: https://nju-3dv.github.io/projects/SpatialVID/
☆ Locality in Image Diffusion Models Emerges from Data Statistics
Among generative models, diffusion models are uniquely intriguing due to the existence of a closed-form optimal minimizer of their training objective, often referred to as the optimal denoiser. However, diffusion using this optimal denoiser merely reproduces images in the training set and hence fails to capture the behavior of deep diffusion models. Recent work has attempted to characterize this gap between the optimal denoiser and deep diffusion models, proposing analytical, training-free models that can generate images that resemble those generated by a trained UNet. The best-performing method hypothesizes that shift equivariance and locality inductive biases of convolutional neural networks are the cause of the performance gap, hence incorporating these assumptions into its analytical model. In this work, we present evidence that the locality in deep diffusion models emerges as a statistical property of the image dataset, not due to the inductive bias of convolutional neural networks. Specifically, we demonstrate that an optimal parametric linear denoiser exhibits similar locality properties to the deep neural denoisers. We further show, both theoretically and experimentally, that this locality arises directly from the pixel correlations present in natural image datasets. Finally, we use these insights to craft an analytical denoiser that better matches scores predicted by a deep diffusion model than the prior expert-crafted alternative.
comment: 30 pages, 18 figures, 6 tables
☆ Dexplore: Scalable Neural Control for Dexterous Manipulation from Reference-Scoped Exploration
Hand-object motion-capture (MoCap) repositories offer large-scale, contact-rich demonstrations and hold promise for scaling dexterous robotic manipulation. Yet demonstration inaccuracies and embodiment gaps between human and robot hands limit the straightforward use of these data. Existing methods adopt a three-stage workflow, including retargeting, tracking, and residual correction, which often leaves demonstrations underused and compound errors across stages. We introduce Dexplore, a unified single-loop optimization that jointly performs retargeting and tracking to learn robot control policies directly from MoCap at scale. Rather than treating demonstrations as ground truth, we use them as soft guidance. From raw trajectories, we derive adaptive spatial scopes, and train with reinforcement learning to keep the policy in-scope while minimizing control effort and accomplishing the task. This unified formulation preserves demonstration intent, enables robot-specific strategies to emerge, improves robustness to noise, and scales to large demonstration corpora. We distill the scaled tracking policy into a vision-based, skill-conditioned generative controller that encodes diverse manipulation skills in a rich latent representation, supporting generalization across objects and real-world deployment. Taken together, these contributions position Dexplore as a principled bridge that transforms imperfect demonstrations into effective training signals for dexterous manipulation.
comment: CoRL 2025
☆ Geometric Neural Distance Fields for Learning Human Motion Priors
We introduce Neural Riemannian Motion Fields (NRMF), a novel 3D generative human motion prior that enables robust, temporally consistent, and physically plausible 3D motion recovery. Unlike existing VAE or diffusion-based methods, our higher-order motion prior explicitly models the human motion in the zero level set of a collection of neural distance fields (NDFs) corresponding to pose, transition (velocity), and acceleration dynamics. Our framework is rigorous in the sense that our NDFs are constructed on the product space of joint rotations, their angular velocities, and angular accelerations, respecting the geometry of the underlying articulations. We further introduce: (i) a novel adaptive-step hybrid algorithm for projecting onto the set of plausible motions, and (ii) a novel geometric integrator to "roll out" realistic motion trajectories during test-time-optimization and generation. Our experiments show significant and consistent gains: trained on the AMASS dataset, NRMF remarkably generalizes across multiple input modalities and to diverse tasks ranging from denoising to motion in-betweening and fitting to partial 2D / 3D observations.
comment: 8 pages
☆ Can Understanding and Generation Truly Benefit Together -- or Just Coexist?
In this paper, we introduce an insightful paradigm through the Auto-Encoder lens-understanding as the encoder (I2T) that compresses images into text, and generation as the decoder (T2I) that reconstructs images from that text. Using reconstruction fidelity as the unified training objective, we enforce the coherent bidirectional information flow between the understanding and generation processes, bringing mutual gains. To implement this, we propose UAE, a novel framework for unified multimodal learning. We begin by pre-training the decoder with large-scale long-context image captions to capture fine-grained semantic and complex spatial relationships. We then propose Unified-GRPO via reinforcement learning (RL), which covers three stages: (1) A cold-start phase to gently initialize both encoder and decoder with a semantic reconstruction loss; (2) Generation for Understanding, where the encoder is trained to generate informative captions that maximize the decoder's reconstruction quality, enhancing its visual understanding; (3) Understanding for Generation, where the decoder is refined to reconstruct from these captions, forcing it to leverage every detail and improving its long-context instruction following and generation fidelity. For evaluation, we introduce Unified-Bench, the first benchmark tailored to assess the degree of unification of the UMMs. A surprising "aha moment" arises within the multimodal learning domain: as RL progresses, the encoder autonomously produces more descriptive captions, while the decoder simultaneously demonstrates a profound ability to understand these intricate descriptions, resulting in reconstructions of striking fidelity.
☆ Measuring Epistemic Humility in Multimodal Large Language Models
Hallucinations in multimodal large language models (MLLMs) -- where the model generates content inconsistent with the input image -- pose significant risks in real-world applications, from misinformation in visual question answering to unsafe errors in decision-making. Existing benchmarks primarily test recognition accuracy, i.e., evaluating whether models can select the correct answer among distractors. This overlooks an equally critical capability for trustworthy AI: recognizing when none of the provided options are correct, a behavior reflecting epistemic humility. We present HumbleBench, a new hallucination benchmark designed to evaluate MLLMs' ability to reject plausible but incorrect answers across three hallucination types: object, relation, and attribute. Built from a panoptic scene graph dataset, we leverage fine-grained scene graph annotations to extract ground-truth entities and relations, and prompt GPT-4-Turbo to generate multiple-choice questions, followed by a rigorous manual filtering process. Each question includes a "None of the above" option, requiring models not only to recognize correct visual information but also to identify when no provided answer is valid. We evaluate a variety of state-of-the-art MLLMs -- including both general-purpose and specialized reasoning models -- on HumbleBench and share valuable findings and insights with the community. By incorporating explicit false-option rejection, HumbleBench fills a key gap in current evaluation suites, providing a more realistic measure of MLLM reliability in safety-critical settings. Our code and dataset are released publicly and can be accessed at https://github.com/maifoundations/HumbleBench.
☆ DiFlow-TTS: Discrete Flow Matching with Factorized Speech Tokens for Low-Latency Zero-Shot Text-To-Speech
Zero-shot Text-to-Speech (TTS) aims to synthesize high-quality speech that mimics the voice of an unseen speaker using only a short reference sample, requiring not only speaker adaptation but also accurate modeling of prosodic attributes. Recent approaches based on language models, diffusion, and flow matching have shown promising results in zero-shot TTS, but still suffer from slow inference and repetition artifacts. Discrete codec representations have been widely adopted for speech synthesis, and recent works have begun to explore diffusion models in purely discrete settings, suggesting the potential of discrete generative modeling for speech synthesis. However, existing flow-matching methods typically embed these discrete tokens into a continuous space and apply continuous flow matching, which may not fully leverage the advantages of discrete representations. To address these challenges, we introduce DiFlow-TTS, which, to the best of our knowledge, is the first model to explore purely Discrete Flow Matching for speech synthesis. DiFlow-TTS explicitly models factorized speech attributes within a compact and unified architecture. It leverages in-context learning by conditioning on textual content, along with prosodic and acoustic attributes extracted from a reference speech, enabling effective attribute cloning in a zero-shot setting. In addition, the model employs a factorized flow prediction mechanism with distinct heads for prosody and acoustic details, allowing it to learn aspect-specific distributions. Experimental results demonstrate that DiFlow-TTS achieves promising performance in several key metrics, including naturalness, prosody, preservation of speaker style, and energy control. It also maintains a compact model size and achieves low-latency inference, generating speech up to 25.8 times faster than the latest existing baselines.
☆ Mechanistic Learning with Guided Diffusion Models to Predict Spatio-Temporal Brain Tumor Growth
Predicting the spatio-temporal progression of brain tumors is essential for guiding clinical decisions in neuro-oncology. We propose a hybrid mechanistic learning framework that combines a mathematical tumor growth model with a guided denoising diffusion implicit model (DDIM) to synthesize anatomically feasible future MRIs from preceding scans. The mechanistic model, formulated as a system of ordinary differential equations, captures temporal tumor dynamics including radiotherapy effects and estimates future tumor burden. These estimates condition a gradient-guided DDIM, enabling image synthesis that aligns with both predicted growth and patient anatomy. We train our model on the BraTS adult and pediatric glioma datasets and evaluate on 60 axial slices of in-house longitudinal pediatric diffuse midline glioma (DMG) cases. Our framework generates realistic follow-up scans based on spatial similarity metrics. It also introduces tumor growth probability maps, which capture both clinically relevant extent and directionality of tumor growth as shown by 95th percentile Hausdorff Distance. The method enables biologically informed image generation in data-limited scenarios, offering generative-space-time predictions that account for mechanistic priors.
comment: 13 pages, 4 figures
☆ Graph Alignment via Dual-Pass Spectral Encoding and Latent Space Communication
Graph alignment-the problem of identifying corresponding nodes across multiple graphs-is fundamental to numerous applications. Most existing unsupervised methods embed node features into latent representations to enable cross-graph comparison without ground-truth correspondences. However, these methods suffer from two critical limitations: the degradation of node distinctiveness due to oversmoothing in GNN-based embeddings, and the misalignment of latent spaces across graphs caused by structural noise, feature heterogeneity, and training instability, ultimately leading to unreliable node correspondences. We propose a novel graph alignment framework that simultaneously enhances node distinctiveness and enforces geometric consistency across latent spaces. Our approach introduces a dual-pass encoder that combines low-pass and high-pass spectral filters to generate embeddings that are both structure-aware and highly discriminative. To address latent space misalignment, we incorporate a geometry-aware functional map module that learns bijective and isometric transformations between graph embeddings, ensuring consistent geometric relationships across different representations. Extensive experiments on graph benchmarks demonstrate that our method consistently outperforms existing unsupervised alignment baselines, exhibiting superior robustness to structural inconsistencies and challenging alignment scenarios. Additionally, comprehensive evaluation on vision-language benchmarks using diverse pretrained models shows that our framework effectively generalizes beyond graph domains, enabling unsupervised alignment of vision and language representations.
comment: 23 pages
☆ Kling-Avatar: Grounding Multimodal Instructions for Cascaded Long-Duration Avatar Animation Synthesis
Recent advances in audio-driven avatar video generation have significantly enhanced audio-visual realism. However, existing methods treat instruction conditioning merely as low-level tracking driven by acoustic or visual cues, without modeling the communicative purpose conveyed by the instructions. This limitation compromises their narrative coherence and character expressiveness. To bridge this gap, we introduce Kling-Avatar, a novel cascaded framework that unifies multimodal instruction understanding with photorealistic portrait generation. Our approach adopts a two-stage pipeline. In the first stage, we design a multimodal large language model (MLLM) director that produces a blueprint video conditioned on diverse instruction signals, thereby governing high-level semantics such as character motion and emotions. In the second stage, guided by blueprint keyframes, we generate multiple sub-clips in parallel using a first-last frame strategy. This global-to-local framework preserves fine-grained details while faithfully encoding the high-level intent behind multimodal instructions. Our parallel architecture also enables fast and stable generation of long-duration videos, making it suitable for real-world applications such as digital human livestreaming and vlogging. To comprehensively evaluate our method, we construct a benchmark of 375 curated samples covering diverse instructions and challenging scenarios. Extensive experiments demonstrate that Kling-Avatar is capable of generating vivid, fluent, long-duration videos at up to 1080p and 48 fps, achieving superior performance in lip synchronization accuracy, emotion and dynamic expressiveness, instruction controllability, identity preservation, and cross-domain generalization. These results establish Kling-Avatar as a new benchmark for semantically grounded, high-fidelity audio-driven avatar synthesis.
comment: Technical Report. Project Page: https://klingavatar.github.io/
☆ ObjectReact: Learning Object-Relative Control for Visual Navigation
Visual navigation using only a single camera and a topological map has recently become an appealing alternative to methods that require additional sensors and 3D maps. This is typically achieved through an "image-relative" approach to estimating control from a given pair of current observation and subgoal image. However, image-level representations of the world have limitations because images are strictly tied to the agent's pose and embodiment. In contrast, objects, being a property of the map, offer an embodiment- and trajectory-invariant world representation. In this work, we present a new paradigm of learning "object-relative" control that exhibits several desirable characteristics: a) new routes can be traversed without strictly requiring to imitate prior experience, b) the control prediction problem can be decoupled from solving the image matching problem, and c) high invariance can be achieved in cross-embodiment deployment for variations across both training-testing and mapping-execution settings. We propose a topometric map representation in the form of a "relative" 3D scene graph, which is used to obtain more informative object-level global path planning costs. We train a local controller, dubbed "ObjectReact", conditioned directly on a high-level "WayObject Costmap" representation that eliminates the need for an explicit RGB input. We demonstrate the advantages of learning object-relative control over its image-relative counterpart across sensor height variations and multiple navigation tasks that challenge the underlying spatial understanding capability, e.g., navigating a map trajectory in the reverse direction. We further show that our sim-only policy is able to generalize well to real-world indoor environments. Code and supplementary material are accessible via project page: https://object-react.github.io/
comment: CoRL 2025; 23 pages including appendix
☆ Visual Grounding from Event Cameras ICCV 2025
Event cameras capture changes in brightness with microsecond precision and remain reliable under motion blur and challenging illumination, offering clear advantages for modeling highly dynamic scenes. Yet, their integration with natural language understanding has received little attention, leaving a gap in multimodal perception. To address this, we introduce Talk2Event, the first large-scale benchmark for language-driven object grounding using event data. Built on real-world driving scenarios, Talk2Event comprises 5,567 scenes, 13,458 annotated objects, and more than 30,000 carefully validated referring expressions. Each expression is enriched with four structured attributes -- appearance, status, relation to the viewer, and relation to surrounding objects -- that explicitly capture spatial, temporal, and relational cues. This attribute-centric design supports interpretable and compositional grounding, enabling analysis that moves beyond simple object recognition to contextual reasoning in dynamic environments. We envision Talk2Event as a foundation for advancing multimodal and temporally-aware perception, with applications spanning robotics, human-AI interaction, and so on.
comment: Abstract Paper (Non-Archival) @ ICCV 2025 NeVi Workshop
☆ PeftCD: Leveraging Vision Foundation Models with Parameter-Efficient Fine-Tuning for Remote Sensing Change Detection
To tackle the prevalence of pseudo changes, the scarcity of labeled samples, and the difficulty of cross-domain generalization in multi-temporal and multi-source remote sensing imagery, we propose PeftCD, a change detection framework built upon Vision Foundation Models (VFMs) with Parameter-Efficient Fine-Tuning (PEFT). At its core, PeftCD employs a weight-sharing Siamese encoder derived from a VFM, into which LoRA and Adapter modules are seamlessly integrated. This design enables highly efficient task adaptation by training only a minimal set of additional parameters. To fully unlock the potential of VFMs, we investigate two leading backbones: the Segment Anything Model v2 (SAM2), renowned for its strong segmentation priors, and DINOv3, a state-of-the-art self-supervised representation learner. The framework is complemented by a deliberately lightweight decoder, ensuring the focus remains on the powerful feature representations from the backbones. Extensive experiments demonstrate that PeftCD achieves state-of-the-art performance across multiple public datasets, including SYSU-CD (IoU 73.81%), WHUCD (92.05%), MSRSCD (64.07%), MLCD (76.89%), CDD (97.01%), S2Looking (52.25%) and LEVIR-CD (85.62%), with notably precise boundary delineation and strong suppression of pseudo-changes. In summary, PeftCD presents an optimal balance of accuracy, efficiency, and generalization. It offers a powerful and scalable paradigm for adapting large-scale VFMs to real-world remote sensing change detection applications. The code and pretrained models will be released at https://github.com/dyzy41/PeftCD.
☆ Invisible Attributes, Visible Biases: Exploring Demographic Shortcuts in MRI-based Alzheimer's Disease Classification MICCAI 2025
Magnetic resonance imaging (MRI) is the gold standard for brain imaging. Deep learning (DL) algorithms have been proposed to aid in the diagnosis of diseases such as Alzheimer's disease (AD) from MRI scans. However, DL algorithms can suffer from shortcut learning, in which spurious features, not directly related to the output label, are used for prediction. When these features are related to protected attributes, they can lead to performance bias against underrepresented protected groups, such as those defined by race and sex. In this work, we explore the potential for shortcut learning and demographic bias in DL based AD diagnosis from MRI. We first investigate if DL algorithms can identify race or sex from 3D brain MRI scans to establish the presence or otherwise of race and sex based distributional shifts. Next, we investigate whether training set imbalance by race or sex can cause a drop in model performance, indicating shortcut learning and bias. Finally, we conduct a quantitative and qualitative analysis of feature attributions in different brain regions for both the protected attribute and AD classification tasks. Through these experiments, and using multiple datasets and DL models (ResNet and SwinTransformer), we demonstrate the existence of both race and sex based shortcut learning and bias in DL based AD classification. Our work lays the foundation for fairer DL diagnostic tools in brain MRI. The code is provided at https://github.com/acharaakshit/ShortMR
comment: FAIMI @ MICCAI 2025
☆ InterAct: Advancing Large-Scale Versatile 3D Human-Object Interaction Generation CVPR 2025
While large-scale human motion capture datasets have advanced human motion generation, modeling and generating dynamic 3D human-object interactions (HOIs) remain challenging due to dataset limitations. Existing datasets often lack extensive, high-quality motion and annotation and exhibit artifacts such as contact penetration, floating, and incorrect hand motions. To address these issues, we introduce InterAct, a large-scale 3D HOI benchmark featuring dataset and methodological advancements. First, we consolidate and standardize 21.81 hours of HOI data from diverse sources, enriching it with detailed textual annotations. Second, we propose a unified optimization framework to enhance data quality by reducing artifacts and correcting hand motions. Leveraging the principle of contact invariance, we maintain human-object relationships while introducing motion variations, expanding the dataset to 30.70 hours. Third, we define six benchmarking tasks and develop a unified HOI generative modeling perspective, achieving state-of-the-art performance. Extensive experiments validate the utility of our dataset as a foundational resource for advancing 3D human-object interaction generation. To support continued research in this area, the dataset is publicly available at https://github.com/wzyabcas/InterAct, and will be actively maintained.
comment: CVPR 2025
☆ Improving Video Diffusion Transformer Training by Multi-Feature Fusion and Alignment from Self-Supervised Vision Encoders
Video diffusion models have advanced rapidly in the recent years as a result of series of architectural innovations (e.g., diffusion transformers) and use of novel training objectives (e.g., flow matching). In contrast, less attention has been paid to improving the feature representation power of such models. In this work, we show that training video diffusion models can benefit from aligning the intermediate features of the video generator with feature representations of pre-trained vision encoders. We propose a new metric and conduct an in-depth analysis of various vision encoders to evaluate their discriminability and temporal consistency, thereby assessing their suitability for video feature alignment. Based on the analysis, we present Align4Gen which provides a novel multi-feature fusion and alignment method integrated into video diffusion model training. We evaluate Align4Gen both for unconditional and class-conditional video generation tasks and show that it results in improved video generation as quantified by various metrics. Full video results are available on our project page: https://align4gen.github.io/align4gen/
comment: 17 pages, 14 figures
☆ DualTrack: Sensorless 3D Ultrasound needs Local and Global Context
Three-dimensional ultrasound (US) offers many clinical advantages over conventional 2D imaging, yet its widespread adoption is limited by the cost and complexity of traditional 3D systems. Sensorless 3D US, which uses deep learning to estimate a 3D probe trajectory from a sequence of 2D US images, is a promising alternative. Local features, such as speckle patterns, can help predict frame-to-frame motion, while global features, such as coarse shapes and anatomical structures, can situate the scan relative to anatomy and help predict its general shape. In prior approaches, global features are either ignored or tightly coupled with local feature extraction, restricting the ability to robustly model these two complementary aspects. We propose DualTrack, a novel dual-encoder architecture that leverages decoupled local and global encoders specialized for their respective scales of feature extraction. The local encoder uses dense spatiotemporal convolutions to capture fine-grained features, while the global encoder utilizes an image backbone (e.g., a 2D CNN or foundation model) and temporal attention layers to embed high-level anatomical features and long-range dependencies. A lightweight fusion module then combines these features to estimate the trajectory. Experimental results on a large public benchmark show that DualTrack achieves state-of-the-art accuracy and globally consistent 3D reconstructions, outperforming previous methods and yielding an average reconstruction error below 5 mm.
☆ Generative Diffusion Contrastive Network for Multi-View Clustering ICASSP2026
In recent years, Multi-View Clustering (MVC) has been significantly advanced under the influence of deep learning. By integrating heterogeneous data from multiple views, MVC enhances clustering analysis, making multi-view fusion critical to clustering performance. However, there is a problem of low-quality data in multi-view fusion. This problem primarily arises from two reasons: 1) Certain views are contaminated by noisy data. 2) Some views suffer from missing data. This paper proposes a novel Stochastic Generative Diffusion Fusion (SGDF) method to address this problem. SGDF leverages a multiple generative mechanism for the multi-view feature of each sample. It is robust to low-quality data. Building on SGDF, we further present the Generative Diffusion Contrastive Network (GDCN). Extensive experiments show that GDCN achieves the state-of-the-art results in deep MVC tasks. The source code is publicly available at https://github.com/HackerHyper/GDCN.
comment: This paper is submitted to International Conference on Acoustics, Speech, and Signal Processing (ICASSP2026)
☆ Explainable AI for Accelerated Microstructure Imaging: A SHAP-Guided Protocol on the Connectome 2.0 scanner
The diffusion MRI Neurite Exchange Imaging model offers a promising framework for probing gray matter microstructure by estimating parameters such as compartment sizes, diffusivities, and inter-compartmental water exchange time. However, existing protocols require long scan times. This study proposes a reduced acquisition scheme for the Connectome 2.0 scanner that preserves model accuracy while substantially shortening scan duration. We developed a data-driven framework using explainable artificial intelligence with a guided recursive feature elimination strategy to identify an optimal 8-feature subset from a 15-feature protocol. The performance of this optimized protocol was validated in vivo and benchmarked against the full acquisition and alternative reduction strategies. Parameter accuracy, preservation of anatomical contrast, and test-retest reproducibility were assessed. The reduced protocol yielded parameter estimates and cortical maps comparable to the full protocol, with low estimation errors in synthetic data and minimal impact on test-retest variability. Compared to theory-driven and heuristic reduction schemes, the optimized protocol demonstrated superior robustness, reducing the deviation in water exchange time estimates by over two-fold. In conclusion, this hybrid optimization framework enables viable imaging of neurite exchange in 14 minutes without loss of parameter fidelity. This approach supports the broader application of exchange-sensitive diffusion magnetic resonance imaging in neuroscience and clinical research, and offers a generalizable method for designing efficient acquisition protocols in biophysical parameter mapping.
comment: Submitted to IEEE Transactions on Medical Imaging (TMI). This all-in-one version includes supplementary materials. 18 pages, 14 figures, 2 tables
☆ Region-Wise Correspondence Prediction between Manga Line Art Images
Understanding region-wise correspondence between manga line art images is a fundamental task in manga processing, enabling downstream applications such as automatic line art colorization and in-between frame generation. However, this task remains largely unexplored, especially in realistic scenarios without pre-existing segmentation or annotations. In this paper, we introduce a novel and practical task: predicting region-wise correspondence between raw manga line art images without any pre-existing labels or masks. To tackle this problem, we divide each line art image into a set of patches and propose a Transformer-based framework that learns patch-level similarities within and across images. We then apply edge-aware clustering and a region matching algorithm to convert patch-level predictions into coherent region-level correspondences. To support training and evaluation, we develop an automatic annotation pipeline and manually refine a subset of the data to construct benchmark datasets. Experiments on multiple datasets demonstrate that our method achieves high patch-level accuracy (e.g., 96.34%) and generates consistent region-level correspondences, highlighting its potential for real-world manga applications.
☆ Improving Human Motion Plausibility with Body Momentum BMVC 2025
Many studies decompose human motion into local motion in a frame attached to the root joint and global motion of the root joint in the world frame, treating them separately. However, these two components are not independent. Global movement arises from interactions with the environment, which are, in turn, driven by changes in the body configuration. Motion models often fail to precisely capture this physical coupling between local and global dynamics, while deriving global trajectories from joint torques and external forces is computationally expensive and complex. To address these challenges, we propose using whole-body linear and angular momentum as a constraint to link local motion with global movement. Since momentum reflects the aggregate effect of joint-level dynamics on the body's movement through space, it provides a physically grounded way to relate local joint behavior to global displacement. Building on this insight, we introduce a new loss term that enforces consistency between the generated momentum profiles and those observed in ground-truth data. Incorporating our loss reduces foot sliding and jitter, improves balance, and preserves the accuracy of the recovered motion. Code and data are available at the project page https://hlinhn.github.io/momentum_bmvc.
comment: Accepted at BMVC 2025
☆ OpenFake: An Open Dataset and Platform Toward Large-Scale Deepfake Detection
Deepfakes, synthetic media created using advanced AI techniques, have intensified the spread of misinformation, particularly in politically sensitive contexts. Existing deepfake detection datasets are often limited, relying on outdated generation methods, low realism, or single-face imagery, restricting the effectiveness for general synthetic image detection. By analyzing social media posts, we identify multiple modalities through which deepfakes propagate misinformation. Furthermore, our human perception study demonstrates that recently developed proprietary models produce synthetic images increasingly indistinguishable from real ones, complicating accurate identification by the general public. Consequently, we present a comprehensive, politically-focused dataset specifically crafted for benchmarking detection against modern generative models. This dataset contains three million real images paired with descriptive captions, which are used for generating 963k corresponding high-quality synthetic images from a mix of proprietary and open-source models. Recognizing the continual evolution of generative techniques, we introduce an innovative crowdsourced adversarial platform, where participants are incentivized to generate and submit challenging synthetic images. This ongoing community-driven initiative ensures that deepfake detection methods remain robust and adaptive, proactively safeguarding public discourse from sophisticated misinformation threats.
comment: 25 pages, 12 figures
☆ In-Loop Filtering Using Learned Look-Up Tables for Video Coding
In-loop filtering (ILF) is a key technology in video coding standards to reduce artifacts and enhance visual quality. Recently, neural network-based ILF schemes have achieved remarkable coding gains, emerging as a powerful candidate for next-generation video coding standards. However, the use of deep neural networks (DNN) brings significant computational and time complexity or high demands for dedicated hardware, making it challenging for general use. To address this limitation, we study a practical ILF solution by adopting look-up tables (LUTs). After training a DNN with a restricted reference range for ILF, all possible inputs are traversed, and the output values of the DNN are cached into LUTs. During the coding process, the filtering process is performed by simply retrieving the filtered pixel through locating the input pixels and interpolating between the cached values, instead of relying on heavy inference computations. In this paper, we propose a universal LUT-based ILF framework, termed LUT-ILF++. First, we introduce the cooperation of multiple kinds of filtering LUTs and propose a series of customized indexing mechanisms to enable better filtering reference perception with limited storage consumption. Second, we propose the cross-component indexing mechanism to enable the filtering of different color components jointly. Third, in order to make our solution practical for coding uses, we propose the LUT compaction scheme to enable the LUT pruning, achieving a lower storage cost of the entire solution. The proposed framework is implemented in the VVC reference software. Experimental results show that the proposed framework achieves on average 0.82%/2.97%/1.63% and 0.85%/4.11%/2.06% bitrate reduction for common test sequences, under the AI and RA configurations, respectively. Compared to DNN-based solutions, our proposed solution has much lower time complexity and storage cost.
comment: 25 pages
☆ Resource-Efficient Glioma Segmentation on Sub-Saharan MRI
Gliomas are the most prevalent type of primary brain tumors, and their accurate segmentation from MRI is critical for diagnosis, treatment planning, and longitudinal monitoring. However, the scarcity of high-quality annotated imaging data in Sub-Saharan Africa (SSA) poses a significant challenge for deploying advanced segmentation models in clinical workflows. This study introduces a robust and computationally efficient deep learning framework tailored for resource-constrained settings. We leveraged a 3D Attention UNet architecture augmented with residual blocks and enhanced through transfer learning from pre-trained weights on the BraTS 2021 dataset. Our model was evaluated on 95 MRI cases from the BraTS-Africa dataset, a benchmark for glioma segmentation in SSA MRI data. Despite the limited data quality and quantity, our approach achieved Dice scores of 0.76 for the Enhancing Tumor (ET), 0.80 for Necrotic and Non-Enhancing Tumor Core (NETC), and 0.85 for Surrounding Non-Functional Hemisphere (SNFH). These results demonstrate the generalizability of the proposed model and its potential to support clinical decision making in low-resource settings. The compact architecture, approximately 90 MB, and sub-minute per-volume inference time on consumer-grade hardware further underscore its practicality for deployment in SSA health systems. This work contributes toward closing the gap in equitable AI for global health by empowering underserved regions with high-performing and accessible medical imaging solutions.
comment: 11 pages, 7 figures
☆ FlexiD-Fuse: Flexible number of inputs multi-modal medical image fusion based on diffusion model
Different modalities of medical images provide unique physiological and anatomical information for diseases. Multi-modal medical image fusion integrates useful information from different complementary medical images with different modalities, producing a fused image that comprehensively and objectively reflects lesion characteristics to assist doctors in clinical diagnosis. However, existing fusion methods can only handle a fixed number of modality inputs, such as accepting only two-modal or tri-modal inputs, and cannot directly process varying input quantities, which hinders their application in clinical settings. To tackle this issue, we introduce FlexiD-Fuse, a diffusion-based image fusion network designed to accommodate flexible quantities of input modalities. It can end-to-end process two-modal and tri-modal medical image fusion under the same weight. FlexiD-Fuse transforms the diffusion fusion problem, which supports only fixed-condition inputs, into a maximum likelihood estimation problem based on the diffusion process and hierarchical Bayesian modeling. By incorporating the Expectation-Maximization algorithm into the diffusion sampling iteration process, FlexiD-Fuse can generate high-quality fused images with cross-modal information from source images, independently of the number of input images. We compared the latest two and tri-modal medical image fusion methods, tested them on Harvard datasets, and evaluated them using nine popular metrics. The experimental results show that our method achieves the best performance in medical image fusion with varying inputs. Meanwhile, we conducted extensive extension experiments on infrared-visible, multi-exposure, and multi-focus image fusion tasks with arbitrary numbers, and compared them with the perspective SOTA methods. The results of the extension experiments consistently demonstrate the effectiveness and superiority of our method.
☆ Semantic Concentration for Self-Supervised Dense Representations Learning
Recent advances in image-level self-supervised learning (SSL) have made significant progress, yet learning dense representations for patches remains challenging. Mainstream methods encounter an over-dispersion phenomenon that patches from the same instance/category scatter, harming downstream performance on dense tasks. This work reveals that image-level SSL avoids over-dispersion by involving implicit semantic concentration. Specifically, the non-strict spatial alignment ensures intra-instance consistency, while shared patterns, i.e., similar parts of within-class instances in the input space, ensure inter-image consistency. Unfortunately, these approaches are infeasible for dense SSL due to their spatial sensitivity and complicated scene-centric data. These observations motivate us to explore explicit semantic concentration for dense SSL. First, to break the strict spatial alignment, we propose to distill the patch correspondences. Facing noisy and imbalanced pseudo labels, we propose a noise-tolerant ranking loss. The core idea is extending the Average Precision (AP) loss to continuous targets, such that its decision-agnostic and adaptive focusing properties prevent the student model from being misled. Second, to discriminate the shared patterns from complicated scenes, we propose the object-aware filter to map the output space to an object-based space. Specifically, patches are represented by learnable prototypes of objects via cross-attention. Last but not least, empirical studies across various tasks soundly support the effectiveness of our method. Code is available in https://github.com/KID-7391/CoTAP.
☆ FS-Diff: Semantic guidance and clarity-aware simultaneous multimodal image fusion and super-resolution
As an influential information fusion and low-level vision technique, image fusion integrates complementary information from source images to yield an informative fused image. A few attempts have been made in recent years to jointly realize image fusion and super-resolution. However, in real-world applications such as military reconnaissance and long-range detection missions, the target and background structures in multimodal images are easily corrupted, with low resolution and weak semantic information, which leads to suboptimal results in current fusion techniques. In response, we propose FS-Diff, a semantic guidance and clarity-aware joint image fusion and super-resolution method. FS-Diff unifies image fusion and super-resolution as a conditional generation problem. It leverages semantic guidance from the proposed clarity sensing mechanism for adaptive low-resolution perception and cross-modal feature extraction. Specifically, we initialize the desired fused result as pure Gaussian noise and introduce the bidirectional feature Mamba to extract the global features of the multimodal images. Moreover, utilizing the source images and semantics as conditions, we implement a random iterative denoising process via a modified U-Net network. This network istrained for denoising at multiple noise levels to produce high-resolution fusion results with cross-modal features and abundant semantic information. We also construct a powerful aerial view multiscene (AVMS) benchmark covering 600 pairs of images. Extensive joint image fusion and super-resolution experiments on six public and our AVMS datasets demonstrated that FS-Diff outperforms the state-of-the-art methods at multiple magnifications and can recover richer details and semantics in the fused images. The code is available at https://github.com/XylonXu01/FS-Diff.
☆ Decoupling Clinical and Class-Agnostic Features for Reliable Few-Shot Adaptation under Shift
Medical vision-language models (VLMs) offer promise for clinical decision support, yet their reliability under distribution shifts remains a major concern for safe deployment. These models often learn task-agnostic correlations due to variability in imaging protocols and free-text reports, limiting their generalizability and increasing the risk of failure in real-world settings. We propose DRiFt, a structured feature decoupling framework that explicitly separates clinically relevant signals from task-agnostic noise using parameter-efficient tuning (LoRA) and learnable prompt tokens. To enhance cross-modal alignment and reduce uncertainty, we curate high-quality, clinically grounded image-text pairs by generating captions for a diverse medical dataset. Our approach improves in-distribution performance by +11.4% Top-1 accuracy and +3.3% Macro-F1 over prior prompt-based methods, while maintaining strong robustness across unseen datasets. Ablation studies reveal that disentangling task-relevant features and careful alignment significantly enhance model generalization and reduce unpredictable behavior under domain shift. These insights contribute toward building safer, more trustworthy VLMs for clinical use. The code is available at https://github.com/rumaima/DRiFt.
☆ Unsupervised Integrated-Circuit Defect Segmentation via Image-Intrinsic Normality
Modern Integrated-Circuit(IC) manufacturing introduces diverse, fine-grained defects that depress yield and reliability. Most industrial defect segmentation compares a test image against an external normal set, a strategy that is brittle for IC imagery where layouts vary across products and accurate alignment is difficult. We observe that defects are predominantly local, while each image still contains rich, repeatable normal patterns. We therefore propose an unsupervised IC defect segmentation framework that requires no external normal support. A learnable normal-information extractor aggregates representative normal features from the test image, and a coherence loss enforces their association with normal regions. Guided by these features, a decoder reconstructs only normal content; the reconstruction residual then segments defects. Pseudo-anomaly augmentation further stabilizes training. Experiments on datasets from three IC process stages show consistent improvements over existing approaches and strong robustness to product variability.
☆ A Fully Automatic Framework for Intracranial Pressure Grading: Integrating Keyframe Identification, ONSD Measurement and Clinical Data
Intracranial pressure (ICP) elevation poses severe threats to cerebral function, thus necessitating monitoring for timely intervention. While lumbar puncture is the gold standard for ICP measurement, its invasiveness and associated risks drive the need for non-invasive alternatives. Optic nerve sheath diameter (ONSD) has emerged as a promising biomarker, as elevated ICP directly correlates with increased ONSD. However, current clinical practices for ONSD measurement suffer from inconsistency in manual operation, subjectivity in optimal view selection, and variability in thresholding, limiting their reliability. To address these challenges, we introduce a fully automatic two-stage framework for ICP grading, integrating keyframe identification, ONSD measurement and clinical data. Specifically, the fundus ultrasound video processing stage performs frame-level anatomical segmentation, rule-based keyframe identification guided by an international consensus statement, and precise ONSD measurement. The intracranial pressure grading stage then fuses ONSD metrics with clinical features to enable the prediction of ICP grades, thereby demonstrating an innovative blend of interpretable ultrasound analysis and multi-source data integration for objective clinical evaluation. Experimental results demonstrate that our method achieves a validation accuracy of $0.845 \pm 0.071$ (with standard deviation from five-fold cross-validation) and an independent test accuracy of 0.786, significantly outperforming conventional threshold-based method ($0.637 \pm 0.111$ validation accuracy, $0.429$ test accuracy). Through effectively reducing operator variability and integrating multi-source information, our framework establishes a reliable non-invasive approach for clinical ICP evaluation, holding promise for improving patient management in acute neurological conditions.
☆ Plug-and-play Diffusion Models for Image Compressive Sensing with Data Consistency Projection
We explore the connection between Plug-and-Play (PnP) methods and Denoising Diffusion Implicit Models (DDIM) for solving ill-posed inverse problems, with a focus on single-pixel imaging. We begin by identifying key distinctions between PnP and diffusion models-particularly in their denoising mechanisms and sampling procedures. By decoupling the diffusion process into three interpretable stages: denoising, data consistency enforcement, and sampling, we provide a unified framework that integrates learned priors with physical forward models in a principled manner. Building upon this insight, we propose a hybrid data-consistency module that linearly combines multiple PnP-style fidelity terms. This hybrid correction is applied directly to the denoised estimate, improving measurement consistency without disrupting the diffusion sampling trajectory. Experimental results on single-pixel imaging tasks demonstrate that our method achieves better reconstruction quality.
☆ Texture-aware Intrinsic Image Decomposition with Model- and Learning-based Priors
This paper aims to recover the intrinsic reflectance layer and shading layer given a single image. Though this intrinsic image decomposition problem has been studied for decades, it remains a significant challenge in cases of complex scenes, i.e. spatially-varying lighting effect and rich textures. In this paper, we propose a novel method for handling severe lighting and rich textures in intrinsic image decomposition, which enables to produce high-quality intrinsic images for real-world images. Specifically, we observe that previous learning-based methods tend to produce texture-less and over-smoothing intrinsic images, which can be used to infer the lighting and texture information given a RGB image. In this way, we design a texture-guided regularization term and formulate the decomposition problem into an optimization framework, to separate the material textures and lighting effect. We demonstrate that combining the novel texture-aware prior can produce superior results to existing approaches.
☆ Classification of Driver Behaviour Using External Observation Techniques for Autonomous Vehicles
Road traffic accidents remain a significant global concern, with human error, particularly distracted and impaired driving, among the leading causes. This study introduces a novel driver behavior classification system that uses external observation techniques to detect indicators of distraction and impairment. The proposed framework employs advanced computer vision methodologies, including real-time object tracking, lateral displacement analysis, and lane position monitoring. The system identifies unsafe driving behaviors such as excessive lateral movement and erratic trajectory patterns by implementing the YOLO object detection model and custom lane estimation algorithms. Unlike systems reliant on inter-vehicular communication, this vision-based approach enables behavioral analysis of non-connected vehicles. Experimental evaluations on diverse video datasets demonstrate the framework's reliability and adaptability across varying road and environmental conditions.
☆ OmniEVA: Embodied Versatile Planner via Task-Adaptive 3D-Grounded and Embodiment-aware Reasoning
Recent advances in multimodal large language models (MLLMs) have opened new opportunities for embodied intelligence, enabling multimodal understanding, reasoning, and interaction, as well as continuous spatial decision-making. Nevertheless, current MLLM-based embodied systems face two critical limitations. First, Geometric Adaptability Gap: models trained solely on 2D inputs or with hard-coded 3D geometry injection suffer from either insufficient spatial information or restricted 2D generalization, leading to poor adaptability across tasks with diverse spatial demands. Second, Embodiment Constraint Gap: prior work often neglects the physical constraints and capacities of real robots, resulting in task plans that are theoretically valid but practically infeasible.To address these gaps, we introduce OmniEVA -- an embodied versatile planner that enables advanced embodied reasoning and task planning through two pivotal innovations: (1) a Task-Adaptive 3D Grounding mechanism, which introduces a gated router to perform explicit selective regulation of 3D fusion based on contextual requirements, enabling context-aware 3D grounding for diverse embodied tasks. (2) an Embodiment-Aware Reasoning framework that jointly incorporates task goals and embodiment constraints into the reasoning loop, resulting in planning decisions that are both goal-directed and executable. Extensive experimental results demonstrate that OmniEVA not only achieves state-of-the-art general embodied reasoning performance, but also exhibits a strong ability across a wide range of downstream scenarios. Evaluations of a suite of proposed embodied benchmarks, including both primitive and composite tasks, confirm its robust and versatile planning capabilities. Project page: https://omnieva.github.io
☆ Exploring Pre-training Across Domains for Few-Shot Surgical Skill Assessment MICCAI 2025
Automated surgical skill assessment (SSA) is a central task in surgical computer vision. Developing robust SSA models is challenging due to the scarcity of skill annotations, which are time-consuming to produce and require expert consensus. Few-shot learning (FSL) offers a scalable alternative enabling model development with minimal supervision, though its success critically depends on effective pre-training. While widely studied for several surgical downstream tasks, pre-training has remained largely unexplored in SSA. In this work, we formulate SSA as a few-shot task and investigate how self-supervised pre-training strategies affect downstream few-shot SSA performance. We annotate a publicly available robotic surgery dataset with Objective Structured Assessment of Technical Skill (OSATS) scores, and evaluate various pre-training sources across three few-shot settings. We quantify domain similarity and analyze how domain gap and the inclusion of procedure-specific data into pre-training influence transferability. Our results show that small but domain-relevant datasets can outperform large scale, less aligned ones, achieving accuracies of 60.16%, 66.03%, and 73.65% in the 1-, 2-, and 5-shot settings, respectively. Moreover, incorporating procedure-specific data into pre-training with a domain-relevant external dataset significantly boosts downstream performance, with an average gain of +1.22% in accuracy and +2.28% in F1-score; however, applying the same strategy with less similar but large-scale sources can instead lead to performance degradation. Code and models are available at https://github.com/anastadimi/ssa-fsl.
comment: Accepted at MICCAI 2025 DEMI Workshop
☆ Fine-Grained Customized Fashion Design with Image-into-Prompt benchmark and dataset from LMM
Generative AI evolves the execution of complex workflows in industry, where the large multimodal model empowers fashion design in the garment industry. Current generation AI models magically transform brainstorming into fancy designs easily, but the fine-grained customization still suffers from text uncertainty without professional background knowledge from end-users. Thus, we propose the Better Understanding Generation (BUG) workflow with LMM to automatically create and fine-grain customize the cloth designs from chat with image-into-prompt. Our framework unleashes users' creative potential beyond words and also lowers the barriers of clothing design/editing without further human involvement. To prove the effectiveness of our model, we propose a new FashionEdit dataset that simulates the real-world clothing design workflow, evaluated from generation similarity, user satisfaction, and quality. The code and dataset: https://github.com/detectiveli/FashionEdit.
☆ Image Recognition with Vision and Language Embeddings of VLMs
Vision-language models (VLMs) have enabled strong zero-shot classification through image-text alignment. Yet, their purely visual inference capabilities remain under-explored. In this work, we conduct a comprehensive evaluation of both language-guided and vision-only image classification with a diverse set of dual-encoder VLMs, including both well-established and recent models such as SigLIP 2 and RADIOv2.5. The performance is compared in a standard setup on the ImageNet-1k validation set and its label-corrected variant. The key factors affecting accuracy are analysed, including prompt design, class diversity, the number of neighbours in k-NN, and reference set size. We show that language and vision offer complementary strengths, with some classes favouring textual prompts and others better handled by visual similarity. To exploit this complementarity, we introduce a simple, learning-free fusion method based on per-class precision that improves classification performance. The code is available at: https://github.com/gonikisgo/bmvc2025-vlm-image-recognition.
☆ You Share Beliefs, I Adapt: Progressive Heterogeneous Collaborative Perception
Collaborative perception enables vehicles to overcome individual perception limitations by sharing information, allowing them to see further and through occlusions. In real-world scenarios, models on different vehicles are often heterogeneous due to manufacturer variations. Existing methods for heterogeneous collaborative perception address this challenge by fine-tuning adapters or the entire network to bridge the domain gap. However, these methods are impractical in real-world applications, as each new collaborator must undergo joint training with the ego vehicle on a dataset before inference, or the ego vehicle stores models for all potential collaborators in advance. Therefore, we pose a new question: Can we tackle this challenge directly during inference, eliminating the need for joint training? To answer this, we introduce Progressive Heterogeneous Collaborative Perception (PHCP), a novel framework that formulates the problem as few-shot unsupervised domain adaptation. Unlike previous work, PHCP dynamically aligns features by self-training an adapter during inference, eliminating the need for labeled data and joint training. Extensive experiments on the OPV2V dataset demonstrate that PHCP achieves strong performance across diverse heterogeneous scenarios. Notably, PHCP achieves performance comparable to SOTA methods trained on the entire dataset while using only a small amount of unlabeled data.
☆ Can Multimodal LLMs See Materials Clearly? A Multimodal Benchmark on Materials Characterization
Materials characterization is fundamental to acquiring materials information, revealing the processing-microstructure-property relationships that guide material design and optimization. While multimodal large language models (MLLMs) have recently shown promise in generative and predictive tasks within materials science, their capacity to understand real-world characterization imaging data remains underexplored. To bridge this gap, we present MatCha, the first benchmark for materials characterization image understanding, comprising 1,500 questions that demand expert-level domain expertise. MatCha encompasses four key stages of materials research comprising 21 distinct tasks, each designed to reflect authentic challenges faced by materials scientists. Our evaluation of state-of-the-art MLLMs on MatCha reveals a significant performance gap compared to human experts. These models exhibit degradation when addressing questions requiring higher-level expertise and sophisticated visual perception. Simple few-shot and chain-of-thought prompting struggle to alleviate these limitations. These findings highlight that existing MLLMs still exhibit limited adaptability to real-world materials characterization scenarios. We hope MatCha will facilitate future research in areas such as new material discovery and autonomous scientific agents. MatCha is available at https://github.com/FreedomIntelligence/MatCha.
☆ Learning Object-Centric Representations in SAR Images with Multi-Level Feature Fusion
Synthetic aperture radar (SAR) images contain not only targets of interest but also complex background clutter, including terrain reflections and speckle noise. In many cases, such clutter exhibits intensity and patterns that resemble targets, leading models to extract entangled or spurious features. Such behavior undermines the ability to form clear target representations, regardless of the classifier. To address this challenge, we propose a novel object-centric learning (OCL) framework, named SlotSAR, that disentangles target representations from background clutter in SAR images without mask annotations. SlotSAR first extracts high-level semantic features from SARATR-X and low-level scattering features from the wavelet scattering network in order to obtain complementary multi-level representations for robust target characterization. We further present a multi-level slot attention module that integrates these low- and high-level features to enhance slot-wise representation distinctiveness, enabling effective OCL. Experimental results demonstrate that SlotSAR achieves state-of-the-art performance in SAR imagery by preserving structural details compared to existing OCL methods.
comment: 12 pages, 5 figures
☆ Model-Agnostic Open-Set Air-to-Air Visual Object Detection for Reliable UAV Perception
Open-set detection is crucial for robust UAV autonomy in air-to-air object detection under real-world conditions. Traditional closed-set detectors degrade significantly under domain shifts and flight data corruption, posing risks to safety-critical applications. We propose a novel, model-agnostic open-set detection framework designed specifically for embedding-based detectors. The method explicitly handles unknown object rejection while maintaining robustness against corrupted flight data. It estimates semantic uncertainty via entropy modeling in the embedding space and incorporates spectral normalization and temperature scaling to enhance open-set discrimination. We validate our approach on the challenging AOT aerial benchmark and through extensive real-world flight tests. Comprehensive ablation studies demonstrate consistent improvements over baseline methods, achieving up to a 10\% relative AUROC gain compared to standard YOLO-based detectors. Additionally, we show that background rejection further strengthens robustness without compromising detection accuracy, making our solution particularly well-suited for reliable UAV perception in dynamic air-to-air environments.
☆ Modality-Agnostic Input Channels Enable Segmentation of Brain lesions in Multimodal MRI with Sequences Unavailable During Training MICCAI 2025
Segmentation models are important tools for the detection and analysis of lesions in brain MRI. Depending on the type of brain pathology that is imaged, MRI scanners can acquire multiple, different image modalities (contrasts). Most segmentation models for multimodal brain MRI are restricted to fixed modalities and cannot effectively process new ones at inference. Some models generalize to unseen modalities but may lose discriminative modality-specific information. This work aims to develop a model that can perform inference on data that contain image modalities unseen during training, previously seen modalities, and heterogeneous combinations of both, thus allowing a user to utilize any available imaging modalities. We demonstrate this is possible with a simple, thus practical alteration to the U-net architecture, by integrating a modality-agnostic input channel or pathway, alongside modality-specific input channels. To train this modality-agnostic component, we develop an image augmentation scheme that synthesizes artificial MRI modalities. Augmentations differentially alter the appearance of pathological and healthy brain tissue to create artificial contrasts between them while maintaining realistic anatomical integrity. We evaluate the method using 8 MRI databases that include 5 types of pathologies (stroke, tumours, traumatic brain injury, multiple sclerosis and white matter hyperintensities) and 8 modalities (T1, T1+contrast, T2, PD, SWI, DWI, ADC and FLAIR). The results demonstrate that the approach preserves the ability to effectively process MRI modalities encountered during training, while being able to process new, unseen modalities to improve its segmentation. Project code: https://github.com/Anthony-P-Addison/AGN-MOD-SEG
comment: Accepted to MICCAI 2025, for the following workshop: ML-CDS 2025: Multimodal Learning and Fusion Across Scales for Clinical Decision Support
☆ Visual Programmability: A Guide for Code-as-Thought in Chart Understanding
Chart understanding presents a critical test to the reasoning capabilities of Vision-Language Models (VLMs). Prior approaches face critical limitations: some rely on external tools, making them brittle and constrained by a predefined toolkit, while others fine-tune specialist models that often adopt a single reasoning strategy, such as text-based chain-of-thought (CoT). The intermediate steps of text-based reasoning are difficult to verify, which complicates the use of reinforcement-learning signals that reward factual accuracy. To address this, we propose a Code-as-Thought (CaT) approach to represent the visual information of a chart in a verifiable, symbolic format. Our key insight is that this strategy must be adaptive: a fixed, code-only implementation consistently fails on complex charts where symbolic representation is unsuitable. This finding leads us to introduce Visual Programmability: a learnable property that determines if a chart-question pair is better solved with code or direct visual analysis. We implement this concept in an adaptive framework where a VLM learns to choose between the CaT pathway and a direct visual reasoning pathway. The selection policy of the model is trained with reinforcement learning using a novel dual-reward system. This system combines a data-accuracy reward to ground the model in facts and prevent numerical hallucination, with a decision reward that teaches the model when to use each strategy, preventing it from defaulting to a single reasoning mode. Experiments demonstrate strong and robust performance across diverse chart-understanding benchmarks. Our work shows that VLMs can be taught not only to reason but also how to reason, dynamically selecting the optimal reasoning pathway for each task.
☆ Unified Start, Personalized End: Progressive Pruning for Efficient 3D Medical Image Segmentation
3D medical image segmentation often faces heavy resource and time consumption, limiting its scalability and rapid deployment in clinical environments. Existing efficient segmentation models are typically static and manually designed prior to training, which restricts their adaptability across diverse tasks and makes it difficult to balance performance with resource efficiency. In this paper, we propose PSP-Seg, a progressive pruning framework that enables dynamic and efficient 3D segmentation. PSP-Seg begins with a redundant model and iteratively prunes redundant modules through a combination of block-wise pruning and a functional decoupling loss. We evaluate PSP-Seg on five public datasets, benchmarking it against seven state-of-the-art models and six efficient segmentation models. Results demonstrate that the lightweight variant, PSP-Seg-S, achieves performance on par with nnU-Net while reducing GPU memory usage by 42-45%, training time by 29-48%, and parameter number by 83-87% across all datasets. These findings underscore PSP-Seg's potential as a cost-effective yet high-performing alternative for widespread clinical application.
comment: 15 pages, 8 figures
☆ DATE: Dynamic Absolute Time Enhancement for Long Video Understanding
Long video understanding remains a fundamental challenge for multimodal large language models (MLLMs), particularly in tasks requiring precise temporal reasoning and event localization. Existing approaches typically adopt uniform frame sampling and rely on implicit position encodings to model temporal order. However, these methods struggle with long-range dependencies, leading to critical information loss and degraded temporal comprehension. In this paper, we propose Dynamic Absolute Time Enhancement (DATE) that enhances temporal awareness in MLLMs through the Timestamp Injection Mechanism (TIM) and a semantically guided Temporal-Aware Similarity Sampling (TASS) strategy. Specifically, we interleave video frame embeddings with textual timestamp tokens to construct a continuous temporal reference system. We further reformulate the video sampling problem as a vision-language retrieval task and introduce a two-stage algorithm to ensure both semantic relevance and temporal coverage: enriching each query into a descriptive caption to better align with the vision feature, and sampling key event with a similarity-driven temporally regularized greedy strategy. Our method achieves remarkable improvements w.r.t. absolute time understanding and key event localization, resulting in state-of-the-art performance among 7B and 72B models on hour-long video benchmarks. Particularly, our 7B model even exceeds many 72B models on some benchmarks.
☆ Towards Better Dental AI: A Multimodal Benchmark and Instruction Dataset for Panoramic X-ray Analysis
Recent advances in large vision-language models (LVLMs) have demonstrated strong performance on general-purpose medical tasks. However, their effectiveness in specialized domains such as dentistry remains underexplored. In particular, panoramic X-rays, a widely used imaging modality in oral radiology, pose interpretative challenges due to dense anatomical structures and subtle pathological cues, which are not captured by existing medical benchmarks or instruction datasets. To this end, we introduce MMOral, the first large-scale multimodal instruction dataset and benchmark tailored for panoramic X-ray interpretation. MMOral consists of 20,563 annotated images paired with 1.3 million instruction-following instances across diverse task types, including attribute extraction, report generation, visual question answering, and image-grounded dialogue. In addition, we present MMOral-Bench, a comprehensive evaluation suite covering five key diagnostic dimensions in dentistry. We evaluate 64 LVLMs on MMOral-Bench and find that even the best-performing model, i.e., GPT-4o, only achieves 41.45% accuracy, revealing significant limitations of current models in this domain. To promote the progress of this specific domain, we also propose OralGPT, which conducts supervised fine-tuning (SFT) upon Qwen2.5-VL-7B with our meticulously curated MMOral instruction dataset. Remarkably, a single epoch of SFT yields substantial performance enhancements for LVLMs, e.g., OralGPT demonstrates a 24.73% improvement. Both MMOral and OralGPT hold significant potential as a critical foundation for intelligent dentistry and enable more clinically impactful multimodal AI systems in the dental field. The dataset, model, benchmark, and evaluation suite are available at https://github.com/isbrycee/OralGPT.
comment: 40 pages, 26 figures, 9 tables
☆ CoAtNeXt:An Attention-Enhanced ConvNeXtV2-Transformer Hybrid Model for Gastric Tissue Classification
Background and objective Early diagnosis of gastric diseases is crucial to prevent fatal outcomes. Although histopathologic examination remains the diagnostic gold standard, it is performed entirely manually, making evaluations labor-intensive and prone to variability among pathologists. Critical findings may be missed, and lack of standard procedures reduces consistency. These limitations highlight the need for automated, reliable, and efficient methods for gastric tissue analysis. Methods In this study, a novel hybrid model named CoAtNeXt was proposed for the classification of gastric tissue images. The model is built upon the CoAtNet architecture by replacing its MBConv layers with enhanced ConvNeXtV2 blocks. Additionally, the Convolutional Block Attention Module (CBAM) is integrated to improve local feature extraction through channel and spatial attention mechanisms. The architecture was scaled to achieve a balance between computational efficiency and classification performance. CoAtNeXt was evaluated on two publicly available datasets, HMU-GC-HE-30K for eight-class classification and GasHisSDB for binary classification, and was compared against 10 Convolutional Neural Networks (CNNs) and ten Vision Transformer (ViT) models. Results CoAtNeXt achieved 96.47% accuracy, 96.60% precision, 96.47% recall, 96.45% F1 score, and 99.89% AUC on HMU-GC-HE-30K. On GasHisSDB, it reached 98.29% accuracy, 98.07% precision, 98.41% recall, 98.23% F1 score, and 99.90% AUC. It outperformed all CNN and ViT models tested and surpassed previous studies in the literature. Conclusion Experimental results show that CoAtNeXt is a robust architecture for histopathological classification of gastric tissue images, providing performance on binary and multiclass. Its highlights its potential to assist pathologists by enhancing diagnostic accuracy and reducing workload.
☆ Virtual staining for 3D X-ray histology of bone implants
Three-dimensional X-ray histology techniques offer a non-invasive alternative to conventional 2D histology, enabling volumetric imaging of biological tissues without the need for physical sectioning or chemical staining. However, the inherent greyscale image contrast of X-ray tomography limits its biochemical specificity compared to traditional histological stains. Within digital pathology, deep learning-based virtual staining has demonstrated utility in simulating stained appearances from label-free optical images. In this study, we extend virtual staining to the X-ray domain by applying cross-modality image translation to generate artificially stained slices from synchrotron-radiation-based micro-CT scans. Using over 50 co-registered image pairs of micro-CT and toluidine blue-stained histology from bone-implant samples, we trained a modified CycleGAN network tailored for limited paired data. Whole slide histology images were downsampled to match the voxel size of the CT data, with on-the-fly data augmentation for patch-based training. The model incorporates pixelwise supervision and greyscale consistency terms, producing histologically realistic colour outputs while preserving high-resolution structural detail. Our method outperformed Pix2Pix and standard CycleGAN baselines across SSIM, PSNR, and LPIPS metrics. Once trained, the model can be applied to full CT volumes to generate virtually stained 3D datasets, enhancing interpretability without additional sample preparation. While features such as new bone formation were able to be reproduced, some variability in the depiction of implant degradation layers highlights the need for further training data and refinement. This work introduces virtual staining to 3D X-ray imaging and offers a scalable route for chemically informative, label-free tissue characterisation in biomedical research.
☆ Medverse: A Universal Model for Full-Resolution 3D Medical Image Segmentation, Transformation and Enhancement
In-context learning (ICL) offers a promising paradigm for universal medical image analysis, enabling models to perform diverse image processing tasks without retraining. However, current ICL models for medical imaging remain limited in two critical aspects: they cannot simultaneously achieve high-fidelity predictions and global anatomical understanding, and there is no unified model trained across diverse medical imaging tasks (e.g., segmentation and enhancement) and anatomical regions. As a result, the full potential of ICL in medical imaging remains underexplored. Thus, we present \textbf{Medverse}, a universal ICL model for 3D medical imaging, trained on 22 datasets covering diverse tasks in universal image segmentation, transformation, and enhancement across multiple organs, imaging modalities, and clinical centers. Medverse employs a next-scale autoregressive in-context learning framework that progressively refines predictions from coarse to fine, generating consistent, full-resolution volumetric outputs and enabling multi-scale anatomical awareness. We further propose a blockwise cross-attention module that facilitates long-range interactions between context and target inputs while preserving computational efficiency through spatial sparsity. Medverse is extensively evaluated on a broad collection of held-out datasets covering previously unseen clinical centers, organs, species, and imaging modalities. Results demonstrate that Medverse substantially outperforms existing ICL baselines and establishes a novel paradigm for in-context learning. Code and model weights will be made publicly available. Our model are publicly available at https://github.com/jiesihu/Medverse.
☆ Dynamic Structural Recovery Parameters Enhance Prediction of Visual Outcomes After Macular Hole Surgery
Purpose: To introduce novel dynamic structural parameters and evaluate their integration within a multimodal deep learning (DL) framework for predicting postoperative visual recovery in idiopathic full-thickness macular hole (iFTMH) patients. Methods: We utilized a publicly available longitudinal OCT dataset at five stages (preoperative, 2 weeks, 3 months, 6 months, and 12 months). A stage specific segmentation model delineated related structures, and an automated pipeline extracted quantitative, composite, qualitative, and dynamic features. Binary logistic regression models, constructed with and without dynamic parameters, assessed their incremental predictive value for best-corrected visual acuity (BCVA). A multimodal DL model combining clinical variables, OCT-derived features, and raw OCT images was developed and benchmarked against regression models. Results: The segmentation model achieved high accuracy across all timepoints (mean Dice > 0.89). Univariate and multivariate analyses identified base diameter, ellipsoid zone integrity, and macular hole area as significant BCVA predictors (P < 0.05). Incorporating dynamic recovery rates consistently improved logistic regression AUC, especially at the 3-month follow-up. The multimodal DL model outperformed logistic regression, yielding higher AUCs and overall accuracy at each stage. The difference is as high as 0.12, demonstrating the complementary value of raw image volume and dynamic parameters. Conclusions: Integrating dynamic parameters into the multimodal DL model significantly enhances the accuracy of predictions. This fully automated process therefore represents a promising clinical decision support tool for personalized postoperative management in macular hole surgery.
comment: TVST
☆ MGTraj: Multi-Granularity Goal-Guided Human Trajectory Prediction with Recursive Refinement Network
Accurate human trajectory prediction is crucial for robotics navigation and autonomous driving. Recent research has demonstrated that incorporating goal guidance significantly enhances prediction accuracy by reducing uncertainty and leveraging prior knowledge. Most goal-guided approaches decouple the prediction task into two stages: goal prediction and subsequent trajectory completion based on the predicted goal, which operate at extreme granularities: coarse-grained goal prediction forecasts the overall intention, while fine-grained trajectory completion needs to generate the positions for all future timesteps. The potential utility of intermediate temporal granularity remains largely unexplored, which motivates multi-granularity trajectory modeling. While prior work has shown that multi-granularity representations capture diverse scales of human dynamics and motion patterns, effectively integrating this concept into goal-guided frameworks remains challenging. In this paper, we propose MGTraj, a novel Multi-Granularity goal-guided model for human Trajectory prediction. MGTraj recursively encodes trajectory proposals from coarse to fine granularity levels. At each level, a transformer-based recursive refinement network (RRN) captures features and predicts progressive refinements. Features across different granularities are integrated using a weight-sharing strategy, and velocity prediction is employed as an auxiliary task to further enhance performance. Comprehensive experimental results in EHT/UCY and Stanford Drone Dataset indicate that MGTraj outperforms baseline methods and achieves state-of-the-art performance among goal-guided methods.
☆ Breaking the Statistical Similarity Trap in Extreme Convection Detection
Current evaluation metrics for deep learning weather models create a "Statistical Similarity Trap", rewarding blurry predictions while missing rare, high-impact events. We provide quantitative evidence of this trap, showing sophisticated baselines achieve 97.9% correlation yet 0.00 CSI for dangerous convection detection. We introduce DART (Dual Architecture for Regression Tasks), a framework addressing the challenge of transforming coarse atmospheric forecasts into high-resolution satellite brightness temperature fields optimized for extreme convection detection (below 220 K). DART employs dual-decoder architecture with explicit background/extreme decomposition, physically motivated oversampling, and task-specific loss functions. We present four key findings: (1) empirical validation of the Statistical Similarity Trap across multiple sophisticated baselines; (2) the "IVT Paradox", removing Integrated Water Vapor Transport, widely regarded as essential for atmospheric river analysis, improves extreme convection detection by 270%; (3) architectural necessity demonstrated through operational flexibility (DART achieves CSI = 0.273 with bias = 2.52 vs. 6.72 for baselines at equivalent CSI), and (4) real-world validation with the August 2023 Chittagong flooding disaster as a case study. To our knowledge, this is the first work to systematically address this hybrid conversion-segmentation-downscaling task, with no direct prior benchmarks identified in existing literature. Our validation against diverse statistical and deep learning baselines sufficiently demonstrates DART's specialized design. The framework enables precise operational calibration through beta-tuning, trains in under 10 minutes on standard hardware, and integrates seamlessly with existing meteorological workflows, demonstrating a pathway toward trustworthy AI for extreme weather preparedness.
comment: 43 pages, 7 figures
☆ VQualA 2025 Challenge on Visual Quality Comparison for Large Multimodal Models: Methods and Results ICCV
This paper presents a summary of the VQualA 2025 Challenge on Visual Quality Comparison for Large Multimodal Models (LMMs), hosted as part of the ICCV 2025 Workshop on Visual Quality Assessment. The challenge aims to evaluate and enhance the ability of state-of-the-art LMMs to perform open-ended and detailed reasoning about visual quality differences across multiple images. To this end, the competition introduces a novel benchmark comprising thousands of coarse-to-fine grained visual quality comparison tasks, spanning single images, pairs, and multi-image groups. Each task requires models to provide accurate quality judgments. The competition emphasizes holistic evaluation protocols, including 2AFC-based binary preference and multi-choice questions (MCQs). Around 100 participants submitted entries, with five models demonstrating the emerging capabilities of instruction-tuned LMMs on quality assessment. This challenge marks a significant step toward open-domain visual quality reasoning and comparison and serves as a catalyst for future research on interpretable and human-aligned quality evaluation systems.
comment: ICCV VQualA Workshop 2025
☆ Dark-ISP: Enhancing RAW Image Processing for Low-Light Object Detection
Low-light Object detection is crucial for many real-world applications but remains challenging due to degraded image quality. While recent studies have shown that RAW images offer superior potential over RGB images, existing approaches either use RAW-RGB images with information loss or employ complex frameworks. To address these, we propose a lightweight and self-adaptive Image Signal Processing (ISP) plugin, Dark-ISP, which directly processes Bayer RAW images in dark environments, enabling seamless end-to-end training for object detection. Our key innovations are: (1) We deconstruct conventional ISP pipelines into sequential linear (sensor calibration) and nonlinear (tone mapping) sub-modules, recasting them as differentiable components optimized through task-driven losses. Each module is equipped with content-aware adaptability and physics-informed priors, enabling automatic RAW-to-RGB conversion aligned with detection objectives. (2) By exploiting the ISP pipeline's intrinsic cascade structure, we devise a Self-Boost mechanism that facilitates cooperation between sub-modules. Through extensive experiments on three RAW image datasets, we demonstrate that our method outperforms state-of-the-art RGB- and RAW-based detection approaches, achieving superior results with minimal parameters in challenging low-light environments.
comment: 11 pages, 6 figures, conference
☆ Bridging the Gap Between Ideal and Real-world Evaluation: Benchmarking AI-Generated Image Detection in Challenging Scenarios ICCV2025
With the rapid advancement of generative models, highly realistic image synthesis has posed new challenges to digital security and media credibility. Although AI-generated image detection methods have partially addressed these concerns, a substantial research gap remains in evaluating their performance under complex real-world conditions. This paper introduces the Real-World Robustness Dataset (RRDataset) for comprehensive evaluation of detection models across three dimensions: 1) Scenario Generalization: RRDataset encompasses high-quality images from seven major scenarios (War and Conflict, Disasters and Accidents, Political and Social Events, Medical and Public Health, Culture and Religion, Labor and Production, and everyday life), addressing existing dataset gaps from a content perspective. 2) Internet Transmission Robustness: examining detector performance on images that have undergone multiple rounds of sharing across various social media platforms. 3) Re-digitization Robustness: assessing model effectiveness on images altered through four distinct re-digitization methods. We benchmarked 17 detectors and 10 vision-language models (VLMs) on RRDataset and conducted a large-scale human study involving 192 participants to investigate human few-shot learning capabilities in detecting AI-generated images. The benchmarking results reveal the limitations of current AI detection methods under real-world conditions and underscore the importance of drawing on human adaptability to develop more robust detection algorithms.
comment: ICCV2025
☆ Adaptive Pareto-Optimal Token Merging for Edge Transformer Models in Semantic Communication
Large-scale transformer models have emerged as a powerful tool for semantic communication systems, enabling edge devices to extract rich representations for robust inference across noisy wireless channels. However, their substantial computational demands remain a major barrier to practical deployment in resource-constrained 6G networks. In this paper, we present a training-free framework for adaptive token merging in pretrained vision transformers to jointly reduce inference time and transmission resource usage. We formulate the selection of per-layer merging proportions as a multi-objective optimization problem to balance accuracy and computational cost. We employ Gaussian process-based Bayesian optimization to construct a Pareto frontier of optimal configurations, enabling flexible runtime adaptation to dynamic application requirements and channel conditions. Extensive experiments demonstrate that our method consistently outperforms other baselines and achieves significant reductions in floating-point operations while maintaining competitive accuracy across a wide range of signal-to-noise ratio (SNR) conditions. Additional results highlight the effectiveness of adaptive policies that adjust merging aggressiveness in response to channel quality, providing a practical mechanism to trade off latency and semantic fidelity on demand. These findings establish a scalable and efficient approach for deploying transformer-based semantic communication in future edge intelligence systems.
comment: To appear in IEEE Globecom 2025
☆ CWSSNet: Hyperspectral Image Classification Enhanced by Wavelet Domain Convolution
Hyperspectral remote sensing technology has significant application value in fields such as forestry ecology and precision agriculture, while also putting forward higher requirements for fine ground object classification. However, although hyperspectral images are rich in spectral information and can improve recognition accuracy, they tend to cause prominent feature redundancy due to their numerous bands, high dimensionality, and spectral mixing characteristics. To address this, this study used hyperspectral images from the ZY1F satellite as a data source and selected Yugan County, Shangrao City, Jiangxi Province as the research area to perform ground object classification research. A classification framework named CWSSNet was proposed, which integrates 3D spectral-spatial features and wavelet convolution. This framework integrates multimodal information us-ing a multiscale convolutional attention module and breaks through the classification performance bottleneck of traditional methods by introducing multi-band decomposition and convolution operations in the wavelet domain. The experiments showed that CWSSNet achieved 74.50\%, 82.73\%, and 84.94\% in mean Intersection over Union (mIoU), mean Accuracy (mAcc), and mean F1-score (mF1) respectively in Yugan County. It also obtained the highest Intersection over Union (IoU) in the classifica-tion of water bodies, vegetation, and bare land, demonstrating good robustness. Additionally, when the training set proportion was 70\%, the increase in training time was limited, and the classification effect was close to the optimal level, indicating that the model maintains reliable performance under small-sample training conditions.
☆ A Knowledge Noise Mitigation Framework for Knowledge-based Visual Question Answering ICME 2025
Knowledge-based visual question answering (KB-VQA) requires a model to understand images and utilize external knowledge to provide accurate answers. Existing approaches often directly augment models with retrieved information from knowledge sources while ignoring substantial knowledge redundancy, which introduces noise into the answering process. To address this, we propose a training-free framework with knowledge focusing for KB-VQA, that mitigates the impact of noise by enhancing knowledge relevance and reducing redundancy. First, for knowledge retrieval, our framework concludes essential parts from the image-question pairs, creating low-noise queries that enhance the retrieval of highly relevant knowledge. Considering that redundancy still persists in the retrieved knowledge, we then prompt large models to identify and extract answer-beneficial segments from knowledge. In addition, we introduce a selective knowledge integration strategy, allowing the model to incorporate knowledge only when it lacks confidence in answering the question, thereby mitigating the influence of redundant information. Our framework enables the acquisition of accurate and critical knowledge, and extensive experiments demonstrate that it outperforms state-of-the-art methods.
comment: Accepted by the IEEE International Conference on Multimedia and Expo (ICME 2025) for oral presentation. \copyright\ 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses
☆ RT-DETR++ for UAV Object Detection
Object detection in unmanned aerial vehicle (UAV) imagery presents significant challenges. Issues such as densely packed small objects, scale variations, and occlusion are commonplace. This paper introduces RT-DETR++, which enhances the encoder component of the RT-DETR model. Our improvements focus on two key aspects. First, we introduce a channel-gated attention-based upsampling/downsampling (AU/AD) mechanism. This dual-path system minimizes errors and preserves details during feature layer propagation. Second, we incorporate CSP-PAC during feature fusion. This technique employs parallel hollow convolutions to process local and contextual information within the same layer, facilitating the integration of multi-scale features. Evaluation demonstrates that our novel neck design achieves superior performance in detecting small and densely packed objects. The model maintains sufficient speed for real-time detection without increasing computational complexity. This study provides an effective approach for feature encoding design in real-time detection systems.
☆ Mind Meets Space: Rethinking Agentic Spatial Intelligence from a Neuroscience-inspired Perspective
Recent advances in agentic AI have led to systems capable of autonomous task execution and language-based reasoning, yet their spatial reasoning abilities remain limited and underexplored, largely constrained to symbolic and sequential processing. In contrast, human spatial intelligence, rooted in integrated multisensory perception, spatial memory, and cognitive maps, enables flexible, context-aware decision-making in unstructured environments. Therefore, bridging this gap is critical for advancing Agentic Spatial Intelligence toward better interaction with the physical 3D world. To this end, we first start from scrutinizing the spatial neural models as studied in computational neuroscience, and accordingly introduce a novel computational framework grounded in neuroscience principles. This framework maps core biological functions to six essential computation modules: bio-inspired multimodal sensing, multi-sensory integration, egocentric-allocentric conversion, an artificial cognitive map, spatial memory, and spatial reasoning. Together, these modules form a perspective landscape for agentic spatial reasoning capability across both virtual and physical environments. On top, we conduct a framework-guided analysis of recent methods, evaluating their relevance to each module and identifying critical gaps that hinder the development of more neuroscience-grounded spatial reasoning modules. We further examine emerging benchmarks and datasets and explore potential application domains ranging from virtual to embodied systems, such as robotics. Finally, we outline potential research directions, emphasizing the promising roadmap that can generalize spatial reasoning across dynamic or unstructured environments. We hope this work will benefit the research community with a neuroscience-grounded perspective and a structured pathway. Our project page can be found at Github.
comment: 54 pages, journal
☆ OCELOT 2023: Cell Detection from Cell-Tissue Interaction Challenge
Pathologists routinely alternate between different magnifications when examining Whole-Slide Images, allowing them to evaluate both broad tissue morphology and intricate cellular details to form comprehensive diagnoses. However, existing deep learning-based cell detection models struggle to replicate these behaviors and learn the interdependent semantics between structures at different magnifications. A key barrier in the field is the lack of datasets with multi-scale overlapping cell and tissue annotations. The OCELOT 2023 challenge was initiated to gather insights from the community to validate the hypothesis that understanding cell and tissue (cell-tissue) interactions is crucial for achieving human-level performance, and to accelerate the research in this field. The challenge dataset includes overlapping cell detection and tissue segmentation annotations from six organs, comprising 673 pairs sourced from 306 The Cancer Genome Atlas (TCGA) Whole-Slide Images with hematoxylin and eosin staining, divided into training, validation, and test subsets. Participants presented models that significantly enhanced the understanding of cell-tissue relationships. Top entries achieved up to a 7.99 increase in F1-score on the test set compared to the baseline cell-only model that did not incorporate cell-tissue relationships. This is a substantial improvement in performance over traditional cell-only detection methods, demonstrating the need for incorporating multi-scale semantics into the models. This paper provides a comparative analysis of the methods used by participants, highlighting innovative strategies implemented in the OCELOT 2023 challenge.
comment: This is the accepted manuscript of an article published in Medical Image Analysis (Elsevier). The final version is available at: https://doi.org/10.1016/j.media.2025.103751
☆ Video Understanding by Design: How Datasets Shape Architectures and Insights
Video understanding has advanced rapidly, fueled by increasingly complex datasets and powerful architectures. Yet existing surveys largely classify models by task or family, overlooking the structural pressures through which datasets guide architectural evolution. This survey is the first to adopt a dataset-driven perspective, showing how motion complexity, temporal span, hierarchical composition, and multimodal richness impose inductive biases that models should encode. We reinterpret milestones, from two-stream and 3D CNNs to sequential, transformer, and multimodal foundation models, as concrete responses to these dataset-driven pressures. Building on this synthesis, we offer practical guidance for aligning model design with dataset invariances while balancing scalability and task demands. By unifying datasets, inductive biases, and architectures into a coherent framework, this survey provides both a comprehensive retrospective and a prescriptive roadmap for advancing general-purpose video understanding.
comment: Research report
☆ Objectness Similarity: Capturing Object-Level Fidelity in 3D Scene Evaluation ICCV 2025
This paper presents Objectness SIMilarity (OSIM), a novel evaluation metric for 3D scenes that explicitly focuses on "objects," which are fundamental units of human visual perception. Existing metrics assess overall image quality, leading to discrepancies with human perception. Inspired by neuropsychological insights, we hypothesize that human recognition of 3D scenes fundamentally involves attention to individual objects. OSIM enables object-centric evaluations by leveraging an object detection model and its feature representations to quantify the "objectness" of each object in the scene. Our user study demonstrates that OSIM aligns more closely with human perception compared to existing metrics. We also analyze the characteristics of OSIM using various approaches. Moreover, we re-evaluate recent 3D reconstruction and generation models under a standardized experimental setup to clarify advancements in this field. The code is available at https://github.com/Objectness-Similarity/OSIM.
comment: Accepted by the ICCV 2025 UniLight Workshop
☆ Noise-Robust Topology Estimation of 2D Image Data via Neural Networks and Persistent Homology
Persistent Homology (PH) and Artificial Neural Networks (ANNs) offer contrasting approaches to inferring topological structure from data. In this study, we examine the noise robustness of a supervised neural network trained to predict Betti numbers in 2D binary images. We compare an ANN approach against a PH pipeline based on cubical complexes and the Signed Euclidean Distance Transform (SEDT), which is a widely adopted strategy for noise-robust topological analysis. Using one synthetic and two real-world datasets, we show that ANNs can outperform this PH approach under noise, likely due to their capacity to learn contextual and geometric priors from training data. Though still emerging, the use of ANNs for topology estimation offers a compelling alternative to PH under structural noise.
comment: 12 pages
☆ ALL-PET: A Low-resource and Low-shot PET Foundation Model in the Projection Domain
Building large-scale foundation model for PET imaging is hindered by limited access to labeled data and insufficient computational resources. To overcome data scarcity and efficiency limitations, we propose ALL-PET, a low-resource, low-shot PET foundation model operating directly in the projection domain. ALL-PET leverages a latent diffusion model (LDM) with three key innovations. First, we design a Radon mask augmentation strategy (RMAS) that generates over 200,000 structurally diverse training samples by projecting randomized image-domain masks into sinogram space, significantly improving generalization with minimal data. This is extended by a dynamic multi-mask (DMM) mechanism that varies mask quantity and distribution, enhancing data diversity without added model complexity. Second, we implement positive/negative mask constraints to embed strict geometric consistency, reducing parameter burden while preserving generation quality. Third, we introduce transparent medical attention (TMA), a parameter-free, geometry-driven mechanism that enhances lesion-related regions in raw projection data. Lesion-focused attention maps are derived from coarse segmentation, covering both hypermetabolic and hypometabolic areas, and projected into sinogram space for physically consistent guidance. The system supports clinician-defined ROI adjustments, ensuring flexible, interpretable, and task-adaptive emphasis aligned with PET acquisition physics. Experimental results show ALL-PET achieves high-quality sinogram generation using only 500 samples, with performance comparable to models trained on larger datasets. ALL-PET generalizes across tasks including low-dose reconstruction, attenuation correction, delayed-frame prediction, and tracer separation, operating efficiently with memory use under 24GB.
☆ Gradient-Attention Guided Dual-Masking Synergetic Framework for Robust Text-based Person Retrieval EMNLP2025
Although Contrastive Language-Image Pre-training (CLIP) exhibits strong performance across diverse vision tasks, its application to person representation learning faces two critical challenges: (i) the scarcity of large-scale annotated vision-language data focused on person-centric images, and (ii) the inherent limitations of global contrastive learning, which struggles to maintain discriminative local features crucial for fine-grained matching while remaining vulnerable to noisy text tokens. This work advances CLIP for person representation learning through synergistic improvements in data curation and model architecture. First, we develop a noise-resistant data construction pipeline that leverages the in-context learning capabilities of MLLMs to automatically filter and caption web-sourced images. This yields WebPerson, a large-scale dataset of 5M high-quality person-centric image-text pairs. Second, we introduce the GA-DMS (Gradient-Attention Guided Dual-Masking Synergetic) framework, which improves cross-modal alignment by adaptively masking noisy textual tokens based on the gradient-attention similarity score. Additionally, we incorporate masked token prediction objectives that compel the model to predict informative text tokens, enhancing fine-grained semantic representation learning. Extensive experiments show that GA-DMS achieves state-of-the-art performance across multiple benchmarks.
comment: Accepted by EMNLP2025 Main
☆ Zero-shot Hierarchical Plant Segmentation via Foundation Segmentation Models and Text-to-image Attention WACV 2026
Foundation segmentation models achieve reasonable leaf instance extraction from top-view crop images without training (i.e., zero-shot). However, segmenting entire plant individuals with each consisting of multiple overlapping leaves remains challenging. This problem is referred to as a hierarchical segmentation task, typically requiring annotated training datasets, which are often species-specific and require notable human labor. To address this, we introduce ZeroPlantSeg, a zero-shot segmentation for rosette-shaped plant individuals from top-view images. We integrate a foundation segmentation model, extracting leaf instances, and a vision-language model, reasoning about plants' structures to extract plant individuals without additional training. Evaluations on datasets with multiple plant species, growth stages, and shooting environments demonstrate that our method surpasses existing zero-shot methods and achieves better cross-domain performance than supervised methods. Implementations are available at https://github.com/JunhaoXing/ZeroPlantSeg.
comment: WACV 2026 accepted
☆ FPI-Det: a face--phone Interaction Dataset for phone-use detection and understanding
The widespread use of mobile devices has created new challenges for vision systems in safety monitoring, workplace productivity assessment, and attention management. Detecting whether a person is using a phone requires not only object recognition but also an understanding of behavioral context, which involves reasoning about the relationship between faces, hands, and devices under diverse conditions. Existing generic benchmarks do not fully capture such fine-grained human--device interactions. To address this gap, we introduce the FPI-Det, containing 22{,}879 images with synchronized annotations for faces and phones across workplace, education, transportation, and public scenarios. The dataset features extreme scale variation, frequent occlusions, and varied capture conditions. We evaluate representative YOLO and DETR detectors, providing baseline results and an analysis of performance across object sizes, occlusion levels, and environments. Source code and dataset is available at https://github.com/KvCgRv/FPI-Det.
☆ S-BEVLoc: BEV-based Self-supervised Framework for Large-scale LiDAR Global Localization
LiDAR-based global localization is an essential component of simultaneous localization and mapping (SLAM), which helps loop closure and re-localization. Current approaches rely on ground-truth poses obtained from GPS or SLAM odometry to supervise network training. Despite the great success of these supervised approaches, substantial cost and effort are required for high-precision ground-truth pose acquisition. In this work, we propose S-BEVLoc, a novel self-supervised framework based on bird's-eye view (BEV) for LiDAR global localization, which eliminates the need for ground-truth poses and is highly scalable. We construct training triplets from single BEV images by leveraging the known geographic distances between keypoint-centered BEV patches. Convolutional neural network (CNN) is used to extract local features, and NetVLAD is employed to aggregate global descriptors. Moreover, we introduce SoftCos loss to enhance learning from the generated triplets. Experimental results on the large-scale KITTI and NCLT datasets show that S-BEVLoc achieves state-of-the-art performance in place recognition, loop closure, and global localization tasks, while offering scalability that would require extra effort for supervised approaches.
☆ SQAP-VLA: A Synergistic Quantization-Aware Pruning Framework for High-Performance Vision-Language-Action Models
Vision-Language-Action (VLA) models exhibit unprecedented capabilities for embodied intelligence. However, their extensive computational and memory costs hinder their practical deployment. Existing VLA compression and acceleration approaches conduct quantization or token pruning in an ad-hoc manner but fail to enable both for a holistic efficiency improvement due to an observed incompatibility. This work introduces SQAP-VLA, the first structured, training-free VLA inference acceleration framework that simultaneously enables state-of-the-art quantization and token pruning. We overcome the incompatibility by co-designing the quantization and token pruning pipeline, where we propose new quantization-aware token pruning criteria that work on an aggressively quantized model while improving the quantizer design to enhance pruning effectiveness. When applied to standard VLA models, SQAP-VLA yields significant gains in computational efficiency and inference speed while successfully preserving core model performance, achieving a $\times$1.93 speedup and up to a 4.5\% average success rate enhancement compared to the original model.
comment: 12 pages, 9 figures
☆ IRDFusion: Iterative Relation-Map Difference guided Feature Fusion for Multispectral Object Detection
Current multispectral object detection methods often retain extraneous background or noise during feature fusion, limiting perceptual performance.To address this, we propose an innovative feature fusion framework based on cross-modal feature contrastive and screening strategy, diverging from conventional approaches. The proposed method adaptively enhances salient structures by fusing object-aware complementary cross-modal features while suppressing shared background interference.Our solution centers on two novel, specially designed modules: the Mutual Feature Refinement Module (MFRM) and the Differential Feature Feedback Module (DFFM). The MFRM enhances intra- and inter-modal feature representations by modeling their relationships, thereby improving cross-modal alignment and discriminative power.Inspired by feedback differential amplifiers, the DFFM dynamically computes inter-modal differential features as guidance signals and feeds them back to the MFRM, enabling adaptive fusion of complementary information while suppressing common-mode noise across modalities. To enable robust feature learning, the MFRM and DFFM are integrated into a unified framework, which is formally formulated as an Iterative Relation-Map Differential Guided Feature Fusion mechanism, termed IRDFusion. IRDFusion enables high-quality cross-modal fusion by progressively amplifying salient relational signals through iterative feedback, while suppressing feature noise, leading to significant performance gains.In extensive experiments on FLIR, LLVIP and M$^3$FD datasets, IRDFusion achieves state-of-the-art performance and consistently outperforms existing methods across diverse challenging scenarios, demonstrating its robustness and effectiveness. Code will be available at https://github.com/61s61min/IRDFusion.git.
comment: 31 pages,6 pages, submitted on 3 Sep,2025
☆ Improvement of Human-Object Interaction Action Recognition Using Scene Information and Multi-Task Learning Approach
Recent graph convolutional neural networks (GCNs) have shown high performance in the field of human action recognition by using human skeleton poses. However, it fails to detect human-object interaction cases successfully due to the lack of effective representation of the scene information and appropriate learning architectures. In this context, we propose a methodology to utilize human action recognition performance by considering fixed object information in the environment and following a multi-task learning approach. In order to evaluate the proposed method, we collected real data from public environments and prepared our data set, which includes interaction classes of hands-on fixed objects (e.g., ATM ticketing machines, check-in/out machines, etc.) and non-interaction classes of walking and standing. The multi-task learning approach, along with interaction area information, succeeds in recognizing the studied interaction and non-interaction actions with an accuracy of 99.25%, outperforming the accuracy of the base model using only human skeleton poses by 2.75%.
☆ Enhancing 3D Medical Image Understanding with Pretraining Aided by 2D Multimodal Large Language Models
Understanding 3D medical image volumes is critical in the medical field, yet existing 3D medical convolution and transformer-based self-supervised learning (SSL) methods often lack deep semantic comprehension. Recent advancements in multimodal large language models (MLLMs) provide a promising approach to enhance image understanding through text descriptions. To leverage these 2D MLLMs for improved 3D medical image understanding, we propose Med3DInsight, a novel pretraining framework that integrates 3D image encoders with 2D MLLMs via a specially designed plane-slice-aware transformer module. Additionally, our model employs a partial optimal transport based alignment, demonstrating greater tolerance to noise introduced by potential noises in LLM-generated content. Med3DInsight introduces a new paradigm for scalable multimodal 3D medical representation learning without requiring human annotations. Extensive experiments demonstrate our state-of-the-art performance on two downstream tasks, i.e., segmentation and classification, across various public datasets with CT and MRI modalities, outperforming current SSL methods. Med3DInsight can be seamlessly integrated into existing 3D medical image understanding networks, potentially enhancing their performance. Our source code, generated datasets, and pre-trained models will be available at https://github.com/Qybc/Med3DInsight.
comment: Accepted by IEEE Journal of Biomedical and Health Informatics (JBHI)
☆ Automated Tuning for Diffusion Inverse Problem Solvers without Generative Prior Retraining
Diffusion/score-based models have recently emerged as powerful generative priors for solving inverse problems, including accelerated MRI reconstruction. While their flexibility allows decoupling the measurement model from the learned prior, their performance heavily depends on carefully tuned data fidelity weights, especially under fast sampling schedules with few denoising steps. Existing approaches often rely on heuristics or fixed weights, which fail to generalize across varying measurement conditions and irregular timestep schedules. In this work, we propose Zero-shot Adaptive Diffusion Sampling (ZADS), a test-time optimization method that adaptively tunes fidelity weights across arbitrary noise schedules without requiring retraining of the diffusion prior. ZADS treats the denoising process as a fixed unrolled sampler and optimizes fidelity weights in a self-supervised manner using only undersampled measurements. Experiments on the fastMRI knee dataset demonstrate that ZADS consistently outperforms both traditional compressed sensing and recent diffusion-based methods, showcasing its ability to deliver high-fidelity reconstructions across varying noise schedules and acquisition settings.
comment: IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), 2025
☆ Surrogate Supervision for Robust and Generalizable Deformable Image Registration
Objective: Deep learning-based deformable image registration has achieved strong accuracy, but remains sensitive to variations in input image characteristics such as artifacts, field-of-view mismatch, or modality difference. We aim to develop a general training paradigm that improves the robustness and generalizability of registration networks. Methods: We introduce surrogate supervision, which decouples the input domain from the supervision domain by applying estimated spatial transformations to surrogate images. This allows training on heterogeneous inputs while ensuring supervision is computed in domains where similarity is well defined. We evaluate the framework through three representative applications: artifact-robust brain MR registration, mask-agnostic lung CT registration, and multi-modal MR registration. Results: Across tasks, surrogate supervision demonstrated strong resilience to input variations including inhomogeneity field, inconsistent field-of-view, and modality differences, while maintaining high performance on well-curated data. Conclusions: Surrogate supervision provides a principled framework for training robust and generalizable deep learning-based registration models without increasing complexity. Significance: Surrogate supervision offers a practical pathway to more robust and generalizable medical image registration, enabling broader applicability in diverse biomedical imaging scenarios.
☆ WAVE-DETR Multi-Modal Visible and Acoustic Real-Life Drone Detector
We introduce a multi-modal WAVE-DETR drone detector combining visible RGB and acoustic signals for robust real-life UAV object detection. Our approach fuses visual and acoustic features in a unified object detector model relying on the Deformable DETR and Wav2Vec2 architectures, achieving strong performance under challenging environmental conditions. Our work leverage the existing Drone-vs-Bird dataset and the newly generated ARDrone dataset containing more than 7,500 synchronized images and audio segments. We show how the acoustic information is used to improve the performance of the Deformable DETR object detector on the real ARDrone dataset. We developed, trained and tested four different fusion configurations based on a gated mechanism, linear layer, MLP and cross attention. The Wav2Vec2 acoustic embeddings are fused with the multi resolution feature mappings of the Deformable DETR and enhance the object detection performance over all drones dimensions. The best performer is the gated fusion approach, which improves the mAP of the Deformable DETR object detector on our in-distribution and out-of-distribution ARDrone datasets by 11.1% to 15.3% for small drones across all IoU thresholds between 0.5 and 0.9. The mAP scores for medium and large drones are also enhanced, with overall gains across all drone sizes ranging from 3.27% to 5.84%.
comment: 11 pages, 11 figures
☆ Investigating the Impact of Various Loss Functions and Learnable Wiener Filter for Laparoscopic Image Desmoking
To rigorously assess the effectiveness and necessity of individual components within the recently proposed ULW framework for laparoscopic image desmoking, this paper presents a comprehensive ablation study. The ULW approach combines a U-Net based backbone with a compound loss function that comprises mean squared error (MSE), structural similarity index (SSIM) loss, and perceptual loss. The framework also incorporates a differentiable, learnable Wiener filter module. In this study, each component is systematically ablated to evaluate its specific contribution to the overall performance of the whole framework. The analysis includes: (1) removal of the learnable Wiener filter, (2) selective use of individual loss terms from the composite loss function. All variants are benchmarked on a publicly available paired laparoscopic images dataset using quantitative metrics (SSIM, PSNR, MSE and CIEDE-2000) alongside qualitative visual comparisons.
☆ Privacy-Preserving Automated Rosacea Detection Based on Medically Inspired Region of Interest Selection
Rosacea is a common but underdiagnosed inflammatory skin condition that primarily affects the central face and presents with subtle redness, pustules, and visible blood vessels. Automated detection remains challenging due to the diffuse nature of symptoms, the scarcity of labeled datasets, and privacy concerns associated with using identifiable facial images. A novel privacy-preserving automated rosacea detection method inspired by clinical priors and trained entirely on synthetic data is presented in this paper. Specifically, the proposed method, which leverages the observation that rosacea manifests predominantly through central facial erythema, first constructs a fixed redness-informed mask by selecting regions with consistently high red channel intensity across facial images. The mask thus is able to focus on diagnostically relevant areas such as the cheeks, nose, and forehead and exclude identity-revealing features. Second, the ResNet-18 deep learning method, which is trained on the masked synthetic images, achieves superior performance over the full-face baselines with notable gains in terms of accuracy, recall and F1 score when evaluated using the real-world test data. The experimental results demonstrate that the synthetic data and clinical priors can jointly enable accurate and ethical dermatological AI systems, especially for privacy sensitive applications in telemedicine and large-scale screening.
☆ Patch-based Automatic Rosacea Detection Using the ResNet Deep Learning Framework
Rosacea, which is a chronic inflammatory skin condition that manifests with facial redness, papules, and visible blood vessels, often requirs precise and early detection for significantly improving treatment effectiveness. This paper presents new patch-based automatic rosacea detection strategies using the ResNet-18 deep learning framework. The contributions of the proposed strategies come from the following aspects. First, various image pateches are extracted from the facial images of people in different sizes, shapes, and locations. Second, a number of investigation studies are carried out to evaluate how the localized visual information influences the deep learing model performance. Third, thorough experiments are implemented to reveal that several patch-based automatic rosacea detection strategies achieve competitive or superior accuracy and sensitivity than the full-image based methods. And finally, the proposed patch-based strategies, which use only localized patches, inherently preserve patient privacy by excluding any identifiable facial features from the data. The experimental results indicate that the proposed patch-based strategies guide the deep learning model to focus on clinically relevant regions, enhance robustness and interpretability, and protect patient privacy. As a result, the proposed strategies offer practical insights for improving automated dermatological diagnostics.
☆ DGFusion: Depth-Guided Sensor Fusion for Robust Semantic Perception
Robust semantic perception for autonomous vehicles relies on effectively combining multiple sensors with complementary strengths and weaknesses. State-of-the-art sensor fusion approaches to semantic perception often treat sensor data uniformly across the spatial extent of the input, which hinders performance when faced with challenging conditions. By contrast, we propose a novel depth-guided multimodal fusion method that upgrades condition-aware fusion by integrating depth information. Our network, DGFusion, poses multimodal segmentation as a multi-task problem, utilizing the lidar measurements, which are typically available in outdoor sensor suites, both as one of the model's inputs and as ground truth for learning depth. Our corresponding auxiliary depth head helps to learn depth-aware features, which are encoded into spatially varying local depth tokens that condition our attentive cross-modal fusion. Together with a global condition token, these local depth tokens dynamically adapt sensor fusion to the spatially varying reliability of each sensor across the scene, which largely depends on depth. In addition, we propose a robust loss for our depth, which is essential for learning from lidar inputs that are typically sparse and noisy in adverse conditions. Our method achieves state-of-the-art panoptic and semantic segmentation performance on the challenging MUSES and DELIVER datasets. Code and models will be available at https://github.com/timbroed/DGFusion
comment: Code and models will be available at https://github.com/timbroed/DGFusion
☆ Early Detection of Visual Impairments at Home Using a Smartphone Red-Eye Reflex Test
Numerous visual impairments can be detected in red-eye reflex images from young children. The so-called Bruckner test is traditionally performed by ophthalmologists in clinical settings. Thanks to the recent technological advances in smartphones and artificial intelligence, it is now possible to recreate the Bruckner test using a mobile device. In this paper, we present a first study conducted during the development of KidsVisionCheck, a free application that can perform vision screening with a mobile device using red-eye reflex images. The underlying model relies on deep neural networks trained on children's pupil images collected and labeled by an ophthalmologist. With an accuracy of 90% on unseen test data, our model provides highly reliable performance without the necessity of specialist equipment. Furthermore, we can identify the optimal conditions for data collection, which can in turn be used to provide immediate feedback to the users. In summary, this work marks a first step toward accessible pediatric vision screenings and early intervention for vision abnormalities worldwide.
comment: Accepted at IEEE ICDL 2025. 6 pages, 7 figures, 2 tables
☆ Fine-Grained Cross-View Localization via Local Feature Matching and Monocular Depth Priors
We propose an accurate and highly interpretable fine-grained cross-view localization method that estimates the 3 Degrees of Freedom pose of a ground-level image by matching its local features with a reference aerial image. Previous methods typically transform the ground image into a bird's-eye view (BEV) representation and then align it with the aerial image for localization. However, this transformation often leads to information loss due to perspective distortion or compression of height information, thereby degrading alignment quality with the aerial view. In contrast, our method directly establishes correspondences between ground and aerial images and lifts only the matched keypoints to BEV space using monocular depth prior. Notably, modern depth predictors can provide reliable metric depth when the test samples are similar to the training data. When the depth distribution differs, they still produce consistent relative depth, i.e., depth accurate up to an unknown scale. Our method supports both metric and relative depth. It employs a scale-aware Procrustes alignment to estimate the camera pose from the correspondences and optionally recover the scale when using relative depth. Experimental results demonstrate that, with only weak supervision on camera pose, our method learns accurate local feature correspondences and achieves superior localization performance under challenging conditions, such as cross-area generalization and unknown orientation. Moreover, our method is compatible with various relative depth models without requiring per-model finetuning. This flexibility, combined with strong localization performance, makes it well-suited for real-world deployment.
☆ Purge-Gate: Backpropagation-Free Test-Time Adaptation for Point Clouds Classification via Token Purging
Test-time adaptation (TTA) is crucial for mitigating performance degradation caused by distribution shifts in 3D point cloud classification. In this work, we introduce Token Purging (PG), a novel backpropagation-free approach that removes tokens highly affected by domain shifts before they reach attention layers. Unlike existing TTA methods, PG operates at the token level, ensuring robust adaptation without iterative updates. We propose two variants: PG-SP, which leverages source statistics, and PG-SF, a fully source-free version relying on CLS-token-driven adaptation. Extensive evaluations on ModelNet40-C, ShapeNet-C, and ScanObjectNN-C demonstrate that PG-SP achieves an average of +10.3\% higher accuracy than state-of-the-art backpropagation-free methods, while PG-SF sets new benchmarks for source-free adaptation. Moreover, PG is 12.4 times faster and 5.5 times more memory efficient than our baseline, making it suitable for real-world deployment. Code is available at \hyperlink{https://github.com/MosyMosy/Purge-Gate}{https://github.com/MosyMosy/Purge-Gate}
☆ A Co-Training Semi-Supervised Framework Using Faster R-CNN and YOLO Networks for Object Detection in Densely Packed Retail Images
This study proposes a semi-supervised co-training framework for object detection in densely packed retail environments, where limited labeled data and complex conditions pose major challenges. The framework combines Faster R-CNN (utilizing a ResNet backbone) for precise localization with YOLO (employing a Darknet backbone) for global context, enabling mutual pseudo-label exchange that improves accuracy in scenes with occlusion and overlapping objects. To strengthen classification, it employs an ensemble of XGBoost, Random Forest, and SVM, utilizing diverse feature representations for higher robustness. Hyperparameters are optimized using a metaheuristic-driven algorithm, enhancing precision and efficiency across models. By minimizing reliance on manual labeling, the approach reduces annotation costs and adapts effectively to frequent product and layout changes common in retail. Experiments on the SKU-110k dataset demonstrate strong performance, highlighting the scalability and practicality of the proposed framework for real-world retail applications such as automated inventory tracking, product monitoring, and checkout systems.
♻ ☆ MESH -- Understanding Videos Like Human: Measuring Hallucinations in Large Video Models
Large Video Models (LVMs) build on the semantic capabilities of Large Language Models (LLMs) and vision modules by integrating temporal information to better understand dynamic video content. Despite their progress, LVMs are prone to hallucinations-producing inaccurate or irrelevant descriptions. Current benchmarks for video hallucination depend heavily on manual categorization of video content, neglecting the perception-based processes through which humans naturally interpret videos. We introduce MESH, a benchmark designed to evaluate hallucinations in LVMs systematically. MESH uses a Question-Answering framework with binary and multi-choice formats incorporating target and trap instances. It follows a bottom-up approach, evaluating basic objects, coarse-to-fine subject features, and subject-action pairs, aligning with human video understanding. We demonstrate that MESH offers an effective and comprehensive approach for identifying hallucinations in videos. Our evaluations show that while LVMs excel at recognizing basic objects and features, their susceptibility to hallucinations increases markedly when handling fine details or aligning multiple actions involving various subjects in longer videos.
♻ ☆ Adapting Vision-Language Models for Neutrino Event Classification in High-Energy Physics
Recent advances in Large Language Models (LLMs) have demonstrated their remarkable capacity to process and reason over structured and unstructured data modalities beyond natural language. In this work, we explore the applications of Vision Language Models (VLMs), specifically a fine-tuned variant of LLaMa 3.2, to the task of identifying neutrino interactions in pixelated detector data from high-energy physics (HEP) experiments. We benchmark this model against a state-of-the-art convolutional neural network (CNN) architecture, similar to those used in the NOvA and DUNE experiments, which have achieved high efficiency and purity in classifying electron and muon neutrino events. Our evaluation considers both the classification performance and interpretability of the model predictions. We find that VLMs can outperform CNNs, while also providing greater flexibility in integrating auxiliary textual or semantic information and offering more interpretable, reasoning-based predictions. This work highlights the potential of VLMs as a general-purpose backbone for physics event classification, due to their high performance, interpretability, and generalizability, which opens new avenues for integrating multimodal reasoning in experimental neutrino physics.
♻ ☆ VRAE: Vertical Residual Autoencoder for License Plate Denoising and Deblurring
In real-world traffic surveillance, vehicle images captured under adverse weather, poor lighting, or high-speed motion often suffer from severe noise and blur. Such degradations significantly reduce the accuracy of license plate recognition systems, especially when the plate occupies only a small region within the full vehicle image. Restoring these degraded images a fast realtime manner is thus a crucial pre-processing step to enhance recognition performance. In this work, we propose a Vertical Residual Autoencoder (VRAE) architecture designed for the image enhancement task in traffic surveillance. The method incorporates an enhancement strategy that employs an auxiliary block, which injects input-aware features at each encoding stage to guide the representation learning process, enabling better general information preservation throughout the network compared to conventional autoencoders. Experiments on a vehicle image dataset with visible license plates demonstrate that our method consistently outperforms Autoencoder (AE), Generative Adversarial Network (GAN), and Flow-Based (FB) approaches. Compared with AE at the same depth, it improves PSNR by about 20%, reduces NMSE by around 50%, and enhances SSIM by 1%, while requiring only a marginal increase of roughly 1% in parameters.
♻ ☆ Bidirectional Sparse Attention for Faster Video Diffusion Training
Video diffusion Transformer (DiT) models excel in generative quality but hit major computational bottlenecks when producing high-resolution, long-duration videos. The quadratic complexity of full attention leads to prohibitively high training and inference costs. Full attention inefficiency stems from two key challenges: excessive computation due to the inherent sparsity of Queries and Key-Value pairs, and redundant computation as fixed sparse patterns fail to leverage DiT's dynamic attention. To overcome this limitation, we propose a Bidirectional Sparse Attention (BSA) framework for faster video DiT training, the first to dynamically sparsify both Queries and Key-Value pairs within 3D full attention, thereby substantially improving training and inference efficiency. BSA addresses these issues through two key components. Query sparsity is optimized by selecting the most informative query tokens via semantic similarity and with a dynamic spatial-time training strategy, while KV sparsity is achieved by computing a statistical dynamic threshold to retain only the most salient KV blocks for computation. Extensive experiments demonstrate that BSA significantly accelerates DiT training across long sequences, reducing FLOPs by up to 20x and achieving 17.79x faster attention training, while preserving or even surpassing the generative quality of full attention.
♻ ☆ MM-Prompt: Cross-Modal Prompt Tuning for Continual Visual Question Answering
Continual Visual Question Answering (CVQA) based on pre-trained models(PTMs) has achieved promising progress by leveraging prompt tuning to enable continual multi-modal learning. However, most existing methods adopt cross-modal prompt isolation, constructing visual and textual prompts separately, which exacerbates modality imbalance and leads to degraded performance over time. To tackle this issue, we propose MM-Prompt, a novel framework incorporating cross-modal prompt query and cross-modal prompt recovery. The former enables balanced prompt selection by incorporating cross-modal signals during query formation, while the latter promotes joint prompt reconstruction through iterative cross-modal interactions, guided by an alignment loss to prevent representational drift. Extensive experiments show that MM-Prompt surpasses prior approaches in accuracy and knowledge retention, while maintaining balanced modality engagement throughout continual learning.
♻ ☆ Deep Learning Framework for Early Detection of Pancreatic Cancer Using Multi-Modal Medical Imaging Analysis
Pacreatic ductal adenocarcinoma (PDAC) remains one of the most lethal forms of cancer, with a five-year survival rate below 10% primarily due to late detection. This research develops and validates a deep learning framework for early PDAC detection through analysis of dual-modality imaging: autofluorescence and second harmonic generation (SHG). We analyzed 40 unique patient samples to create a specialized neural network capable of distinguishing between normal, fibrotic, and cancerous tissue. Our methodology evaluated six distinct deep learning architectures, comparing traditional Convolutional Neural Networks (CNNs) with modern Vision Transformers (ViTs). Through systematic experimentation, we identified and overcome significant challenges in medical image analysis, including limited dataset size and class imbalance. The final optimized framework, based on a modified ResNet architecture with frozen pre-trained layers and class-weighted training, achieved over 90% accuracy in cancer detection. This represents a significant improvement over current manual analysis methods an demonstrates potential for clinical deployment. This work establishes a robust pipeline for automated PDAC detection that can augment pathologists' capabilities while providing a foundation for future expansion to other cancer types. The developed methodology also offers valuable insights for applying deep learning to limited-size medical imaging datasets, a common challenge in clinical applications.
comment: 21 pages, 17 figure
♻ ☆ Improved GUI Grounding via Iterative Narrowing
Graphical User Interface (GUI) grounding plays a crucial role in enhancing the capabilities of Vision-Language Model (VLM) agents. While general VLMs, such as GPT-4V, demonstrate strong performance across various tasks, their proficiency in GUI grounding remains suboptimal. Recent studies have focused on fine-tuning these models specifically for zero-shot GUI grounding, yielding significant improvements over baseline performance. We introduce a visual prompting framework that employs an iterative narrowing mechanism to further improve the performance of both general and fine-tuned models in GUI grounding. For evaluation, we tested our method on a comprehensive benchmark comprising various UI platforms and provided the code to reproduce our results.
comment: Code available at https://github.com/ant-8/GUI-Grounding-via-Iterative-Narrowing
♻ ☆ Preprocessing Algorithm Leveraging Geometric Modeling for Scale Correction in Hyperspectral Images for Improved Unmixing Performance
Spectral variability significantly impacts the accuracy and convergence of hyperspectral unmixing algorithms. Many methods address complex spectral variability; yet large-scale distortions to the scale of the observed pixel signatures due to topography, illumination, and shadowing remain a major challenge. These variations often degrade unmixing performance and complicate model fitting. Because of this, correcting these variations can offer significant advantages in real-world GIS applications. In this paper, we propose a novel preprocessing algorithm that corrects scale-induced spectral variability prior to unmixing. By estimating and correcting these distortions to the scale of the pixel signatures, the algorithm produces pixel signatures with minimal distortions in scale. Since these distortions in scale (which hinder the performance of many unmixing methods) are greatly minimized in the output provided by the proposed method, the abundance estimation of the unmixing algorithms is significantly improved. We present a rigorous mathematical framework to describe and correct for scale variability and provide extensive experimental validation of the proposed algorithm. Furthermore, the algorithm's impact is evaluated across a wide range of state-of-the-art unmixing methods on two synthetic and two real hyperspectral datasets. The proposed preprocessing step consistently improves the performance of these algorithms, achieving error reductions of around 50%, even for algorithms specifically designed to handle spectral variability. This demonstrates that scale correction acts as a complementary step, facilitating more accurate unmixing with existing methods. The algorithm's generality, consistent impact, and significant influence highlight its potential as a key component in practical hyperspectral unmixing pipelines. The implementation code will be made publicly available upon publication.
comment: 20 pages, 14 figures
♻ ☆ Expert-Guided Explainable Few-Shot Learning for Medical Image Diagnosis MICCAI
Medical image analysis often faces significant challenges due to limited expert-annotated data, hindering both model generalization and clinical adoption. We propose an expert-guided explainable few-shot learning framework that integrates radiologist-provided regions of interest (ROIs) into model training to simultaneously enhance classification performance and interpretability. Leveraging Grad-CAM for spatial attention supervision, we introduce an explanation loss based on Dice similarity to align model attention with diagnostically relevant regions during training. This explanation loss is jointly optimized with a standard prototypical network objective, encouraging the model to focus on clinically meaningful features even under limited data conditions. We evaluate our framework on two distinct datasets: BraTS (MRI) and VinDr-CXR (Chest X-ray), achieving significant accuracy improvements from 77.09% to 83.61% on BraTS and from 54.33% to 73.29% on VinDr-CXR compared to non-guided models. Grad-CAM visualizations further confirm that expert-guided training consistently aligns attention with diagnostic regions, improving both predictive reliability and clinical trustworthiness. Our findings demonstrate the effectiveness of incorporating expert-guided attention supervision to bridge the gap between performance and interpretability in few-shot medical image diagnosis.
comment: Accepted for publication in the proceedings of MICCAI Workshop on Data Engineering in Medical Imaging 2025
♻ ☆ GEMINUS: Dual-aware Global and Scene-Adaptive Mixture-of-Experts for End-to-End Autonomous Driving
End-to-end autonomous driving requires adaptive and robust handling of complex and diverse traffic environments. However, prevalent single-mode planning methods attempt to learn an overall policy while struggling to acquire diversified driving skills to handle diverse scenarios. Therefore, this paper proposes GEMINUS, a Mixture-of-Experts end-to-end autonomous driving framework featuring a Global Expert and a Scene-Adaptive Experts Group, equipped with a Dual-aware Router. Specifically, the Global Expert is trained on the overall dataset, possessing robust performance. The Scene-Adaptive Experts are trained on corresponding scene subsets, achieving adaptive performance. The Dual-aware Router simultaneously considers scenario-level features and routing uncertainty to dynamically activate expert modules. Through the effective coupling of the Global Expert and the Scene-Adaptive Experts Group via the Dual-aware Router, GEMINUS achieves both adaptability and robustness across diverse scenarios. GEMINUS outperforms existing methods in the Bench2Drive closed-loop benchmark and achieves state-of-the-art performance in Driving Score and Success Rate, even with only monocular vision input. The code is available at https://github.com/newbrains1/GEMINUS.
♻ ☆ Deep Learning-based Cross-modal Reconstruction of Vehicle Target from Sparse 3D SAR Image
Three-dimensional synthetic aperture radar (3D SAR) is an advanced active microwave imaging technology widely utilized in remote sensing area. To achieve high-resolution 3D imaging,3D SAR requires observations from multiple aspects and altitude baselines surrounding the target. However, constrained flight trajectories often lead to sparse observations, which degrade imaging quality, particularly for anisotropic man-made small targets, such as vehicles and aircraft. In the past, compressive sensing (CS) was the mainstream approach for sparse 3D SAR image reconstruction. More recently, deep learning (DL) has emerged as a powerful alternative, markedly boosting reconstruction quality and efficiency. However, existing DL-based methods typically rely solely on high-quality 3D SAR images as supervisory signals to train deep neural networks (DNNs). This unimodal learning paradigm prevents the integration of complementary information from other data modalities, which limits reconstruction performance and reduces target discriminability due to the inherent constraints of electromagnetic scattering. In this paper, we introduce cross-modal learning and propose a Cross-Modal 3D-SAR Reconstruction Network (CMAR-Net) for enhancing sparse 3D SAR images of vehicle targets by fusing optical information. Leveraging cross-modal supervision from 2D optical images and error propagation guaranteed by differentiable rendering, CMAR-Net achieves efficient training and reconstructs sparse 3D SAR images, which are derived from highly sparse-aspect observations, into visually structured 3D vehicle images. Trained exclusively on simulated data, CMAR-Net exhibits robust generalization to real-world data, outperforming state-of-the-art CS and DL methods in structural accuracy within a large-scale parking lot experiment involving numerous civilian vehicles, thereby demonstrating its strong practical applicability.
comment: This work has been submitted to the IEEE for possible publication
♻ ☆ SV-DRR: High-Fidelity Novel View X-Ray Synthesis Using Diffusion Model MICCAI2025
X-ray imaging is a rapid and cost-effective tool for visualizing internal human anatomy. While multi-view X-ray imaging provides complementary information that enhances diagnosis, intervention, and education, acquiring images from multiple angles increases radiation exposure and complicates clinical workflows. To address these challenges, we propose a novel view-conditioned diffusion model for synthesizing multi-view X-ray images from a single view. Unlike prior methods, which are limited in angular range, resolution, and image quality, our approach leverages the Diffusion Transformer to preserve fine details and employs a weak-to-strong training strategy for stable high-resolution image generation. Experimental results demonstrate that our method generates higher-resolution outputs with improved control over viewing angles. This capability has significant implications not only for clinical applications but also for medical education and data extension, enabling the creation of diverse, high-quality datasets for training and analysis. Our code is available at GitHub.
comment: Accepted by MICCAI2025
♻ ☆ 3D and 4D World Modeling: A Survey
World modeling has become a cornerstone in AI research, enabling agents to understand, represent, and predict the dynamic environments they inhabit. While prior work largely emphasizes generative methods for 2D image and video data, they overlook the rapidly growing body of work that leverages native 3D and 4D representations such as RGB-D imagery, occupancy grids, and LiDAR point clouds for large-scale scene modeling. At the same time, the absence of a standardized definition and taxonomy for ``world models'' has led to fragmented and sometimes inconsistent claims in the literature. This survey addresses these gaps by presenting the first comprehensive review explicitly dedicated to 3D and 4D world modeling and generation. We establish precise definitions, introduce a structured taxonomy spanning video-based (VideoGen), occupancy-based (OccGen), and LiDAR-based (LiDARGen) approaches, and systematically summarize datasets and evaluation metrics tailored to 3D/4D settings. We further discuss practical applications, identify open challenges, and highlight promising research directions, aiming to provide a coherent and foundational reference for advancing the field. A systematic summary of existing literature is available at https://github.com/worldbench/survey
comment: Survey; 34 pages, 10 figures, 14 tables; GitHub Repo at https://github.com/worldbench/survey
♻ ☆ Scaling Artificial Intelligence for Prostate Cancer Detection on MRI towards Organized Screening and Primary Diagnosis in a Global, Multiethnic Population (Study Protocol)
In this intercontinental, confirmatory study, we include a retrospective cohort of 22,481 MRI examinations (21,288 patients; 46 cities in 22 countries) to train and externally validate the PI-CAI-2B model, i.e., an efficient, next-generation iteration of the state-of-the-art AI system that was developed for detecting Gleason grade group $\geq$2 prostate cancer on MRI during the PI-CAI study. Of these examinations, 20,471 cases (19,278 patients; 26 cities in 14 countries) from two EU Horizon projects (ProCAncer-I, COMFORT) and 12 independent centers based in Europe, North America, Asia and Africa, are used for training and internal testing. Additionally, 2010 cases (2010 patients; 20 external cities in 12 countries) from population-based screening (STHLM3-MRI, IP1-PROSTAGRAM trials) and primary diagnostic settings (PRIME trial) based in Europe, North and South Americas, Asia and Australia, are used for external testing. Primary endpoint is the proportion of AI-based assessments in agreement with the standard of care diagnoses (i.e., clinical assessments made by expert uropathologists on histopathology, if available, or at least two expert urogenital radiologists in consensus; with access to patient history and peer consultation) in the detection of Gleason grade group $\geq$2 prostate cancer within the external testing cohorts. Our statistical analysis plan is prespecified with a hypothesis of diagnostic interchangeability to the standard of care at the PI-RADS $\geq$3 (primary diagnosis) or $\geq$4 (screening) cut-off, considering an absolute margin of 0.05 and reader estimates derived from the PI-CAI observer study (62 radiologists reading 400 cases). Secondary measures comprise the area under the receiver operating characteristic curve (AUROC) of the AI system stratified by imaging quality, patient age and patient ethnicity to identify underlying biases (if any).
♻ ☆ Automatic infant 2D pose estimation from videos: comparing seven deep neural network methods
Automatic markerless estimation of infant posture and motion from ordinary videos carries great potential for movement studies "in the wild", facilitating understanding of motor development and massively increasing the chances of early diagnosis of disorders. There is rapid development of human pose estimation methods in computer vision thanks to advances in deep learning and machine learning. However, these methods are trained on datasets that feature adults in different contexts. This work tests and compares seven popular methods (AlphaPose, DeepLabCut/DeeperCut, Detectron2, HRNet, MediaPipe/BlazePose, OpenPose, and ViTPose) on videos of infants in supine position and in more complex settings. Surprisingly, all methods except DeepLabCut and MediaPipe have competitive performance without additional finetuning, with ViTPose performing best. Next to standard performance metrics (average precision and recall), we introduce errors expressed in the neck-mid-hip (torso length) ratio and additionally study missed and redundant detections, and the reliability of the internal confidence ratings of the different methods, which are relevant for downstream tasks. Among the networks with competitive performance, only AlphaPose could run close to real time (27 fps) on our machine. We provide documented Docker containers or instructions for all the methods we used, our analysis scripts, and the processed data at https://hub.docker.com/u/humanoidsctu and https://osf.io/x465b/.
comment: 38 pages, 8 figures, 22 tables
♻ ☆ Towards Scalable Training for Handwritten Mathematical Expression Recognition
Large foundation models have achieved significant performance gains through scalable training on massive datasets. However, the field of \textbf{H}andwritten \textbf{M}athematical \textbf{E}xpression \textbf{R}ecognition (HMER) has been impeded by the scarcity of data, primarily due to the arduous and costly process of manual annotation. To bridge this gap, we propose a novel method integrating limited handwritten formulas with large-scale LaTeX-rendered formulas by developing a scalable data engine to generate complex and consistent LaTeX sequences. With this engine, we built the largest formula dataset to date, termed \texttt{Tex80M}, comprising over 80 million high-quality training instances. Then we propose \texttt{TexTeller}, the first HMER model trained at scale, by mix-training \texttt{Tex80M} with a relatively small HME dataset. The expansive training dataset and our refined pipeline have equipped \texttt{TexTeller} with state-of-the-art (SOTA) performance across nearly all benchmarks. To advance the field, we will openly release our complete model, entire dataset, and full codebase, enabling further research building upon our contributions.
♻ ☆ Focusing by Contrastive Attention: Enhancing VLMs' Visual Reasoning
Vision-Language Models (VLMs) have demonstrated remarkable success across diverse visual tasks, yet their performance degrades in complex visual environments. While existing enhancement approaches require additional training, rely on external segmentation tools, or operate at coarse-grained levels, they overlook the innate ability within VLMs. To bridge this gap, we investigate VLMs' attention patterns and discover that: (1) visual complexity strongly correlates with attention entropy, negatively impacting reasoning performance; (2) attention progressively refines from global scanning in shallow layers to focused convergence in deeper layers, with convergence degree determined by visual complexity. (3) Theoretically, we prove that the contrast of attention maps between general queries and task-specific queries enables the decomposition of visual signal into semantic signals and visual noise components. Building on these insights, we propose Contrastive Attention Refinement for Visual Enhancement (CARVE), a training-free method that extracts task-relevant visual signals through attention contrasting at the pixel level. Extensive experiments demonstrate that CARVE consistently enhances performance, achieving up to 75% improvement on open-source models. Our work provides critical insights into the interplay between visual complexity and attention mechanisms, offering an efficient pathway for improving visual reasoning with contrasting attention.
♻ ☆ Bridging Simplicity and Sophistication using GLinear: A Novel Architecture for Enhanced Time Series Prediction
Time Series Forecasting (TSF) is an important application across many fields. There is a debate about whether Transformers, despite being good at understanding long sequences, struggle with preserving temporal relationships in time series data. Recent research suggests that simpler linear models might outperform or at least provide competitive performance compared to complex Transformer-based models for TSF tasks. In this paper, we propose a novel data-efficient architecture, \textit{Gaussian-activated Linear model (GLinear)}, for multivariate TSF that exploits periodic patterns to provide better accuracy. It achieves higher prediction accuracy while requiring less historical data than other state-of-the-art linear predictors. Four different datasets (ETTh1, Electricity, Traffic, and Weather) are used to evaluate the performance of the proposed predictor. A performance comparison with state-of-the-art linear architectures (such as NLinear, DLinear, and RLinear) and transformer-based time series predictors (Autoformer) shows that the GLinear, despite being data efficient, outperforms the existing architectures in most cases of multivariate TSF while being competitive in others. We hope that the proposed GLinear model opens new fronts of research and development of simpler and more sophisticated architectures for data and computationally efficient time-series analysis. The source code is publicly available on GitHub.
comment: Submitted to Digital Signal Processing Journal
♻ ☆ A Lightweight Convolution and Vision Transformer integrated model with Multi-scale Self-attention Mechanism
Vision Transformer (ViT) has prevailed in computer vision tasks due to its strong long-range dependency modelling ability. \textcolor{blue}{However, its large model size and weak local feature modeling ability hinder its application in real scenarios. To balance computation efficiency and performance in downstream vision tasks, we propose an efficient ViT model with sparse attention (dubbed SAEViT) and convolution blocks. Specifically, a Sparsely Aggregated Attention (SAA) module has been proposed to perform adaptive sparse sampling and recover the feature map via deconvolution operation,} which significantly reduces the computational complexity of attention operations. In addition, a Channel-Interactive Feed-Forward Network (CIFFN) layer is developed to enhance inter-channel information exchange through feature decomposition and redistribution, which mitigates the redundancy in traditional feed-forward networks (FFN). Finally, a hierarchical pyramid structure with embedded depth-wise separable convolutional blocks (DWSConv) is devised to further strengthen convolutional features. Extensive experiments on mainstream datasets show that SAEViT achieves Top-1 accuracies of 76.3\% and 79.6\% on the ImageNet-1K classification task with only 0.8 GFLOPs and 1.3 GFLOPs, respectively, demonstrating a lightweight solution for fundamental vision tasks.
♻ ☆ Enhancing Automatic Modulation Recognition With a Reconstruction-Driven Vision Transformer Under Limited Labels
Automatic modulation recognition (AMR) is critical for cognitive radio, spectrum monitoring, and secure wireless communication. However, existing solutions often rely on large labeled datasets or multi-stage training pipelines, which limit scalability and generalization in practice. We propose a unified Vision Transformer (ViT) framework that integrates supervised, self-supervised, and reconstruction objectives. The model combines a ViT encoder, a lightweight convolutional decoder, and a linear classifier; the reconstruction branch maps augmented signals back to their originals, anchoring the encoder to fine-grained I/Q structure. This strategy promotes robust, discriminative feature learning during pretraining, while partial label supervision in fine-tuning enables effective classification with limited labels. On the RML2018.01A dataset, our approach outperforms supervised CNN and ViT baselines in low-label regimes, approaches ResNet-level accuracy with only 15-20% labeled data, and maintains strong performance across varying SNR levels. Overall, the framework provides a simple, generalizable, and label-efficient solution for AMR.
♻ ☆ TinyDef-DETR: A DETR-based Framework for Defect Detection in Transmission Lines from UAV Imagery
Automated defect detection from UAV imagery of transmission lines is a challenging task due to the small size, ambiguity, and complex backgrounds of defects. This paper proposes TinyDef-DETR, a DETR-based framework designed to achieve accurate and efficient detection of transmission line defects from UAV-acquired images. The model integrates four major components: an edge-enhanced ResNet backbone to strengthen boundary-sensitive representations, a stride-free space-to-depth module to enable detail-preserving downsampling, a cross-stage dual-domain multi-scale attention mechanism to jointly model global context and local cues, and a Focaler-Wise-SIoU regression loss to improve the localization of small and difficult targets. Together, these designs effectively mitigate the limitations of conventional detectors. Extensive experiments on both public and real-world datasets demonstrate that TinyDef-DETR achieves superior detection performance and strong generalization capability, while maintaining modest computational overhead. The accuracy and efficiency of TinyDef-DETR make it a suitable method for UAV-based transmission line defect detection, particularly in scenarios involving small and ambiguous targets.
♻ ☆ Sigma Flows for Image and Data Labeling and Learning Structured Prediction
This paper introduces the sigma flow model for the prediction of structured labelings of data observed on Riemannian manifolds, including Euclidean image domains as special case. The approach combines the Laplace-Beltrami framework for image denoising and enhancement, introduced by Sochen, Kimmel and Malladi about 25 years ago, and the assignment flow approach introduced and studied by the authors. The sigma flow arises as Riemannian gradient flow of generalized harmonic energies and thus is governed by a nonlinear geometric PDE which determines a harmonic map from a closed Riemannian domain manifold to a statistical manifold, equipped with the Fisher-Rao metric from information geometry. A specific ingredient of the sigma flow is the mutual dependency of the Riemannian metric of the domain manifold on the evolving state. This makes the approach amenable to machine learning in a specific way, by realizing this dependency through a mapping with compact time-variant parametrization that can be learned from data. Proof of concept experiments demonstrate the expressivity of the sigma flow model and prediction performance. Structural similarities to transformer network architectures and networks generated by the geometric integration of sigma flows are pointed out, which highlights the connection to deep learning and, conversely, may stimulate the use of geometric design principles for structured prediction in other areas of scientific machine learning.
comment: 51 pages, revised experimental section
♻ ☆ ABS-Mamba: SAM2-Driven Bidirectional Spiral Mamba Network for Medical Image Translation MICCAI 2025
Accurate multi-modal medical image translation requires ha-rmonizing global anatomical semantics and local structural fidelity, a challenge complicated by intermodality information loss and structural distortion. We propose ABS-Mamba, a novel architecture integrating the Segment Anything Model 2 (SAM2) for organ-aware semantic representation, specialized convolutional neural networks (CNNs) for preserving modality-specific edge and texture details, and Mamba's selective state-space modeling for efficient long- and short-range feature dependencies. Structurally, our dual-resolution framework leverages SAM2's image encoder to capture organ-scale semantics from high-resolution inputs, while a parallel CNNs branch extracts fine-grained local features. The Robust Feature Fusion Network (RFFN) integrates these epresentations, and the Bidirectional Mamba Residual Network (BMRN) models spatial dependencies using spiral scanning and bidirectional state-space dynamics. A three-stage skip fusion decoder enhances edge and texture fidelity. We employ Efficient Low-Rank Adaptation (LoRA+) fine-tuning to enable precise domain specialization while maintaining the foundational capabilities of the pre-trained components. Extensive experimental validation on the SynthRAD2023 and BraTS2019 datasets demonstrates that ABS-Mamba outperforms state-of-the-art methods, delivering high-fidelity cross-modal synthesis that preserves anatomical semantics and structural details to enhance diagnostic accuracy in clinical applications. The code is available at https://github.com/gatina-yone/ABS-Mamba
comment: MICCAI 2025(under view)
♻ ☆ Hallo4: High-Fidelity Dynamic Portrait Animation via Direct Preference Optimization
Generating highly dynamic and photorealistic portrait animations driven by audio and skeletal motion remains challenging due to the need for precise lip synchronization, natural facial expressions, and high-fidelity body motion dynamics. We propose a human-preference-aligned diffusion framework that addresses these challenges through two key innovations. First, we introduce direct preference optimization tailored for human-centric animation, leveraging a curated dataset of human preferences to align generated outputs with perceptual metrics for portrait motion-video alignment and naturalness of expression. Second, the proposed temporal motion modulation resolves spatiotemporal resolution mismatches by reshaping motion conditions into dimensionally aligned latent features through temporal channel redistribution and proportional feature expansion, preserving the fidelity of high-frequency motion details in diffusion-based synthesis. The proposed mechanism is complementary to existing UNet and DiT-based portrait diffusion approaches, and experiments demonstrate obvious improvements in lip-audio synchronization, expression vividness, body motion coherence over baseline methods, alongside notable gains in human preference metrics. Our model and source code can be found at: https://github.com/xyz123xyz456/hallo4.
♻ ☆ Zero-shot 3D-Aware Trajectory-Guided image-to-video generation via Test-Time Training
Trajectory-Guided image-to-video (I2V) generation aims to synthesize videos that adhere to user-specified motion instructions. Existing methods typically rely on computationally expensive fine-tuning on scarce annotated datasets. Although some zero-shot methods attempt to trajectory control in the latent space, they may yield unrealistic motion by neglecting 3D perspective and creating a misalignment between the manipulated latents and the network's noise predictions. To address these challenges, we introduce Zo3T, a novel zero-shot test-time-training framework for trajectory-guided generation with three core innovations: First, we incorporate a 3D-Aware Kinematic Projection, leveraging inferring scene depth to derive perspective-correct affine transformations for target regions. Second, we introduce Trajectory-Guided Test-Time LoRA, a mechanism that dynamically injects and optimizes ephemeral LoRA adapters into the denoising network alongside the latent state. Driven by a regional feature consistency loss, this co-adaptation effectively enforces motion constraints while allowing the pre-trained model to locally adapt its internal representations to the manipulated latent, thereby ensuring generative fidelity and on-manifold adherence. Finally, we develop Guidance Field Rectification, which refines the denoising evolutionary path by optimizing the conditional guidance field through a one-step lookahead strategy, ensuring efficient generative progression towards the target trajectory. Zo3T significantly enhances 3D realism and motion accuracy in trajectory-controlled I2V generation, demonstrating superior performance over existing training-based and zero-shot approaches.
♻ ☆ Shaken, Not Stirred: A Novel Dataset for Visual Understanding of Glasses in Human-Robot Bartending Tasks IROS
Datasets for object detection often do not account for enough variety of glasses, due to their transparent and reflective properties. Specifically, open-vocabulary object detectors, widely used in embodied robotic agents, fail to distinguish subclasses of glasses. This scientific gap poses an issue for robotic applications that suffer from accumulating errors between detection, planning, and action execution. This paper introduces a novel method for acquiring real-world data from RGB-D sensors that minimizes human effort. We propose an auto-labeling pipeline that generates labels for all the acquired frames based on the depth measurements. We provide a novel real-world glass object dataset GlassNICOLDataset that was collected on the Neuro-Inspired COLlaborator (NICOL), a humanoid robot platform. The dataset consists of 7850 images recorded from five different cameras. We show that our trained baseline model outperforms state-of-the-art open-vocabulary approaches. In addition, we deploy our baseline model in an embodied agent approach to the NICOL platform, on which it achieves a success rate of 81% in a human-robot bartending scenario.
comment: Submitted and Accepted for Presentation at the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2025
♻ ☆ Robix: A Unified Model for Robot Interaction, Reasoning and Planning
We introduce Robix, a unified model that integrates robot reasoning, task planning, and natural language interaction within a single vision-language architecture. Acting as the high-level cognitive layer in a hierarchical robot system, Robix dynamically generates atomic commands for the low-level controller and verbal responses for human interaction, enabling robots to follow complex instructions, plan long-horizon tasks, and interact naturally with human within an end-to-end framework. Robix further introduces novel capabilities such as proactive dialogue, real-time interruption handling, and context-aware commonsense reasoning during task execution. At its core, Robix leverages chain-of-thought reasoning and adopts a three-stage training strategy: (1) continued pretraining to enhance foundational embodied reasoning abilities including 3D spatial understanding, visual grounding, and task-centric reasoning; (2) supervised finetuning to model human-robot interaction and task planning as a unified reasoning-action sequence; and (3) reinforcement learning to improve reasoning-action consistency and long-horizon task coherence. Extensive experiments demonstrate that Robix outperforms both open-source and commercial baselines (e.g., GPT-4o and Gemini 2.5 Pro) in interactive task execution, demonstrating strong generalization across diverse instruction types (e.g., open-ended, multi-stage, constrained, invalid, and interrupted) and various user-involved tasks such as table bussing, grocery shopping, and dietary filtering.
comment: Tech report. Project page: https://robix-seed.github.io/robix/
♻ ☆ VFlowOpt: A Token Pruning Framework for LMMs with Visual Information Flow-Guided Optimization ICCV 2025
Large Multimodal Models (LMMs) excel in visual-language tasks by leveraging numerous visual tokens for fine-grained visual information, but this token redundancy results in significant computational costs. Previous research aimed at reducing visual tokens during inference typically leverages importance maps derived from attention scores among vision-only tokens or vision-language tokens to prune tokens across one or multiple pruning stages. Despite this progress, pruning frameworks and strategies remain simplistic and insufficiently explored, often resulting in substantial performance degradation. In this paper, we propose VFlowOpt, a token pruning framework that introduces an importance map derivation process and a progressive pruning module with a recycling mechanism. The hyperparameters of its pruning strategy are further optimized by a visual information flow-guided method. Specifically, we compute an importance map for image tokens based on their attention-derived context relevance and patch-level information entropy. We then decide which tokens to retain or prune and aggregate the pruned ones as recycled tokens to avoid potential information loss. Finally, we apply a visual information flow-guided method that regards the last token in the LMM as the most representative signal of text-visual interactions. This method minimizes the discrepancy between token representations in LMMs with and without pruning, thereby enabling superior pruning strategies tailored to different LMMs. Experiments demonstrate that VFlowOpt can prune 90% of visual tokens while maintaining comparable performance, leading to an 89% reduction in KV-Cache memory and 3.8 times faster inference.
comment: Accepted by ICCV 2025
♻ ☆ Improving Alignment in LVLMs with Debiased Self-Judgment EMNLP 2025
The rapid advancements in Large Language Models (LLMs) and Large Visual-Language Models (LVLMs) have opened up new opportunities for integrating visual and linguistic modalities. However, effectively aligning these modalities remains challenging, often leading to hallucinations--where generated outputs are not grounded in the visual input--and raising safety concerns across various domains. Existing alignment methods, such as instruction tuning and preference tuning, often rely on external datasets, human annotations, or complex post-processing, which limit scalability and increase costs. To address these challenges, we propose a novel approach that generates the debiased self-judgment score, a self-evaluation metric created internally by the model without relying on external resources. This enables the model to autonomously improve alignment. Our method enhances both decoding strategies and preference tuning processes, resulting in reduced hallucinations, enhanced safety, and improved overall capability. Empirical results show that our approach significantly outperforms traditional methods, offering a more effective solution for aligning LVLMs.
comment: EMNLP 2025 Findings
♻ ☆ LiDAR-BIND-T: Improved and Temporally Consistent Sensor Modality Translation and Fusion for Robotic Applications
This paper extends LiDAR-BIND, a modular multi-modal fusion framework that binds heterogeneous sensors (radar, sonar) to a LiDAR-defined latent space, with mechanisms that explicitly enforce temporal consistency. We introduce three contributions: (i) temporal embedding similarity that aligns consecutive latent representations, (ii) a motion-aligned transformation loss that matches displacement between predictions and ground truth LiDAR, and (iii) windowed temporal fusion using a specialised temporal module. We further update the model architecture to better preserve spatial structure. Evaluations on radar/sonar-to-LiDAR translation demonstrate improved temporal and spatial coherence, yielding lower absolute trajectory error and better occupancy map accuracy in Cartographer-based SLAM (Simultaneous Localisation and Mapping). We propose different metrics based on the Fr\'echet Video Motion Distance (FVMD) and a correlation-peak distance metric providing practical temporal quality indicators to evaluate SLAM performance. The proposed temporal LiDAR-BIND, or LiDAR-BIND-T, maintains plug-and-play modality fusion while substantially enhancing temporal stability, resulting in improved robustness and performance for downstream SLAM.
♻ ☆ Total Disentanglement of Font Images into Style and Character Class Features
In this paper, we demonstrate a total disentanglement of font images. Total disentanglement is a neural network-based method for decomposing each font image nonlinearly and completely into its style and content (i.e., character class) features. It uses a simple but careful training procedure to extract the common style feature from all `A'-`Z' images in the same font and the common content feature from all `A' (or another class) images in different fonts. These disentangled features guarantee the reconstruction of the original font image. Various experiments have been conducted to understand the performance of total disentanglement. First, it is demonstrated that total disentanglement is achievable with very high accuracy; this is experimental proof of the long-standing open question, ``Does `A'-ness exist?'' Hofstadter (1985). Second, it is demonstrated that the disentangled features produced by total disentanglement apply to a variety of tasks, including font recognition, character recognition, and one-shot font image generation. Code is available here: https://github.com/uchidalab/total_disentanglement
♻ ☆ Towards Reliable Medical Image Segmentation by Modeling Evidential Calibrated Uncertainty
Medical image segmentation is critical for disease diagnosis and treatment assessment. However, concerns regarding the reliability of segmentation regions persist among clinicians, mainly attributed to the absence of confidence assessment, robustness, and calibration to accuracy. To address this, we introduce DEviS, an easily implementable foundational model that seamlessly integrates into various medical image segmentation networks. DEviS not only enhances the calibration and robustness of baseline segmentation accuracy but also provides high-efficiency uncertainty estimation for reliable predictions. By leveraging subjective logic theory, we explicitly model probability and uncertainty for medical image segmentation. Here, the Dirichlet distribution parameterizes the distribution of probabilities for different classes of the segmentation results. To generate calibrated predictions and uncertainty, we develop a trainable calibrated uncertainty penalty. Furthermore, DEviS incorporates an uncertainty-aware filtering module, which designs the metric of uncertainty-calibrated error to filter out-of-distribution data. We conducted validation studies on publicly available datasets, including ISIC2018, KiTS2021, LiTS2017, and BraTS2019, to assess the accuracy and robustness of different backbone segmentation models enhanced by DEviS, as well as the efficiency and reliability of uncertainty estimation.
comment: 14 pages, 8 figures, accepted by IEEE Transactions on Cybernetics
♻ ☆ S$^2$-Guidance: Stochastic Self Guidance for Training-Free Enhancement of Diffusion Models
Classifier-free Guidance (CFG) is a widely used technique in modern diffusion models for enhancing sample quality and prompt adherence. However, through an empirical analysis on Gaussian mixture modeling with a closed-form solution, we observe a discrepancy between the suboptimal results produced by CFG and the ground truth. The model's excessive reliance on these suboptimal predictions often leads to semantic incoherence and low-quality outputs. To address this issue, we first empirically demonstrate that the model's suboptimal predictions can be effectively refined using sub-networks of the model itself. Building on this insight, we propose S^2-Guidance, a novel method that leverages stochastic block-dropping during the forward process to construct stochastic sub-networks, effectively guiding the model away from potential low-quality predictions and toward high-quality outputs. Extensive qualitative and quantitative experiments on text-to-image and text-to-video generation tasks demonstrate that S^2-Guidance delivers superior performance, consistently surpassing CFG and other advanced guidance strategies. Our code will be released.
♻ ☆ TESSER: Transfer-Enhancing Adversarial Attacks from Vision Transformers via Spectral and Semantic Regularization
Adversarial transferability remains a critical challenge in evaluating the robustness of deep neural networks. In security-critical applications, transferability enables black-box attacks without access to model internals, making it a key concern for real-world adversarial threat assessment. While Vision Transformers (ViTs) have demonstrated strong adversarial performance, existing attacks often fail to transfer effectively across architectures, especially from ViTs to Convolutional Neural Networks (CNNs) or hybrid models. In this paper, we introduce \textbf{TESSER} -- a novel adversarial attack framework that enhances transferability via two key strategies: (1) \textit{Feature-Sensitive Gradient Scaling (FSGS)}, which modulates gradients based on token-wise importance derived from intermediate feature activations, and (2) \textit{Spectral Smoothness Regularization (SSR)}, which suppresses high-frequency noise in perturbations using a differentiable Gaussian prior. These components work in tandem to generate perturbations that are both semantically meaningful and spectrally smooth. Extensive experiments on ImageNet across 12 diverse architectures demonstrate that TESSER achieves +10.9\% higher attack succes rate (ASR) on CNNs and +7.2\% on ViTs compared to the state-of-the-art Adaptive Token Tuning (ATT) method. Moreover, TESSER significantly improves robustness against defended models, achieving 53.55\% ASR on adversarially trained CNNs. Qualitative analysis shows strong alignment between TESSER's perturbations and salient visual regions identified via Grad-CAM, while frequency-domain analysis reveals a 12\% reduction in high-frequency energy, confirming the effectiveness of spectral regularization.
♻ ☆ UnsafeBench: Benchmarking Image Safety Classifiers on Real-World and AI-Generated Images CCS
With the advent of text-to-image models and concerns about their misuse, developers are increasingly relying on image safety classifiers to moderate their generated unsafe images. Yet, the performance of current image safety classifiers remains unknown for both real-world and AI-generated images. In this work, we propose UnsafeBench, a benchmarking framework that evaluates the effectiveness and robustness of image safety classifiers, with a particular focus on the impact of AI-generated images on their performance. First, we curate a large dataset of 10K real-world and AI-generated images that are annotated as safe or unsafe based on a set of 11 unsafe categories of images (sexual, violent, hateful, etc.). Then, we evaluate the effectiveness and robustness of five popular image safety classifiers, as well as three classifiers that are powered by general-purpose visual language models. Our assessment indicates that existing image safety classifiers are not comprehensive and effective enough to mitigate the multifaceted problem of unsafe images. Also, there exists a distribution shift between real-world and AI-generated images in image qualities, styles, and layouts, leading to degraded effectiveness and robustness. Motivated by these findings, we build a comprehensive image moderation tool called PerspectiveVision, which improves the effectiveness and robustness of existing classifiers, especially on AI-generated images. UnsafeBench and PerspectiveVision can aid the research community in better understanding the landscape of image safety classification in the era of generative AI.
comment: To Appear in the ACM Conference on Computer and Communications Security (CCS), October 13, 2025
♻ ☆ Deep Learning-Based Rock Particulate Classification Using Attention-Enhanced ConvNeXt
Accurate classification of rock sizes is a vital component in geotechnical engineering, mining, and resource management, where precise estimation influences operational efficiency and safety. In this paper, we propose an enhanced deep learning model based on the ConvNeXt architecture, augmented with both self-attention and channel attention mechanisms. Building upon the foundation of ConvNext, our proposed model, termed CNSCA, introduces self-attention to capture long-range spatial dependencies and channel attention to emphasize informative feature channels. This hybrid design enables the model to effectively capture both fine-grained local patterns and broader contextual relationships within rock imagery, leading to improved classification accuracy and robustness. We evaluate our model on a rock size classification dataset and compare it against three strong baseline. The results demonstrate that the incorporation of attention mechanisms significantly enhances the models capability for fine-grained classification tasks involving natural textures like rocks.
comment: The paper has been withdrawn by the authors to accommodate substantial revisions requested by a co-author. A revised version will be submitted
♻ ☆ JAX-IK: Real-Time Inverse Kinematics for Generating Multi-Constrained Movements of Virtual Human Characters
Generating accurate and realistic virtual human movements in real-time is of high importance for a variety of applications in computer graphics, interactive virtual environments, robotics, and biomechanics. This paper introduces a novel real-time inverse kinematics (IK) solver specifically designed for realistic human-like movement generation. Leveraging the automatic differentiation and just-in-time compilation of TensorFlow, the proposed solver efficiently handles complex articulated human skeletons with high degrees of freedom. By treating forward and inverse kinematics as differentiable operations, our method effectively addresses common challenges such as error accumulation and complicated joint limits in multi-constrained problems, which are critical for realistic human motion modeling. We demonstrate the solver's effectiveness on the SMPLX human skeleton model, evaluating its performance against widely used iterative-based IK algorithms, like Cyclic Coordinate Descent (CCD), FABRIK, and the nonlinear optimization algorithm IPOPT. Our experiments cover both simple end-effector tasks and sophisticated, multi-constrained problems with realistic joint limits. Results indicate that our IK solver achieves real-time performance, exhibiting rapid convergence, minimal computational overhead per iteration, and improved success rates compared to existing methods. The project code is available at https://github.com/hvoss-techfak/JAX-IK
♻ ☆ IDEATOR: Jailbreaking and Benchmarking Large Vision-Language Models Using Themselves
As large Vision-Language Models (VLMs) gain prominence, ensuring their safe deployment has become critical. Recent studies have explored VLM robustness against jailbreak attacks-techniques that exploit model vulnerabilities to elicit harmful outputs. However, the limited availability of diverse multimodal data has constrained current approaches to rely heavily on adversarial or manually crafted images derived from harmful text datasets, which often lack effectiveness and diversity across different contexts. In this paper, we propose IDEATOR, a novel jailbreak method that autonomously generates malicious image-text pairs for black-box jailbreak attacks. IDEATOR is grounded in the insight that VLMs themselves could serve as powerful red team models for generating multimodal jailbreak prompts. Specifically, IDEATOR leverages a VLM to create targeted jailbreak texts and pairs them with jailbreak images generated by a state-of-the-art diffusion model. Extensive experiments demonstrate IDEATOR's high effectiveness and transferability, achieving a 94% attack success rate (ASR) in jailbreaking MiniGPT-4 with an average of only 5.34 queries, and high ASRs of 82%, 88%, and 75% when transferred to LLaVA, InstructBLIP, and Chameleon, respectively. Building on IDEATOR's strong transferability and automated process, we introduce the VLJailbreakBench, a safety benchmark comprising 3,654 multimodal jailbreak samples. Our benchmark results on 11 recently released VLMs reveal significant gaps in safety alignment. For instance, our challenge set achieves ASRs of 46.31% on GPT-4o and 19.65% on Claude-3.5-Sonnet, underscoring the urgent need for stronger defenses.VLJailbreakBench is publicly available at https://roywang021.github.io/VLJailbreakBench.
♻ ☆ Uncertainty-aware Diffusion and Reinforcement Learning for Joint Plane Localization and Anomaly Diagnosis in 3D Ultrasound MICCAI 2025
Congenital uterine anomalies (CUAs) can lead to infertility, miscarriage, preterm birth, and an increased risk of pregnancy complications. Compared to traditional 2D ultrasound (US), 3D US can reconstruct the coronal plane, providing a clear visualization of the uterine morphology for assessing CUAs accurately. In this paper, we propose an intelligent system for simultaneous automated plane localization and CUA diagnosis. Our highlights are: 1) we develop a denoising diffusion model with local (plane) and global (volume/text) guidance, using an adaptive weighting strategy to optimize attention allocation to different conditions; 2) we introduce a reinforcement learning-based framework with unsupervised rewards to extract the key slice summary from redundant sequences, fully integrating information across multiple planes to reduce learning difficulty; 3) we provide text-driven uncertainty modeling for coarse prediction, and leverage it to adjust the classification probability for overall performance improvement. Extensive experiments on a large 3D uterine US dataset show the efficacy of our method, in terms of plane localization and CUA diagnosis. Code is available at https://github.com/yuhoo0302/CUA-US.
comment: Accepted by MICCAI 2025;10 pages, 3 figures
♻ ☆ Glo-UMF: A Unified Multi-model Framework for Automated Morphometry of Glomerular Ultrastructural Characterization
Background and Objective: To address the inability of single-model architectures to perform simultaneous analysis of complex glomerular ultrastructures, we developed Glo-UMF, a unified multi-model framework integrating segmentation, classification, and detection to systematically quantify key ultrastructural features. Methods: Glo-UMF decouples quantification tasks by constructing three dedicated deep models: an ultrastructure segmentation model, a glomerular filtration barrier (GFB) region classification model, and an electron-dense deposits (EDD) detection model. Their outputs are integrated through a post-processing workflow with adaptive GFB cropping and measurement location screening, enhancing measurement reliability and providing comprehensive quantitative results that overcome the limitations of traditional grading. Results: Trained on 372 electron microscopy images, Glo-UMF enables simultaneous quantification of glomerular basement membrane (GBM) thickness, the degree of foot process effacement (FPE), and EDD location. In 115 test cases spanning 9 renal pathological types, the automated quantification results showed strong agreement with pathological reports, with an average processing time of 4.23$\pm$0.48 seconds per case on a CPU environment. Conclusions: The modular design of Glo-UMF allows for flexible extensibility, supporting the joint quantification of multiple features. This framework ensures robust generalization and clinical applicability, demonstrating significant potential as an efficient auxiliary tool in glomerular pathological analysis.
comment: 17 pages, 6 figures
♻ ☆ V-HOP: Visuo-Haptic 6D Object Pose Tracking
Humans naturally integrate vision and haptics for robust object perception during manipulation. The loss of either modality significantly degrades performance. Inspired by this multisensory integration, prior object pose estimation research has attempted to combine visual and haptic/tactile feedback. Although these works demonstrate improvements in controlled environments or synthetic datasets, they often underperform vision-only approaches in real-world settings due to poor generalization across diverse grippers, sensor layouts, or sim-to-real environments. Furthermore, they typically estimate the object pose for each frame independently, resulting in less coherent tracking over sequences in real-world deployments. To address these limitations, we introduce a novel unified haptic representation that effectively handles multiple gripper embodiments. Building on this representation, we introduce a new visuo-haptic transformer-based object pose tracker that seamlessly integrates visual and haptic input. We validate our framework in our dataset and the Feelsight dataset, demonstrating significant performance improvement on challenging sequences. Notably, our method achieves superior generalization and robustness across novel embodiments, objects, and sensor types (both taxel-based and vision-based tactile sensors). In real-world experiments, we demonstrate that our approach outperforms state-of-the-art visual trackers by a large margin. We further show that we can achieve precise manipulation tasks by incorporating our real-time object tracking result into motion plans, underscoring the advantages of visuo-haptic perception. Project website: https://ivl.cs.brown.edu/research/v-hop
comment: Accepted by RSS 2025
♻ ☆ GAPrompt: Geometry-Aware Point Cloud Prompt for 3D Vision Model ICML 2025
Pre-trained 3D vision models have gained significant attention for their promising performance on point cloud data. However, fully fine-tuning these models for downstream tasks is computationally expensive and storage-intensive. Existing parameter-efficient fine-tuning (PEFT) approaches, which focus primarily on input token prompting, struggle to achieve competitive performance due to their limited ability to capture the geometric information inherent in point clouds. To address this challenge, we propose a novel Geometry-Aware Point Cloud Prompt (GAPrompt) that leverages geometric cues to enhance the adaptability of 3D vision models. First, we introduce a Point Prompt that serves as an auxiliary input alongside the original point cloud, explicitly guiding the model to capture fine-grained geometric details. Additionally, we present a Point Shift Prompter designed to extract global shape information from the point cloud, enabling instance-specific geometric adjustments at the input level. Moreover, our proposed Prompt Propagation mechanism incorporates the shape information into the model's feature extraction process, further strengthening its ability to capture essential geometric characteristics. Extensive experiments demonstrate that GAPrompt significantly outperforms state-of-the-art PEFT methods and achieves competitive results compared to full fine-tuning on various benchmarks, while utilizing only 2.19% of trainable parameters. Our code is available at https://github.com/zhoujiahuan1991/ICML2025-GAPrompt.
comment: Accepted by ICML 2025
♻ ☆ Early Exit and Multi Stage Knowledge Distillation in VLMs for Video Summarization
We introduce DEEVISum (Distilled Early Exit Vision language model for Summarization), a lightweight, efficient, and scalable vision language model designed for segment wise video summarization. Leveraging multi modal prompts that combine textual and audio derived signals, DEEVISum incorporates Multi Stage Knowledge Distillation (MSKD) and Early Exit (EE) to strike a balance between performance and efficiency. MSKD offers a 1.33% absolute F1 improvement over baseline distillation (0.5%), while EE reduces inference time by approximately 21% with a 1.3 point drop in F1. Evaluated on the TVSum dataset, our best model PaLI Gemma2 3B + MSKD achieves an F1 score of 61.1, competing the performance of significantly larger models, all while maintaining a lower computational footprint. We publicly release our code and processed dataset to support further research.
♻ ☆ Attention-Guided Multi-scale Interaction Network for Face Super-Resolution
Recently, CNN and Transformer hybrid networks demonstrated excellent performance in face super-resolution (FSR) tasks. Since numerous features at different scales in hybrid networks, how to fuse these multiscale features and promote their complementarity is crucial for enhancing FSR. However, existing hybrid network-based FSR methods ignore this, only simply combining the Transformer and CNN. To address this issue, we propose an attention-guided Multiscale interaction network (AMINet), which incorporates local and global feature interactions, as well as encoder-decoder phase feature interactions. Specifically, we propose a Local and Global Feature Interaction Module (LGFI) to promote the fusion of global features and the local features extracted from different receptive fields by our Residual Depth Feature Extraction Module (RDFE). Additionally, we propose a Selective Kernel Attention Fusion Module (SKAF) to adaptively select fusions of different features within the LGFI and encoder-decoder phases. Our above design allows the free flow of multiscale features from within modules and between the encoder and decoder, which can promote the complementarity of different scale features to enhance FSR. Comprehensive experiments confirm that our method consistently performs well with less computational consumption and faster inference.
comment: accepted by IEEE Transactions on Systems, Man and Cybernetics:Systems (TSMC)
♻ ☆ EgoAgent: A Joint Predictive Agent Model in Egocentric Worlds
Learning an agent model that behaves like humans-capable of jointly perceiving the environment, predicting the future, and taking actions from a first-person perspective-is a fundamental challenge in computer vision. Existing methods typically train separate models for these abilities, which fail to capture their intrinsic relationships and prevent them from learning from each other. Inspired by how humans learn through the perception-action loop, we propose EgoAgent, a unified agent model that simultaneously learns to represent, predict, and act within a single transformer. EgoAgent explicitly models the causal and temporal dependencies among these abilities by formulating the task as an interleaved sequence of states and actions. It further introduces a joint embedding-action-prediction architecture with temporally asymmetric predictor and observer branches, enabling synergistic optimization across all three capabilities. Comprehensive evaluations of EgoAgent on representative tasks such as image classification, egocentric future state prediction, and 3D human motion prediction demonstrate the superiority of our method. The code and trained models will be publicly available at https://github.com/zju3dv/EgoAgent.
comment: Project Page: https://egoagent.github.io | Demo Video: https://youtu.be/qhfHp_sfDvY
♻ ☆ Imagine, Verify, Execute: Memory-guided Agentic Exploration with Vision-Language Models
Exploration is essential for general-purpose robotic learning, especially in open-ended environments where dense rewards, explicit goals, or task-specific supervision are scarce. Vision-language models (VLMs), with their semantic reasoning over objects, spatial relations, and potential outcomes, present a compelling foundation for generating high-level exploratory behaviors. However, their outputs are often ungrounded, making it difficult to determine whether imagined transitions are physically feasible or informative. To bridge the gap between imagination and execution, we present IVE (Imagine, Verify, Execute), an agentic exploration framework inspired by human curiosity. Human exploration is often driven by the desire to discover novel scene configurations and to deepen understanding of the environment. Similarly, IVE leverages VLMs to abstract RGB-D observations into semantic scene graphs, imagine novel scenes, predict their physical plausibility, and generate executable skill sequences through action tools. We evaluate IVE in both simulated and real-world tabletop environments. The results show that IVE enables more diverse and meaningful exploration than RL baselines, as evidenced by a 4.1 to 7.8x increase in the entropy of visited states. Moreover, the collected experience supports downstream learning, producing policies that closely match or exceed the performance of those trained on human-collected demonstrations.
comment: Project webpage: https://ive-robot.github.io/
♻ ☆ Drawing2CAD: Sequence-to-Sequence Learning for CAD Generation from Vector Drawings ACM MM 2025
Computer-Aided Design (CAD) generative modeling is driving significant innovations across industrial applications. Recent works have shown remarkable progress in creating solid models from various inputs such as point clouds, meshes, and text descriptions. However, these methods fundamentally diverge from traditional industrial workflows that begin with 2D engineering drawings. The automatic generation of parametric CAD models from these 2D vector drawings remains underexplored despite being a critical step in engineering design. To address this gap, our key insight is to reframe CAD generation as a sequence-to-sequence learning problem where vector drawing primitives directly inform the generation of parametric CAD operations, preserving geometric precision and design intent throughout the transformation process. We propose Drawing2CAD, a framework with three key technical components: a network-friendly vector primitive representation that preserves precise geometric information, a dual-decoder transformer architecture that decouples command type and parameter generation while maintaining precise correspondence, and a soft target distribution loss function accommodating inherent flexibility in CAD parameters. To train and evaluate Drawing2CAD, we create CAD-VGDrawing, a dataset of paired engineering drawings and parametric CAD models, and conduct thorough experiments to demonstrate the effectiveness of our method. Code and dataset are available at https://github.com/lllssc/Drawing2CAD.
comment: Accepted to ACM MM 2025
♻ ☆ ForestSplats: Deformable transient field for Gaussian Splatting in the Wild
Recently, 3D Gaussian Splatting (3D-GS) has emerged, showing real-time rendering speeds and high-quality results in static scenes. Although 3D-GS shows effectiveness in static scenes, their performance significantly degrades in real-world environments due to transient objects, lighting variations, and diverse levels of occlusion. To tackle this, existing methods estimate occluders or transient elements by leveraging pre-trained models or integrating additional transient field pipelines. However, these methods still suffer from two defects: 1) Using semantic features from the Vision Foundation model (VFM) causes additional computational costs. 2) The transient field requires significant memory to handle transient elements with per-view Gaussians and struggles to define clear boundaries for occluders, solely relying on photometric errors. To address these problems, we propose ForestSplats, a novel approach that leverages the deformable transient field and a superpixel-aware mask to efficiently represent transient elements in the 2D scene across unconstrained image collections and effectively decompose static scenes from transient distractors without VFM. We designed the transient field to be deformable, capturing per-view transient elements. Furthermore, we introduce a superpixel-aware mask that clearly defines the boundaries of occluders by considering photometric errors and superpixels. Additionally, we propose uncertainty-aware densification to avoid generating Gaussians within the boundaries of occluders during densification. Through extensive experiments across several benchmark datasets, we demonstrate that ForestSplats outperforms existing methods without VFM and shows significant memory efficiency in representing transient elements.
♻ ☆ Parasite: A Steganography-based Backdoor Attack Framework for Diffusion Models
Recently, the diffusion model has gained significant attention as one of the most successful image generation models, which can generate high-quality images by iteratively sampling noise. However, recent studies have shown that diffusion models are vulnerable to backdoor attacks, allowing attackers to enter input data containing triggers to activate the backdoor and generate their desired output. Existing backdoor attack methods primarily focused on target noise-to-image and text-to-image tasks, with limited work on backdoor attacks in image-to-image tasks. Furthermore, traditional backdoor attacks often rely on a single, conspicuous trigger to generate a fixed target image, lacking concealability and flexibility. To address these limitations, we propose a novel backdoor attack method called "Parasite" for image-to-image tasks in diffusion models, which not only is the first to leverage steganography for triggers hiding, but also allows attackers to embed the target content as a backdoor trigger to achieve a more flexible attack. "Parasite" as a novel attack method effectively bypasses existing detection frameworks to execute backdoor attacks. In our experiments, "Parasite" achieved a 0 percent backdoor detection rate against the mainstream defense frameworks. In addition, in the ablation study, we discuss the influence of different hiding coefficients on the attack results. You can find our code at https://anonymous.4open.science/r/Parasite-1715/.
♻ ☆ AdvReal: Physical Adversarial Patch Generation Framework for Security Evaluation of Object Detection Systems
Autonomous vehicles are typical complex intelligent systems with artificial intelligence at their core. However, perception methods based on deep learning are extremely vulnerable to adversarial samples, resulting in security accidents. How to generate effective adversarial examples in the physical world and evaluate object detection systems is a huge challenge. In this study, we propose a unified joint adversarial training framework for both 2D and 3D domains, which simultaneously optimizes texture maps in 2D image and 3D mesh spaces to better address intra-class diversity and real-world environmental variations. The framework includes a novel realistic enhanced adversarial module, with time-space and relighting mapping pipeline that adjusts illumination consistency between adversarial patches and target garments under varied viewpoints. Building upon this, we develop a realism enhancement mechanism that incorporates non-rigid deformation modeling and texture remapping to ensure alignment with the human body's non-rigid surfaces in 3D scenes. Extensive experiment results in digital and physical environments demonstrate that the adversarial textures generated by our method can effectively mislead the target detection model. Specifically, our method achieves an average attack success rate (ASR) of 70.13% on YOLOv12 in physical scenarios, significantly outperforming existing methods such as T-SEA (21.65%) and AdvTexture (19.70%). Moreover, the proposed method maintains stable ASR across multiple viewpoints and distances, with an average attack success rate exceeding 90% under both frontal and oblique views at a distance of 4 meters. This confirms the method's strong robustness and transferability under multi-angle attacks, varying lighting conditions, and real-world distances. The demo video and code can be obtained at https://github.com/Huangyh98/AdvReal.git.
♻ ☆ C3VDv2 -- Colonoscopy 3D video dataset with enhanced realism
Spatial computer vision techniques have the potential to improve the diagnostic performance of colonoscopy. However, the lack of 3D colonoscopy datasets for training and validation hinders their development. This paper introduces C3VDv2, the second version (v2) of the high-definition Colonoscopy 3D Video Dataset, featuring enhanced realism designed to facilitate the quantitative evaluation of 3D colon reconstruction algorithms. 192 video sequences totaling 169,371 frames were captured by imaging 60 unique, high-fidelity silicone colon phantom segments. Ground truth depth, surface normals, optical flow, occlusion, diffuse maps, six-degree-of-freedom pose, coverage map, and 3D models are provided for 169 colonoscopy videos. Eight simulated screening colonoscopy videos acquired by a gastroenterologist are provided with ground truth poses. Lastly, the dataset includes 15 videos with colon deformations for qualitative assessment. C3VDv2 emulates diverse and challenging scenarios for 3D reconstruction algorithms, including fecal debris, mucous pools, blood, debris obscuring the colonoscope lens, en-face views, and fast camera motion. The enhanced realism of C3VDv2 will allow for more robust and representative development and evaluation of 3D reconstruction algorithms. Project Page - https://durrlab.github.io/C3VDv2/
comment: 19 pages, 7 figures
♻ ☆ Combating Falsification of Speech Videos with Live Optical Signatures (Extended Version) CCS '25
High-profile speech videos are prime targets for falsification, owing to their accessibility and influence. This work proposes VeriLight, a low-overhead and unobtrusive system for protecting speech videos from visual manipulations of speaker identity and lip and facial motion. Unlike the predominant purely digital falsification detection methods, VeriLight creates dynamic physical signatures at the event site and embeds them into all video recordings via imperceptible modulated light. These physical signatures encode semantically-meaningful features unique to the speech event, including the speaker's identity and facial motion, and are cryptographically-secured to prevent spoofing. The signatures can be extracted from any video downstream and validated against the portrayed speech content to check its integrity. Key elements of VeriLight include (1) a framework for generating extremely compact (i.e., 150-bit), pose-invariant speech video features, based on locality-sensitive hashing; and (2) an optical modulation scheme that embeds $>$200 bps into video while remaining imperceptible both in video and live. Experiments on extensive video datasets show VeriLight achieves AUCs $\geq$ 0.99 and a true positive rate of 100% in detecting falsified videos. Further, VeriLight is highly robust across recording conditions, video post-processing techniques, and white-box adversarial attacks on its feature extraction methods. A demonstration of VeriLight is available at https://mobilex.cs.columbia.edu/verilight.
comment: In Proceedings of the 2025 ACM SIGSAC Conference on Computer and Communications Security (CCS '25). October 13 - 17, 2025, Taipei, Taiwan. ACM, New York, NY, USA. 19 pages
♻ ☆ Towards Reliable Audio Deepfake Attribution and Model Recognition: A Multi-Level Autoencoder-Based Framework
The proliferation of audio deepfakes poses a growing threat to trust in digital communications. While detection methods have advanced, attributing audio deepfakes to their source models remains an underexplored yet crucial challenge. In this paper we introduce LAVA (Layered Architecture for Voice Attribution), a hierarchical framework for audio deepfake detection and model recognition that leverages attention-enhanced latent representations extracted by a convolutional autoencoder trained solely on fake audio. Two specialized classifiers operate on these features: Audio Deepfake Attribution (ADA), which identifies the generation technology, and Audio Deepfake Model Recognition (ADMR), which recognize the specific generative model instance. To improve robustness under open-set conditions, we incorporate confidence-based rejection thresholds. Experiments on ASVspoof2021, FakeOrReal, and CodecFake show strong performance: the ADA classifier achieves F1-scores over 95% across all datasets, and the ADMR module reaches 96.31% macro F1 across six classes. Additional tests on unseen attacks from ASVpoof2019 LA and error propagation analysis confirm LAVA's robustness and reliability. The framework advances the field by introducing a supervised approach to deepfake attribution and model recognition under open-set conditions, validated on public benchmarks and accompanied by publicly released models and code. Models and code are available at https://www.github.com/adipiz99/lava-framework.
♻ ☆ Your Image is Secretly the Last Frame of a Pseudo Video ICLR 2025
Diffusion models, which can be viewed as a special case of hierarchical variational autoencoders (HVAEs), have shown profound success in generating photo-realistic images. In contrast, standard HVAEs often produce images of inferior quality compared to diffusion models. In this paper, we hypothesize that the success of diffusion models can be partly attributed to the additional self-supervision information for their intermediate latent states provided by corrupted images, which along with the original image form a pseudo video. Based on this hypothesis, we explore the possibility of improving other types of generative models with such pseudo videos. Specifically, we first extend a given image generative model to their video generative model counterpart, and then train the video generative model on pseudo videos constructed by applying data augmentation to the original images. Furthermore, we analyze the potential issues of first-order Markov data augmentation methods, which are typically used in diffusion models, and propose to use more expressive data augmentation to construct more useful information in pseudo videos. Our empirical results on the CIFAR10 and CelebA datasets demonstrate that improved image generation quality can be achieved with additional self-supervised information from pseudo videos.
comment: Presented at the ICLR 2025 Workshop on Deep Generative Model in Machine Learning: Theory, Principle and Efficacy (DeLTa). 1-frame results for CIFAR10 in Table 2 corrected. Code released
♻ ☆ Just Say the Word: Annotation-Free Fine-Grained Object Counting
Fine-grained object counting remains a major challenge for class-agnostic counting models, which overcount visually similar but incorrect instances (e.g., jalape\~no vs. poblano). Addressing this by annotating new data and fully retraining the model is time-consuming and does not guarantee generalization to additional novel categories at test time. Instead, we propose an alternative paradigm: Given a category name, tune a compact concept embedding derived from the prompt using synthetic images and pseudo-labels generated by a text-to-image diffusion model. This embedding conditions a specialization module that refines raw overcounts from any frozen counter into accurate, category-specific estimates\textemdash without requiring real images or human annotations. We validate our approach on \textsc{Lookalikes}, a challenging new benchmark containing 1,037 images across 27 fine-grained subcategories, and show substantial improvements over strong baselines. Code will be released upon acceptance. Dataset - https://dalessandro.dev/datasets/lookalikes/
comment: data - https://dalessandro.dev/datasets/lookalikes/
♻ ☆ GeoDE: a Geographically Diverse Evaluation Dataset for Object Recognition NeurIPS
Current dataset collection methods typically scrape large amounts of data from the web. While this technique is extremely scalable, data collected in this way tends to reinforce stereotypical biases, can contain personally identifiable information, and typically originates from Europe and North America. In this work, we rethink the dataset collection paradigm and introduce GeoDE, a geographically diverse dataset with 61,940 images from 40 classes and 6 world regions, with no personally identifiable information, collected by soliciting images from people around the world. We analyse GeoDE to understand differences in images collected in this manner compared to web-scraping. We demonstrate its use as both an evaluation and training dataset, allowing us to highlight and begin to mitigate the shortcomings in current models, despite GeoDE's relatively small size. We release the full dataset and code at https://geodiverse-data-collection.cs.princeton.edu
comment: Published at NeurIPS D&B, 2023
♻ ☆ ANTS: Shaping the Adaptive Negative Textual Space by MLLM for OOD Detection
The introduction of negative labels (NLs) has proven effective in enhancing Out-of-Distribution (OOD) detection. However, existing methods often lack an understanding of OOD images, making it difficult to construct an accurate negative space. In addition, the presence of false negative labels significantly degrades their near-OOD performance. To address these issues, we propose shaping an Adaptive Negative Textual Space (ANTS) by leveraging the understanding and reasoning capabilities of multimodal large language models (MLLMs). Specifically, we identify images likely to be OOD samples as negative images and prompt the MLLM to describe these images, generating expressive negative sentences that precisely characterize the OOD distribution and enhance far-OOD detection. For the near-OOD setting, where OOD samples resemble the in-distribution (ID) subset, we first identify the subset of ID classes that are visually similar to negative images and then leverage the reasoning capability of MLLMs to generate visually similar negative labels tailored to this subset, effectively reducing false negatives and improving near-OOD detection. To balance these two types of negative textual spaces, we design an adaptive weighted score that enables the method to handle different OOD task settings (near-OOD and far-OOD) without relying on task-specific prior knowledge, making it highly adaptable in open environments. On the ImageNet benchmark, our ANTS significantly reduces the FPR95 by 4.2\%, establishing a new state-of-the-art. Furthermore, our method is training-free and zero-shot, enabling high scalability.
♻ ☆ AdvI2I: Adversarial Image Attack on Image-to-Image Diffusion models
Recent advances in diffusion models have significantly enhanced the quality of image synthesis, yet they have also introduced serious safety concerns, particularly the generation of Not Safe for Work (NSFW) content. Previous research has demonstrated that adversarial prompts can be used to generate NSFW content. However, such adversarial text prompts are often easily detectable by text-based filters, limiting their efficacy. In this paper, we expose a previously overlooked vulnerability: adversarial image attacks targeting Image-to-Image (I2I) diffusion models. We propose AdvI2I, a novel framework that manipulates input images to induce diffusion models to generate NSFW content. By optimizing a generator to craft adversarial images, AdvI2I circumvents existing defense mechanisms, such as Safe Latent Diffusion (SLD), without altering the text prompts. Furthermore, we introduce AdvI2I-Adaptive, an enhanced version that adapts to potential countermeasures and minimizes the resemblance between adversarial images and NSFW concept embeddings, making the attack more resilient against defenses. Through extensive experiments, we demonstrate that both AdvI2I and AdvI2I-Adaptive can effectively bypass current safeguards, highlighting the urgent need for stronger security measures to address the misuse of I2I diffusion models.
♻ ☆ Uncovering Neuroimaging Biomarkers of Brain Tumor Surgery with AI-Driven Methods
Brain tumor resection is a highly complex procedure with profound implications for survival and quality of life. Predicting patient outcomes is crucial to guide clinicians in balancing oncological control with preservation of neurological function. However, building reliable prediction models is severely limited by the rarity of curated datasets that include both pre- and post-surgery imaging, given the clinical, logistical and ethical challenges of collecting such data. In this study, we develop a novel framework that integrates explainable artificial intelligence (XAI) with neuroimaging-based feature engineering for survival assessment in brain tumor patients. We curated structural MRI data from 49 patients scanned pre- and post-surgery, providing a rare resource for identifying survival-related biomarkers. A key methodological contribution is the development of a global explanation optimizer, which refines survival-related feature attribution in deep learning models, thereby improving both the interpretability and reliability of predictions. From a clinical perspective, our findings provide important evidence that survival after oncological surgery is influenced by alterations in regions related to cognitive and sensory functions. These results highlight the importance of preserving areas involved in decision-making and emotional regulation to improve long-term outcomes. From a technical perspective, the proposed optimizer advances beyond state-of-the-art XAI methods by enhancing both the fidelity and comprehensibility of model explanations, thus reinforcing trust in the recognition patterns driving survival prediction. This work demonstrates the utility of XAI-driven neuroimaging analysis in identifying survival-related variability and underscores its potential to inform precision medicine strategies in brain tumor treatment.
comment: 18 pages, 6 figures
Machine Learning 156
☆ ButterflyQuant: Ultra-low-bit LLM Quantization through Learnable Orthogonal Butterfly Transforms
Large language models require massive memory footprints, severely limiting deployment on consumer hardware. Quantization reduces memory through lower numerical precision, but extreme 2-bit quantization suffers from catastrophic performance loss due to outliers in activations. Rotation-based methods such as QuIP and QuaRot apply orthogonal transforms to eliminate outliers before quantization, using computational invariance: $\mathbf{y} = \mathbf{Wx} = (\mathbf{WQ}^T)(\mathbf{Qx})$ for orthogonal $\mathbf{Q}$. However, these methods use fixed transforms--Hadamard matrices achieving optimal worst-case coherence $\mu = 1/\sqrt{n}$--that cannot adapt to specific weight distributions. We identify that different transformer layers exhibit distinct outlier patterns, motivating layer-adaptive rotations rather than one-size-fits-all approaches. We propose ButterflyQuant, which replaces Hadamard rotations with learnable butterfly transforms parameterized by continuous Givens rotation angles. Unlike Hadamard's discrete $\{+1, -1\}$ entries that are non-differentiable and prohibit gradient-based learning, butterfly transforms' continuous parameterization enables smooth optimization while guaranteeing orthogonality by construction. This orthogonal constraint ensures theoretical guarantees in outlier suppression while achieving $O(n \log n)$ computational complexity with only $\frac{n \log n}{2}$ learnable parameters. We further introduce a uniformity regularization on post-transformation activations to promote smoother distributions amenable to quantization. Learning requires only 128 calibration samples and converges in minutes on a single GPU--a negligible one-time cost. On LLaMA-2-7B with 2-bit quantization, ButterflyQuant achieves 15.4 perplexity versus 22.1 for QuaRot.
comment: Replace discrete Hadamard transforms with continuous Butterfly transforms to facilitate the learning of rotation matrices in LLM quantization
☆ SimpleVLA-RL: Scaling VLA Training via Reinforcement Learning
Vision-Language-Action (VLA) models have recently emerged as a powerful paradigm for robotic manipulation. Despite substantial progress enabled by large-scale pretraining and supervised fine-tuning (SFT), these models face two fundamental challenges: (i) the scarcity and high cost of large-scale human-operated robotic trajectories required for SFT scaling, and (ii) limited generalization to tasks involving distribution shift. Recent breakthroughs in Large Reasoning Models (LRMs) demonstrate that reinforcement learning (RL) can dramatically enhance step-by-step reasoning capabilities, raising a natural question: Can RL similarly improve the long-horizon step-by-step action planning of VLA? In this work, we introduce SimpleVLA-RL, an efficient RL framework tailored for VLA models. Building upon veRL, we introduce VLA-specific trajectory sampling, scalable parallelization, multi-environment rendering, and optimized loss computation. When applied to OpenVLA-OFT, SimpleVLA-RL achieves SoTA performance on LIBERO and even outperforms $\pi_0$ on RoboTwin 1.0\&2.0 with the exploration-enhancing strategies we introduce. SimpleVLA-RL not only reduces dependence on large-scale data and enables robust generalization, but also remarkably surpasses SFT in real-world tasks. Moreover, we identify a novel phenomenon ``pushcut'' during RL training, wherein the policy discovers previously unseen patterns beyond those seen in the previous training process. Github: https://github.com/PRIME-RL/SimpleVLA-RL
☆ CDE: Curiosity-Driven Exploration for Efficient Reinforcement Learning in Large Language Models
Reinforcement Learning with Verifiable Rewards (RLVR) is a powerful paradigm for enhancing the reasoning ability of Large Language Models (LLMs). Yet current RLVR methods often explore poorly, leading to premature convergence and entropy collapse. To address this challenge, we introduce Curiosity-Driven Exploration (CDE), a framework that leverages the model's own intrinsic sense of curiosity to guide exploration. We formalize curiosity with signals from both the actor and the critic: for the actor, we use perplexity over its generated response, and for the critic, we use the variance of value estimates from a multi-head architecture. Both signals serve as an exploration bonus within the RLVR framework to guide the model. Our theoretical analysis shows that the actor-wise bonus inherently penalizes overconfident errors and promotes diversity among correct responses; moreover, we connect the critic-wise bonus to the well-established count-based exploration bonus in RL. Empirically, our method achieves an approximate +3 point improvement over standard RLVR using GRPO/PPO on AIME benchmarks. Further analysis identifies a calibration collapse mechanism within RLVR, shedding light on common LLM failure modes.
comment: 21 pages
☆ Steering MoE LLMs via Expert (De)Activation
Mixture-of-Experts (MoE) in Large Language Models (LLMs) routes each token through a subset of specialized Feed-Forward Networks (FFN), known as experts. We present SteerMoE, a framework for steering MoE models by detecting and controlling behavior-linked experts. Our detection method identifies experts with distinct activation patterns across paired inputs exhibiting contrasting behaviors. By selectively (de)activating such experts during inference, we control behaviors like faithfulness and safety without retraining or modifying weights. Across 11 benchmarks and 6 LLMs, our steering raises safety by up to +20% and faithfulness by +27%. In adversarial attack mode, it drops safety by -41% alone, and -100% when combined with existing jailbreak methods, bypassing all safety guardrails and exposing a new dimension of alignment faking hidden within experts.
☆ Feasibility-Guided Fair Adaptive Offline Reinforcement Learning for Medicaid Care Management
We introduce Feasibility-Guided Fair Adaptive Reinforcement Learning (FG-FARL), an offline RL procedure that calibrates per-group safety thresholds to reduce harm while equalizing a chosen fairness target (coverage or harm) across protected subgroups. Using de-identified longitudinal trajectories from a Medicaid population health management program, we evaluate FG-FARL against behavior cloning (BC) and HACO (Hybrid Adaptive Conformal Offline RL; a global conformal safety baseline). We report off-policy value estimates with bootstrap 95% confidence intervals and subgroup disparity analyses with p-values. FG-FARL achieves comparable value to baselines while improving fairness metrics, demonstrating a practical path to safer and more equitable decision support.
comment: 12 pages, 5 figures, 3 tables
☆ Retrieval-Augmented Generation for Reliable Interpretation of Radio Regulations
We study question answering in the domain of radio regulations, a legally sensitive and high-stakes area. We propose a telecom-specific Retrieval-Augmented Generation (RAG) pipeline and introduce, to our knowledge, the first multiple-choice evaluation set for this domain, constructed from authoritative sources using automated filtering and human validation. To assess retrieval quality, we define a domain-specific retrieval metric, under which our retriever achieves approximately 97% accuracy. Beyond retrieval, our approach consistently improves generation accuracy across all tested models. In particular, while naively inserting documents without structured retrieval yields only marginal gains for GPT-4o (less than 1%), applying our pipeline results in nearly a 12% relative improvement. These findings demonstrate that carefully targeted grounding provides a simple yet strong baseline and an effective domain-specific solution for regulatory question answering. All code and evaluation scripts, along with our derived question-answer dataset, are available at https://github.com/Zakaria010/Radio-RAG.
☆ Functional Groups are All you Need for Chemically Interpretable Molecular Property Prediction
Molecular property prediction using deep learning (DL) models has accelerated drug and materials discovery, but the resulting DL models often lack interpretability, hindering their adoption by chemists. This work proposes developing molecule representations using the concept of Functional Groups (FG) in chemistry. We introduce the Functional Group Representation (FGR) framework, a novel approach to encoding molecules based on their fundamental chemical substructures. Our method integrates two types of functional groups: those curated from established chemical knowledge (FG), and those mined from a large molecular corpus using sequential pattern mining (MFG). The resulting FGR framework encodes molecules into a lower-dimensional latent space by leveraging pre-training on a large dataset of unlabeled molecules. Furthermore, the proposed framework allows the inclusion of 2D structure-based descriptors of molecules. We demonstrate that the FGR framework achieves state-of-the-art performance on a diverse range of 33 benchmark datasets spanning physical chemistry, biophysics, quantum mechanics, biological activity, and pharmacokinetics while enabling chemical interpretability. Crucially, the model's representations are intrinsically aligned with established chemical principles, allowing chemists to directly link predicted properties to specific functional groups and facilitating novel insights into structure-property relationships. Our work presents a significant step toward developing high-performing, chemically interpretable DL models for molecular discovery.
☆ Explaining Concept Drift through the Evolution of Group Counterfactuals ECML
Machine learning models in dynamic environments often suffer from concept drift, where changes in the data distribution degrade performance. While detecting this drift is a well-studied topic, explaining how and why the model's decision-making logic changes still remains a significant challenge. In this paper, we introduce a novel methodology to explain concept drift by analyzing the temporal evolution of group-based counterfactual explanations (GCEs). Our approach tracks shifts in the GCEs' cluster centroids and their associated counterfactual action vectors before and after a drift. These evolving GCEs act as an interpretable proxy, revealing structural changes in the model's decision boundary and its underlying rationale. We operationalize this analysis within a three-layer framework that synergistically combines insights from the data layer (distributional shifts), the model layer (prediction disagreement), and our proposed explanation layer. We show that such holistic view allows for a more comprehensive diagnosis of drift, making it possible to distinguish between different root causes, such as a spatial data shift versus a re-labeling of concepts.
comment: TempXAI Workshop @ ECML PKDD 2025
☆ ReBaNO: Reduced Basis Neural Operator Mitigating Generalization Gaps and Achieving Discretization Invariance
We propose a novel data-lean operator learning algorithm, the Reduced Basis Neural Operator (ReBaNO), to solve a group of PDEs with multiple distinct inputs. Inspired by the Reduced Basis Method and the recently introduced Generative Pre-Trained Physics-Informed Neural Networks, ReBaNO relies on a mathematically rigorous greedy algorithm to build its network structure offline adaptively from the ground up. Knowledge distillation via task-specific activation function allows ReBaNO to have a compact architecture requiring minimal computational cost online while embedding physics. In comparison to state-of-the-art operator learning algorithms such as PCA-Net, DeepONet, FNO, and CNO, numerical results demonstrate that ReBaNO significantly outperforms them in terms of eliminating/shrinking the generalization gap for both in- and out-of-distribution tests and being the only operator learning algorithm achieving strict discretization invariance.
☆ Conditioning on PDE Parameters to Generalise Deep Learning Emulation of Stochastic and Chaotic Dynamics
We present a deep learning emulator for stochastic and chaotic spatio-temporal systems, explicitly conditioned on the parameter values of the underlying partial differential equations (PDEs). Our approach involves pre-training the model on a single parameter domain, followed by fine-tuning on a smaller, yet diverse dataset, enabling generalisation across a broad range of parameter values. By incorporating local attention mechanisms, the network is capable of handling varying domain sizes and resolutions. This enables computationally efficient pre-training on smaller domains while requiring only a small additional dataset to learn how to generalise to larger domain sizes. We demonstrate the model's capabilities on the chaotic Kuramoto-Sivashinsky equation and stochastically-forced beta-plane turbulence, showcasing its ability to capture phenomena at interpolated parameter values. The emulator provides significant computational speed-ups over conventional numerical integration, facilitating efficient exploration of parameter space, while a probabilistic variant of the emulator provides uncertainty quantification, allowing for the statistical study of rare events.
☆ Graph Alignment via Dual-Pass Spectral Encoding and Latent Space Communication
Graph alignment-the problem of identifying corresponding nodes across multiple graphs-is fundamental to numerous applications. Most existing unsupervised methods embed node features into latent representations to enable cross-graph comparison without ground-truth correspondences. However, these methods suffer from two critical limitations: the degradation of node distinctiveness due to oversmoothing in GNN-based embeddings, and the misalignment of latent spaces across graphs caused by structural noise, feature heterogeneity, and training instability, ultimately leading to unreliable node correspondences. We propose a novel graph alignment framework that simultaneously enhances node distinctiveness and enforces geometric consistency across latent spaces. Our approach introduces a dual-pass encoder that combines low-pass and high-pass spectral filters to generate embeddings that are both structure-aware and highly discriminative. To address latent space misalignment, we incorporate a geometry-aware functional map module that learns bijective and isometric transformations between graph embeddings, ensuring consistent geometric relationships across different representations. Extensive experiments on graph benchmarks demonstrate that our method consistently outperforms existing unsupervised alignment baselines, exhibiting superior robustness to structural inconsistencies and challenging alignment scenarios. Additionally, comprehensive evaluation on vision-language benchmarks using diverse pretrained models shows that our framework effectively generalizes beyond graph domains, enabling unsupervised alignment of vision and language representations.
comment: 23 pages
☆ ObjectReact: Learning Object-Relative Control for Visual Navigation
Visual navigation using only a single camera and a topological map has recently become an appealing alternative to methods that require additional sensors and 3D maps. This is typically achieved through an "image-relative" approach to estimating control from a given pair of current observation and subgoal image. However, image-level representations of the world have limitations because images are strictly tied to the agent's pose and embodiment. In contrast, objects, being a property of the map, offer an embodiment- and trajectory-invariant world representation. In this work, we present a new paradigm of learning "object-relative" control that exhibits several desirable characteristics: a) new routes can be traversed without strictly requiring to imitate prior experience, b) the control prediction problem can be decoupled from solving the image matching problem, and c) high invariance can be achieved in cross-embodiment deployment for variations across both training-testing and mapping-execution settings. We propose a topometric map representation in the form of a "relative" 3D scene graph, which is used to obtain more informative object-level global path planning costs. We train a local controller, dubbed "ObjectReact", conditioned directly on a high-level "WayObject Costmap" representation that eliminates the need for an explicit RGB input. We demonstrate the advantages of learning object-relative control over its image-relative counterpart across sensor height variations and multiple navigation tasks that challenge the underlying spatial understanding capability, e.g., navigating a map trajectory in the reverse direction. We further show that our sim-only policy is able to generalize well to real-world indoor environments. Code and supplementary material are accessible via project page: https://object-react.github.io/
comment: CoRL 2025; 23 pages including appendix
☆ Personality-Enhanced Social Recommendations in SAMI: Exploring the Role of Personality Detection in Matchmaking
Social connection is a vital part of learning, yet online course environments present barriers to the organic formation of social groups. SAMI offers one solution by facilitating student connections, but its effectiveness is constrained by an incomplete Theory of Mind, limiting its ability to create an effective mental model of a student. One facet of this is its inability to intuit personality, which may influence the relevance of its recommendations. To explore this, we propose a personality detection model utilizing GPTs zero-shot capability to infer Big-Five personality traits from forum introduction posts, often encouraged in online courses. We benchmark its performance against established models, demonstrating its efficacy in this task. Furthermore, we integrate this model into SAMIs entity-based matchmaking system, enabling personality-informed social recommendations. Initial integration suggests personality traits can complement existing matching factors, though additional evaluation is required to determine their full impact on student engagement and match quality.
☆ What Does Normal Even Mean? Evaluating Benign Traffic in Intrusion Detection Datasets
Supervised machine learning techniques rely on labeled data to achieve high task performance, but this requires the labels to capture some meaningful differences in the underlying data structure. For training network intrusion detection algorithms, most datasets contain a series of attack classes and a single large benign class which captures all non-attack network traffic. A review of intrusion detection papers and guides that explicitly state their data preprocessing steps identified that the majority took the labeled categories of the dataset at face value when training their algorithms. The present paper evaluates the structure of benign traffic in several common intrusion detection datasets (NSL-KDD, UNSW-NB15, and CIC-IDS 2017) and determines whether there are meaningful sub-categories within this traffic which may improve overall multi-classification performance using common machine learning techniques. We present an overview of some unsupervised clustering techniques (e.g., HDBSCAN, Mean Shift Clustering) and show how they differentially cluster the benign traffic space.
comment: 10 pages; accepted to SBP-BRiMS 2025 Poster Session
☆ Boosting Embodied AI Agents through Perception-Generation Disaggregation and Asynchronous Pipeline Execution
Embodied AI systems operate in dynamic environments, requiring seamless integration of perception and generation modules to process high-frequency input and output demands. Traditional sequential computation patterns, while effective in ensuring accuracy, face significant limitations in achieving the necessary "thinking" frequency for real-world applications. In this work, we present Auras, an algorithm-system co-designed inference framework to optimize the inference frequency of embodied AI agents. Auras disaggregates the perception and generation and provides controlled pipeline parallelism for them to achieve high and stable throughput. Faced with the data staleness problem that appears when the parallelism is increased, Auras establishes a public context for perception and generation to share, thereby promising the accuracy of embodied agents. Experimental results show that Auras improves throughput by 2.54x on average while achieving 102.7% of the original accuracy, demonstrating its efficacy in overcoming the constraints of sequential computation and providing high throughput.
☆ Finite Scalar Quantization Enables Redundant and Transmission-Robust Neural Audio Compression at Low Bit-rates
Neural Audio Codecs (NACs) have become increasingly adopted in speech processing tasks due to their excellent rate-distortion performance and compatibility with Large Language Models (LLMs) as discrete feature representations for audio generation. While most existing codecs rely on Residual Vector Quantization (RVQ), Finite Scalar Quantization (FSQ) has recently emerged as a compelling alternative that simplifies training and natively supports single codebooks. We introduce NeuCodec, an FSQ-based NAC, and show that FSQ encodes baked-in redundancy which produces an encoding which is robust when transmitted through noisy channels. First, through an encoder distillation experiment, we show that two different encoders can learn to encode identical audio into vastly different code sequences whilst maintaining comparable reconstruction quality with the same quantizer and decoder. Second, we demonstrate that FSQ has vastly superior bit-level perturbation robustness by comparing the performance of RVQ and FSQ codecs when simulating the transmission of code sequences through a noisy channel.
☆ ProDiGy: Proximity- and Dissimilarity-Based Byzantine-Robust Federated Learning
Federated Learning (FL) emerged as a widely studied paradigm for distributed learning. Despite its many advantages, FL remains vulnerable to adversarial attacks, especially under data heterogeneity. We propose a new Byzantine-robust FL algorithm called ProDiGy. The key novelty lies in evaluating the client gradients using a joint dual scoring system based on the gradients' proximity and dissimilarity. We demonstrate through extensive numerical experiments that ProDiGy outperforms existing defenses in various scenarios. In particular, when the clients' data do not follow an IID distribution, while other defense mechanisms fail, ProDiGy maintains strong defense capabilities and model accuracy. These findings highlight the effectiveness of a dual perspective approach that promotes natural similarity among honest clients while detecting suspicious uniformity as a potential indicator of an attack.
☆ DeMeVa at LeWiDi-2025: Modeling Perspectives with In-Context Learning and Label Distribution Learning EMNLP-2025
This system paper presents the DeMeVa team's approaches to the third edition of the Learning with Disagreements shared task (LeWiDi 2025; Leonardelli et al., 2025). We explore two directions: in-context learning (ICL) with large language models, where we compare example sampling strategies; and label distribution learning (LDL) methods with RoBERTa (Liu et al., 2019b), where we evaluate several fine-tuning methods. Our contributions are twofold: (1) we show that ICL can effectively predict annotator-specific annotations (perspectivist annotations), and that aggregating these predictions into soft labels yields competitive performance; and (2) we argue that LDL methods are promising for soft label predictions and merit further exploration by the perspectivist community.
comment: 11 pages, 4 figures; to appear at NLPerspectives@EMNLP-2025
☆ Cough Classification using Few-Shot Learning
This paper investigates the effectiveness of few-shot learning for respiratory sound classification, focusing on coughbased detection of COVID-19, Flu, and healthy conditions. We leverage Prototypical Networks with spectrogram representations of cough sounds to address the challenge of limited labeled data. Our study evaluates whether few-shot learning can enable models to achieve performance comparable to traditional deep learning approaches while using significantly fewer training samples. Additionally, we compare multi-class and binary classification models to assess whether multi-class models can perform comparably to their binary counterparts. Experimental findings show that few-shot learning models can achieve competitive accuracy. Our model attains 74.87% accuracy in multi-class classification with only 15 support examples per class, while binary classification achieves over 70% accuracy across all class pairs. Class-wise analysis reveals Flu as the most distinguishable class, and Healthy as the most challenging. Statistical tests (paired t-test p = 0.149, Wilcoxon p = 0.125) indicate no significant performance difference between binary and multiclass models, supporting the viability of multi-class classification in this setting. These results highlight the feasibility of applying few-shot learning in medical diagnostics, particularly when large labeled datasets are unavailable.
comment: 8 pages 8 images Has been accepted in Pervasive Health 2025
☆ Explainable AI for Accelerated Microstructure Imaging: A SHAP-Guided Protocol on the Connectome 2.0 scanner
The diffusion MRI Neurite Exchange Imaging model offers a promising framework for probing gray matter microstructure by estimating parameters such as compartment sizes, diffusivities, and inter-compartmental water exchange time. However, existing protocols require long scan times. This study proposes a reduced acquisition scheme for the Connectome 2.0 scanner that preserves model accuracy while substantially shortening scan duration. We developed a data-driven framework using explainable artificial intelligence with a guided recursive feature elimination strategy to identify an optimal 8-feature subset from a 15-feature protocol. The performance of this optimized protocol was validated in vivo and benchmarked against the full acquisition and alternative reduction strategies. Parameter accuracy, preservation of anatomical contrast, and test-retest reproducibility were assessed. The reduced protocol yielded parameter estimates and cortical maps comparable to the full protocol, with low estimation errors in synthetic data and minimal impact on test-retest variability. Compared to theory-driven and heuristic reduction schemes, the optimized protocol demonstrated superior robustness, reducing the deviation in water exchange time estimates by over two-fold. In conclusion, this hybrid optimization framework enables viable imaging of neurite exchange in 14 minutes without loss of parameter fidelity. This approach supports the broader application of exchange-sensitive diffusion magnetic resonance imaging in neuroscience and clinical research, and offers a generalizable method for designing efficient acquisition protocols in biophysical parameter mapping.
comment: Submitted to IEEE Transactions on Medical Imaging (TMI). This all-in-one version includes supplementary materials. 18 pages, 14 figures, 2 tables
☆ PIPES: A Meta-dataset of Machine Learning Pipelines
Solutions to the Algorithm Selection Problem (ASP) in machine learning face the challenge of high computational costs associated with evaluating various algorithms' performances on a given dataset. To mitigate this cost, the meta-learning field can leverage previously executed experiments shared in online repositories such as OpenML. OpenML provides an extensive collection of machine learning experiments. However, an analysis of OpenML's records reveals limitations. It lacks diversity in pipelines, specifically when exploring data preprocessing steps/blocks, such as scaling or imputation, resulting in limited representation. Its experiments are often focused on a few popular techniques within each pipeline block, leading to an imbalanced sample. To overcome the observed limitations of OpenML, we propose PIPES, a collection of experiments involving multiple pipelines designed to represent all combinations of the selected sets of techniques, aiming at diversity and completeness. PIPES stores the results of experiments performed applying 9,408 pipelines to 300 datasets. It includes detailed information on the pipeline blocks, training and testing times, predictions, performances, and the eventual error messages. This comprehensive collection of results allows researchers to perform analyses across diverse and representative pipelines and datasets. PIPES also offers potential for expansion, as additional data and experiments can be incorporated to support the meta-learning community further. The data, code, supplementary material, and all experiments can be found at https://github.com/cynthiamaia/PIPES.git.
☆ OpenFake: An Open Dataset and Platform Toward Large-Scale Deepfake Detection
Deepfakes, synthetic media created using advanced AI techniques, have intensified the spread of misinformation, particularly in politically sensitive contexts. Existing deepfake detection datasets are often limited, relying on outdated generation methods, low realism, or single-face imagery, restricting the effectiveness for general synthetic image detection. By analyzing social media posts, we identify multiple modalities through which deepfakes propagate misinformation. Furthermore, our human perception study demonstrates that recently developed proprietary models produce synthetic images increasingly indistinguishable from real ones, complicating accurate identification by the general public. Consequently, we present a comprehensive, politically-focused dataset specifically crafted for benchmarking detection against modern generative models. This dataset contains three million real images paired with descriptive captions, which are used for generating 963k corresponding high-quality synthetic images from a mix of proprietary and open-source models. Recognizing the continual evolution of generative techniques, we introduce an innovative crowdsourced adversarial platform, where participants are incentivized to generate and submit challenging synthetic images. This ongoing community-driven initiative ensures that deepfake detection methods remain robust and adaptive, proactively safeguarding public discourse from sophisticated misinformation threats.
comment: 25 pages, 12 figures
☆ Balancing Utility and Privacy: Dynamically Private SGD with Random Projection
Stochastic optimization is a pivotal enabler in modern machine learning, producing effective models for various tasks. However, several existing works have shown that model parameters and gradient information are susceptible to privacy leakage. Although Differentially Private SGD (DPSGD) addresses privacy concerns, its static noise mechanism impacts the error bounds for model performance. Additionally, with the exponential increase in model parameters, efficient learning of these models using stochastic optimizers has become more challenging. To address these concerns, we introduce the Dynamically Differentially Private Projected SGD (D2P2-SGD) optimizer. In D2P2-SGD, we combine two important ideas: (i) dynamic differential privacy (DDP) with automatic gradient clipping and (ii) random projection with SGD, allowing dynamic adjustment of the tradeoff between utility and privacy of the model. It exhibits provably sub-linear convergence rates across different objective functions, matching the best available rate. The theoretical analysis further suggests that DDP leads to better utility at the cost of privacy, while random projection enables more efficient model learning. Extensive experiments across diverse datasets show that D2P2-SGD remarkably enhances accuracy while maintaining privacy. Our code is available here.
comment: 27 pages, 13 figures
☆ Database Views as Explanations for Relational Deep Learning
In recent years, there has been significant progress in the development of deep learning models over relational databases, including architectures based on heterogeneous graph neural networks (hetero-GNNs) and heterogeneous graph transformers. In effect, such architectures state how the database records and links (e.g., foreign-key references) translate into a large, complex numerical expression, involving numerous learnable parameters. This complexity makes it hard to explain, in human-understandable terms, how a model uses the available data to arrive at a given prediction. We present a novel framework for explaining machine-learning models over relational databases, where explanations are view definitions that highlight focused parts of the database that mostly contribute to the model's prediction. We establish such global abductive explanations by adapting the classic notion of determinacy by Nash, Segoufin, and Vianu (2010). In addition to tuning the tradeoff between determinacy and conciseness, the framework allows controlling the level of granularity by adopting different fragments of view definitions, such as ones highlighting whole columns, foreign keys between tables, relevant groups of tuples, and so on. We investigate the realization of the framework in the case of hetero-GNNs. We develop heuristic algorithms that avoid the exhaustive search over the space of all databases. We propose techniques that are model-agnostic, and others that are tailored to hetero-GNNs via the notion of learnable masking. Our approach is evaluated through an extensive empirical study on the RelBench collection, covering a variety of domains and different record-level tasks. The results demonstrate the usefulness of the proposed explanations, as well as the efficiency of their generation.
☆ CountTRuCoLa: Rule Confidence Learning for Temporal Knowledge Graph Forecasting
We address the task of temporal knowledge graph (TKG) forecasting by introducing a fully explainable method based on temporal rules. Motivated by recent work proposing a strong baseline using recurrent facts, our approach learns four simple types of rules with a confidence function that considers both recency and frequency. Evaluated on nine datasets, our method matches or surpasses the performance of eight state-of-the-art models and two baselines, while providing fully interpretable predictions.
☆ AEGIS: An Agent for Extraction and Geographic Identification in Scholarly Proceedings
Keeping pace with the rapid growth of academia literature presents a significant challenge for researchers, funding bodies, and academic societies. To address the time-consuming manual effort required for scholarly discovery, we present a novel, fully automated system that transitions from data discovery to direct action. Our pipeline demonstrates how a specialized AI agent, 'Agent-E', can be tasked with identifying papers from specific geographic regions within conference proceedings and then executing a Robotic Process Automation (RPA) to complete a predefined action, such as submitting a nomination form. We validated our system on 586 papers from five different conferences, where it successfully identified every target paper with a recall of 100% and a near perfect accuracy of 99.4%. This demonstration highlights the potential of task-oriented AI agents to not only filter information but also to actively participate in and accelerate the workflows of the academic community.
comment: 5 pages, 2 figures
☆ AquaCast: Urban Water Dynamics Forecasting with Precipitation-Informed Multi-Input Transformer
This work addresses the challenge of forecasting urban water dynamics by developing a multi-input, multi-output deep learning model that incorporates both endogenous variables (e.g., water height or discharge) and exogenous factors (e.g., precipitation history and forecast reports). Unlike conventional forecasting, the proposed model, AquaCast, captures both inter-variable and temporal dependencies across all inputs, while focusing forecast solely on endogenous variables. Exogenous inputs are fused via an embedding layer, eliminating the need to forecast them and enabling the model to attend to their short-term influences more effectively. We evaluate our approach on the LausanneCity dataset, which includes measurements from four urban drainage sensors, and demonstrate state-of-the-art performance when using only endogenous variables. Performance also improves with the inclusion of exogenous variables and forecast reports. To assess generalization and scalability, we additionally test the model on three large-scale synthesized datasets, generated from MeteoSwiss records, the Lorenz Attractors model, and the Random Fields model, each representing a different level of temporal complexity across 100 nodes. The results confirm that our model consistently outperforms existing baselines and maintains a robust and accurate forecast across both real and synthetic datasets.
comment: This work has been submitted to Journal of Hydrology, Elsevier, and a preprint version is also available at SSRN 10.2139/ssrn.5399833
☆ Composable Score-based Graph Diffusion Model for Multi-Conditional Molecular Generation
Controllable molecular graph generation is essential for material and drug discovery, where generated molecules must satisfy diverse property constraints. While recent advances in graph diffusion models have improved generation quality, their effectiveness in multi-conditional settings remains limited due to reliance on joint conditioning or continuous relaxations that compromise fidelity. To address these limitations, we propose Composable Score-based Graph Diffusion model (CSGD), the first model that extends score matching to discrete graphs via concrete scores, enabling flexible and principled manipulation of conditional guidance. Building on this foundation, we introduce two score-based techniques: Composable Guidance (CoG), which allows fine-grained control over arbitrary subsets of conditions during sampling, and Probability Calibration (PC), which adjusts estimated transition probabilities to mitigate train-test mismatches. Empirical results on four molecular datasets show that CSGD achieves state-of-the-art performance, with a 15.3% average improvement in controllability over prior methods, while maintaining high validity and distributional fidelity. Our findings highlight the practical advantages of score-based modeling for discrete graph generation and its capacity for flexible, multi-property molecular design.
☆ Semantic Concentration for Self-Supervised Dense Representations Learning
Recent advances in image-level self-supervised learning (SSL) have made significant progress, yet learning dense representations for patches remains challenging. Mainstream methods encounter an over-dispersion phenomenon that patches from the same instance/category scatter, harming downstream performance on dense tasks. This work reveals that image-level SSL avoids over-dispersion by involving implicit semantic concentration. Specifically, the non-strict spatial alignment ensures intra-instance consistency, while shared patterns, i.e., similar parts of within-class instances in the input space, ensure inter-image consistency. Unfortunately, these approaches are infeasible for dense SSL due to their spatial sensitivity and complicated scene-centric data. These observations motivate us to explore explicit semantic concentration for dense SSL. First, to break the strict spatial alignment, we propose to distill the patch correspondences. Facing noisy and imbalanced pseudo labels, we propose a noise-tolerant ranking loss. The core idea is extending the Average Precision (AP) loss to continuous targets, such that its decision-agnostic and adaptive focusing properties prevent the student model from being misled. Second, to discriminate the shared patterns from complicated scenes, we propose the object-aware filter to map the output space to an object-based space. Specifically, patches are represented by learnable prototypes of objects via cross-attention. Last but not least, empirical studies across various tasks soundly support the effectiveness of our method. Code is available in https://github.com/KID-7391/CoTAP.
☆ Fused Lasso Improves Accuracy of Co-occurrence Network Inference in Grouped Samples
Co-occurrence network inference algorithms have significantly advanced our understanding of microbiome communities. However, these algorithms typically analyze microbial associations within samples collected from a single environmental niche, often capturing only static snapshots rather than dynamic microbial processes. Previous studies have commonly grouped samples from different environmental niches together without fully considering how microbial communities adapt their associations when faced with varying ecological conditions. Our study addresses this limitation by explicitly investigating both spatial and temporal dynamics of microbial communities. We analyzed publicly available microbiome abundance data across multiple locations and time points, to evaluate algorithm performance in predicting microbial associations using our proposed Same-All Cross-validation (SAC) framework. SAC evaluates algorithms in two distinct scenarios: training and testing within the same environmental niche (Same), and training and testing on combined data from multiple environmental niches (All). To overcome the limitations of conventional algorithms, we propose fuser, an algorithm that, while not entirely new in machine learning, is novel for microbiome community network inference. It retains subsample-specific signals while simultaneously sharing relevant information across environments during training. Unlike standard approaches that infer a single generalized network from combined data, fuser generates distinct, environment-specific predictive networks. Our results demonstrate that fuser achieves comparable predictive performance to existing algorithms such as glmnet when evaluated within homogeneous environments (Same), and notably reduces test error compared to baseline algorithms in cross-environment (All) scenarios.
☆ Kriging prior Regression: A Case for Kriging-Based Spatial Features with TabPFN in Soil Mapping
Machine learning and geostatistics are two fundamentally different frameworks for predicting and spatially mapping soil properties. Geostatistics leverages the spatial structure of soil properties, while machine learning captures the relationship between available environmental features and soil properties. We propose a hybrid framework that enriches ML with spatial context through engineering of 'spatial lag' features from ordinary kriging. We call this approach 'kriging prior regression' (KpR), as it follows the inverse logic of regression kriging. To evaluate this approach, we assessed both the point and probabilistic prediction performance of KpR, using the TabPFN model across six fieldscale datasets from LimeSoDa. These datasets included soil organic carbon, clay content, and pH, along with features derived from remote sensing and in-situ proximal soil sensing. KpR with TabPFN demonstrated reliable uncertainty estimates and more accurate predictions in comparison to several other spatial techniques (e.g., regression/residual kriging with TabPFN), as well as to established non-spatial machine learning algorithms (e.g., random forest). Most notably, it significantly improved the average R2 by around 30% compared to machine learning algorithms without spatial context. This improvement was due to the strong prediction performance of the TabPFN algorithm itself and the complementary spatial information provided by KpR features. TabPFN is particularly effective for prediction tasks with small sample sizes, common in precision agriculture, whereas KpR can compensate for weak relationships between sensing features and soil properties when proximal soil sensing data are limited. Hence, we conclude that KpR with TabPFN is a very robust and versatile modelling framework for digital soil mapping in precision agriculture.
☆ LLMs Don't Know Their Own Decision Boundaries: The Unreliability of Self-Generated Counterfactual Explanations EMNLP 2025
To collaborate effectively with humans, language models must be able to explain their decisions in natural language. We study a specific type of self-explanation: self-generated counterfactual explanations (SCEs), where a model explains its prediction by modifying the input such that it would have predicted a different outcome. We evaluate whether LLMs can produce SCEs that are valid, achieving the intended outcome, and minimal, modifying the input no more than necessary. When asked to generate counterfactuals, we find that LLMs typically produce SCEs that are valid, but far from minimal, offering little insight into their decision-making behaviour. Worryingly, when asked to generate minimal counterfactuals, LLMs typically make excessively small edits that fail to change predictions. The observed validity-minimality trade-off is consistent across several LLMs, datasets, and evaluation settings. Our findings suggest that SCEs are, at best, an ineffective explainability tool and, at worst, can provide misleading insights into model behaviour. Proposals to deploy LLMs in high-stakes settings must consider the impact of unreliable self-explanations on downstream decision-making. Our code is available at https://github.com/HarryMayne/SCEs.
comment: Accepted to EMNLP 2025 Main
☆ MetaLLMix : An XAI Aided LLM-Meta-learning Based Approach for Hyper-parameters Optimization
Effective model and hyperparameter selection remains a major challenge in deep learning, often requiring extensive expertise and computation. While AutoML and large language models (LLMs) promise automation, current LLM-based approaches rely on trial and error and expensive APIs, which provide limited interpretability and generalizability. We propose MetaLLMiX, a zero-shot hyperparameter optimization framework combining meta-learning, explainable AI, and efficient LLM reasoning. By leveraging historical experiment outcomes with SHAP explanations, MetaLLMiX recommends optimal hyperparameters and pretrained models without additional trials. We further employ an LLM-as-judge evaluation to control output format, accuracy, and completeness. Experiments on eight medical imaging datasets using nine open-source lightweight LLMs show that MetaLLMiX achieves competitive or superior performance to traditional HPO methods while drastically reducing computational cost. Our local deployment outperforms prior API-based approaches, achieving optimal results on 5 of 8 tasks, response time reductions of 99.6-99.9%, and the fastest training times on 6 datasets (2.4-15.7x faster), maintaining accuracy within 1-5% of best-performing baselines.
☆ Robust Non-Linear Correlations via Polynomial Regression
The Hirschfeld-Gebelein-R\'enyi (HGR) correlation coefficient is an extension of Pearson's correlation that is not limited to linear correlations, with potential applications in algorithmic fairness, scientific analysis, and causal discovery. Recently, novel algorithms to estimate HGR in a differentiable manner have been proposed to facilitate its use as a loss regularizer in constrained machine learning applications. However, the inherent uncomputability of HGR requires a bias-variance trade-off, which can possibly compromise the robustness of the proposed methods, hence raising technical concerns if applied in real-world scenarios. We introduce a novel computational approach for HGR that relies on user-configurable polynomial kernels, offering greater robustness compared to previous methods and featuring a faster yet almost equally effective restriction. Our approach provides significant advantages in terms of robustness and determinism, making it a more reliable option for real-world applications. Moreover, we present a brief experimental analysis to validate the applicability of our approach within a constrained machine learning framework, showing that its computation yields an insightful subgradient that can serve as a loss regularizer.
☆ Representation-Aware Distributionally Robust Optimization: A Knowledge Transfer Framework
We propose REpresentation-Aware Distributionally Robust Estimation (READ), a novel framework for Wasserstein distributionally robust learning that accounts for predictive representations when guarding against distributional shifts. Unlike classical approaches that treat all feature perturbations equally, READ embeds a multidimensional alignment parameter into the transport cost, allowing the model to differentially discourage perturbations along directions associated with informative representations. This yields robustness to feature variation while preserving invariant structure. Our first contribution is a theoretical foundation: we show that seminorm regularizations for linear regression and binary classification arise as Wasserstein distributionally robust objectives, thereby providing tractable reformulations of READ and unifying a broad class of regularized estimators under the DRO lens. Second, we adopt a principled procedure for selecting the Wasserstein radius using the techniques of robust Wasserstein profile inference. This further enables the construction of valid, representation-aware confidence regions for model parameters with distinct geometric features. Finally, we analyze the geometry of READ estimators as the alignment parameters vary and propose an optimization algorithm to estimate the projection of the global optimum onto this solution surface. This procedure selects among equally robust estimators while optimally constructing a representation structure. We conclude by demonstrating the effectiveness of our framework through extensive simulations and a real-world study, providing a powerful robust estimation grounded in learning representation.
☆ Expressive Power of Deep Networks on Manifolds: Simultaneous Approximation
A key challenge in scientific machine learning is solving partial differential equations (PDEs) on complex domains, where the curved geometry complicates the approximation of functions and their derivatives required by differential operators. This paper establishes the first simultaneous approximation theory for deep neural networks on manifolds. We prove that a constant-depth $\mathrm{ReLU}^{k-1}$ network with bounded weights--a property that plays a crucial role in controlling generalization error--can approximate any function in the Sobolev space $\mathcal{W}_p^{k}(\mathcal{M}^d)$ to an error of $\varepsilon$ in the $\mathcal{W}_p^{s}(\mathcal{M}^d)$ norm, for $k\geq 3$ and $s
☆ Low-degree lower bounds via almost orthonormal bases
Low-degree polynomials have emerged as a powerful paradigm for providing evidence of statistical-computational gaps across a variety of high-dimensional statistical models [Wein25]. For detection problems -- where the goal is to test a planted distribution $\mathbb{P}'$ against a null distribution $\mathbb{P}$ with independent components -- the standard approach is to bound the advantage using an $\mathbb{L}^2(\mathbb{P})$-orthonormal family of polynomials. However, this method breaks down for estimation tasks or more complex testing problems where $\mathbb{P}$ has some planted structures, so that no simple $\mathbb{L}^2(\mathbb{P})$-orthogonal polynomial family is available. To address this challenge, several technical workarounds have been proposed [SW22,SW25], though their implementation can be delicate. In this work, we propose a more direct proof strategy. Focusing on random graph models, we construct a basis of polynomials that is almost orthonormal under $\mathbb{P}$, in precisely those regimes where statistical-computational gaps arise. This almost orthonormal basis not only yields a direct route to establishing low-degree lower bounds, but also allows us to explicitly identify the polynomials that optimize the low-degree criterion. This, in turn, provides insights into the design of optimal polynomial-time algorithms. We illustrate the effectiveness of our approach by recovering known low-degree lower bounds, and establishing new ones for problems such as hidden subcliques, stochastic block models, and seriation models.
☆ MoSE: Unveiling Structural Patterns in Graphs via Mixture of Subgraph Experts
While graph neural networks (GNNs) have achieved great success in learning from graph-structured data, their reliance on local, pairwise message passing restricts their ability to capture complex, high-order subgraph patterns. leading to insufficient structural expressiveness. Recent efforts have attempted to enhance structural expressiveness by integrating random walk kernels into GNNs. However, these methods are inherently designed for graph-level tasks, which limits their applicability to other downstream tasks such as node classification. Moreover, their fixed kernel configurations hinder the model's flexibility in capturing diverse subgraph structures. To address these limitations, this paper proposes a novel Mixture of Subgraph Experts (MoSE) framework for flexible and expressive subgraph-based representation learning across diverse graph tasks. Specifically, MoSE extracts informative subgraphs via anonymous walks and dynamically routes them to specialized experts based on structural semantics, enabling the model to capture diverse subgraph patterns with improved flexibility and interpretability. We further provide a theoretical analysis of MoSE's expressivity within the Subgraph Weisfeiler-Lehman (SWL) Test, proving that it is more powerful than SWL. Extensive experiments, together with visualizations of learned subgraph experts, demonstrate that MoSE not only outperforms competitive baselines but also provides interpretable insights into structural patterns learned by the model.
comment: 16 pages, 11 figures
☆ Exploring Pre-training Across Domains for Few-Shot Surgical Skill Assessment MICCAI 2025
Automated surgical skill assessment (SSA) is a central task in surgical computer vision. Developing robust SSA models is challenging due to the scarcity of skill annotations, which are time-consuming to produce and require expert consensus. Few-shot learning (FSL) offers a scalable alternative enabling model development with minimal supervision, though its success critically depends on effective pre-training. While widely studied for several surgical downstream tasks, pre-training has remained largely unexplored in SSA. In this work, we formulate SSA as a few-shot task and investigate how self-supervised pre-training strategies affect downstream few-shot SSA performance. We annotate a publicly available robotic surgery dataset with Objective Structured Assessment of Technical Skill (OSATS) scores, and evaluate various pre-training sources across three few-shot settings. We quantify domain similarity and analyze how domain gap and the inclusion of procedure-specific data into pre-training influence transferability. Our results show that small but domain-relevant datasets can outperform large scale, less aligned ones, achieving accuracies of 60.16%, 66.03%, and 73.65% in the 1-, 2-, and 5-shot settings, respectively. Moreover, incorporating procedure-specific data into pre-training with a domain-relevant external dataset significantly boosts downstream performance, with an average gain of +1.22% in accuracy and +2.28% in F1-score; however, applying the same strategy with less similar but large-scale sources can instead lead to performance degradation. Code and models are available at https://github.com/anastadimi/ssa-fsl.
comment: Accepted at MICCAI 2025 DEMI Workshop
☆ Model-Agnostic Open-Set Air-to-Air Visual Object Detection for Reliable UAV Perception
Open-set detection is crucial for robust UAV autonomy in air-to-air object detection under real-world conditions. Traditional closed-set detectors degrade significantly under domain shifts and flight data corruption, posing risks to safety-critical applications. We propose a novel, model-agnostic open-set detection framework designed specifically for embedding-based detectors. The method explicitly handles unknown object rejection while maintaining robustness against corrupted flight data. It estimates semantic uncertainty via entropy modeling in the embedding space and incorporates spectral normalization and temperature scaling to enhance open-set discrimination. We validate our approach on the challenging AOT aerial benchmark and through extensive real-world flight tests. Comprehensive ablation studies demonstrate consistent improvements over baseline methods, achieving up to a 10\% relative AUROC gain compared to standard YOLO-based detectors. Additionally, we show that background rejection further strengthens robustness without compromising detection accuracy, making our solution particularly well-suited for reliable UAV perception in dynamic air-to-air environments.
☆ Tree-OPO: Off-policy Monte Carlo Tree-Guided Advantage Optimization for Multistep Reasoning
Recent advances in reasoning with large language models (LLMs) have shown the effectiveness of Monte Carlo Tree Search (MCTS) for generating high-quality intermediate trajectories, particularly in math and symbolic domains. Inspired by this, we explore how MCTS-derived trajectories, traditionally used for training value or reward models, can be repurposed to improve policy optimization in preference-based reinforcement learning (RL). Specifically, we focus on Group Relative Policy Optimization (GRPO), a recent algorithm that enables preference-consistent policy learning without value networks. We propose a staged GRPO training paradigm where completions are derived from partially revealed MCTS rollouts, introducing a novel tree-structured setting for advantage estimation. This leads to a rich class of prefix-conditioned reward signals, which we analyze theoretically and empirically. Our initial results indicate that while structured advantage estimation can stabilize updates and better reflect compositional reasoning quality, challenges such as advantage saturation and reward signal collapse remain. We propose heuristic and statistical solutions to mitigate these issues and discuss open challenges for learning under staged or tree-like reward structures.
☆ Data Driven Discovery of Emergent Dynamics in Reaction Diffusion Systems from Sparse and Noisy Observations
Data-driven discovery of emergent dynamics is gaining popularity, particularly in the context of reaction-diffusion systems. These systems are widely studied across various fields, including neuroscience, ecology, epidemiology, and several other subject areas that deal with emergent dynamics. A current challenge in the discovery process relates to system identification when there is no prior knowledge of the underlying physics. We attempt to address this challenge by learning Soft Artificial Life (Soft ALife) models, such as Agent-based and Cellular Automata (CA) models, from observed data for reaction-diffusion systems. In this paper, we present findings on the applicability of a conceptual framework, the Data-driven Rulesets for Soft Artificial Life (DRSALife) model, to learn Soft ALife rulesets that accurately represent emergent dynamics in a reaction-diffusion system from observed data. This model has demonstrated promising results for Elementary CA Rule 30, Game of Life, and Vicsek Flocking problems in recent work. To our knowledge, this is one of the few studies that explore machine-based Soft ALife ruleset learning and system identification for reaction-diffusion dynamics without any prior knowledge of the underlying physics. Moreover, we provide comprehensive findings from experiments investigating the potential effects of using noisy and sparse observed datasets on learning emergent dynamics. Additionally, we successfully identify the structure and parameters of the underlying partial differential equations (PDEs) representing these dynamics. Experimental results demonstrate that the learned models are able to predict the emergent dynamics with good accuracy (74%) and exhibit quite robust performance when subjected to Gaussian noise and temporal sparsity.
☆ Harnessing Uncertainty: Entropy-Modulated Policy Gradients for Long-Horizon LLM Agents ICLR 2026
In long-horizon tasks, recent agents based on Large Language Models (LLMs) face a significant challenge that sparse, outcome-based rewards make it difficult to assign credit to intermediate steps. Previous methods mainly focus on creating dense reward signals to guide learning, either through traditional reinforcement learning techniques like inverse reinforcement learning or by using Process Reward Models for step-by-step feedback. In this paper, we identify a fundamental problem in the learning dynamics of LLMs: the magnitude of policy gradients is inherently coupled with the entropy, which leads to inefficient small updates for confident correct actions and potentially destabilizes large updates for uncertain ones. To resolve this, we propose Entropy-Modulated Policy Gradients (EMPG), a framework that re-calibrates the learning signal based on step-wise uncertainty and the final task outcome. EMPG amplifies updates for confident correct actions, penalizes confident errors, and attenuates updates from uncertain steps to stabilize exploration. We further introduce a bonus term for future clarity that encourages agents to find more predictable solution paths. Through comprehensive experiments on three challenging agent tasks, WebShop, ALFWorld, and Deep Search, we demonstrate that EMPG achieves substantial performance gains and significantly outperforms strong policy gradient baselines. Project page is at https://empgseed-seed.github.io/
comment: ICLR 2026 Under review
☆ Unsupervised Multi-Attention Meta Transformer for Rotating Machinery Fault Diagnosis
The intelligent fault diagnosis of rotating mechanical equipment usually requires a large amount of labeled sample data. However, in practical industrial applications, acquiring enough data is both challenging and expensive in terms of time and cost. Moreover, different types of rotating mechanical equipment with different unique mechanical properties, require separate training of diagnostic models for each case. To address the challenges of limited fault samples and the lack of generalizability in prediction models for practical engineering applications, we propose a Multi-Attention Meta Transformer method for few-shot unsupervised rotating machinery fault diagnosis (MMT-FD). This framework extracts potential fault representations from unlabeled data and demonstrates strong generalization capabilities, making it suitable for diagnosing faults across various types of mechanical equipment. The MMT-FD framework integrates a time-frequency domain encoder and a meta-learning generalization model. The time-frequency domain encoder predicts status representations generated through random augmentations in the time-frequency domain. These enhanced data are then fed into a meta-learning network for classification and generalization training, followed by fine-tuning using a limited amount of labeled data. The model is iteratively optimized using a small number of contrastive learning iterations, resulting in high efficiency. To validate the framework, we conducted experiments on a bearing fault dataset and rotor test bench data. The results demonstrate that the MMT-FD model achieves 99\% fault diagnosis accuracy with only 1\% of labeled sample data, exhibiting robust generalization capabilities.
☆ Global Optimization of Stochastic Black-Box Functions with Arbitrary Noise Distributions using Wilson Score Kernel Density Estimation
Many optimization problems in robotics involve the optimization of time-expensive black-box functions, such as those involving complex simulations or evaluation of real-world experiments. Furthermore, these functions are often stochastic as repeated experiments are subject to unmeasurable disturbances. Bayesian optimization can be used to optimize such methods in an efficient manner by deploying a probabilistic function estimator to estimate with a given confidence so that regions of the search space can be pruned away. Consequently, the success of the Bayesian optimization depends on the function estimator's ability to provide informative confidence bounds. Existing function estimators require many function evaluations to infer the underlying confidence or depend on modeling of the disturbances. In this paper, it is shown that the confidence bounds provided by the Wilson Score Kernel Density Estimator (WS-KDE) are applicable as excellent bounds to any stochastic function with an output confined to the closed interval [0;1] regardless of the distribution of the output. This finding opens up the use of WS-KDE for stable global optimization on a wider range of cost functions. The properties of WS-KDE in the context of Bayesian optimization are demonstrated in simulation and applied to the problem of automated trap design for vibrational part feeders.
☆ Constructing a Question-Answering Simulator through the Distillation of LLMs
The question-answering (QA) simulator is a model that mimics real student learning behaviors and predicts their correctness of their responses to questions. QA simulators enable educational recommender systems (ERS) to collect large amounts of training data without interacting with real students, thereby preventing harmful recommendations made by an undertrained ERS from undermining actual student learning. Given the QA history, there are two categories of solutions to predict the correctness, conducting the simulation: (1) LLM-free methods, which apply a traditional sequential model to transfer the QA history into a vector representation first, and make predictions based on the representation; (2) LLM-based methods, which leverage the domain knowledge and reasoning capability of LLM to enhence the prediction. LLM-free methods offer fast inference but generally yield suboptimal performance. In contrast, most LLM-based methods achieve better results, but at the cost of slower inference speed and higher GPU memory consumption. In this paper, we propose a method named LLM Distillation based Simulator (LDSim), which distills domain knowledge and reasoning capability from an LLM to better assist prediction, thereby improving simulation performance. Extensive experiments demonstrate that our LDSim achieves strong results on both the simulation task and the knowledge tracing (KT) task. Our code is publicly available at https://anonymous.4open.science/r/LDSim-05A9.
☆ Vejde: A Framework for Inductive Deep Reinforcement Learning Based on Factor Graph Color Refinement
We present and evaluate Vejde; a framework which combines data abstraction, graph neural networks and reinforcement learning to produce inductive policy functions for decision problems with richly structured states, such as object classes and relations. MDP states are represented as data bases of facts about entities, and Vejde converts each state to a bipartite graph, which is mapped to latent states through neural message passing. The factored representation of both states and actions allows Vejde agents to handle problems of varying size and structure. We tested Vejde agents on eight problem domains defined in RDDL, with ten problem instances each, where policies were trained using both supervised and reinforcement learning. To test policy generalization, we separate problem instances in two sets, one for training and the other solely for testing. Test results on unseen instances for the Vejde agents were compared to MLP agents trained on each problem instance, as well as the online planning algorithm Prost. Our results show that Vejde policies in average generalize to the test instances without a significant loss in score. Additionally, the inductive agents received scores on unseen test instances that on average were close to the instance-specific MLP agents.
☆ Identifying Key Features for Establishing Sustainable Agro-Tourism Centre: A Data Driven Approach
Agro-tourism serves as a strategic economic model designed to facilitate rural development by diversifying income streams for local communities like farmers while promoting the conservation of indigenous cultural heritage and traditional agricultural practices. As a very booming subdomain of tourism, there is a need to study the strategies for the growth of Agro-tourism in detail. The current study has identified the important indicators for the growth and enhancement of agro-tourism. The study is conducted in two phases: identification of the important indicators through a comprehensive literature review and in the second phase state-of-the-art techniques were used to identify the important indicators for the growth of agro-tourism. The indicators are also called features synonymously, the machine learning models for feature selection were applied and it was observed that the Least Absolute Shrinkage and Selection Operator (LASSO) method combined with, the machine Learning Classifiers such as Logistic Regression (LR), Decision Trees (DT), Random Forest (RF) Tree, and Extreme Gradient Boosting (XGBOOST) models were used to suggest the growth of the agro-tourism. The results show that with the LASSO method, LR model gives the highest classification accuracy of 98% in 70-30% train-test data followed by RF with 95% accuracy. Similarly, in the 80-20% train-test data LR maintains the highest accuracy at 99%, while DT and XGBoost follow with 97% accuracy.
☆ Incentivizing Safer Actions in Policy Optimization for Constrained Reinforcement Learning IJCAI
Constrained Reinforcement Learning (RL) aims to maximize the return while adhering to predefined constraint limits, which represent domain-specific safety requirements. In continuous control settings, where learning agents govern system actions, balancing the trade-off between reward maximization and constraint satisfaction remains a significant challenge. Policy optimization methods often exhibit instability near constraint boundaries, resulting in suboptimal training performance. To address this issue, we introduce a novel approach that integrates an adaptive incentive mechanism in addition to the reward structure to stay within the constraint bound before approaching the constraint boundary. Building on this insight, we propose Incrementally Penalized Proximal Policy Optimization (IP3O), a practical algorithm that enforces a progressively increasing penalty to stabilize training dynamics. Through empirical evaluation on benchmark environments, we demonstrate the efficacy of IP3O compared to the performance of state-of-the-art Safe RL algorithms. Furthermore, we provide theoretical guarantees by deriving a bound on the worst-case error of the optimality achieved by our algorithm.
comment: 11 pages, Accepted to the 34th International Joint Conference on Artificial Intelligence (IJCAI) 2025, Main Track
☆ Breaking the Statistical Similarity Trap in Extreme Convection Detection
Current evaluation metrics for deep learning weather models create a "Statistical Similarity Trap", rewarding blurry predictions while missing rare, high-impact events. We provide quantitative evidence of this trap, showing sophisticated baselines achieve 97.9% correlation yet 0.00 CSI for dangerous convection detection. We introduce DART (Dual Architecture for Regression Tasks), a framework addressing the challenge of transforming coarse atmospheric forecasts into high-resolution satellite brightness temperature fields optimized for extreme convection detection (below 220 K). DART employs dual-decoder architecture with explicit background/extreme decomposition, physically motivated oversampling, and task-specific loss functions. We present four key findings: (1) empirical validation of the Statistical Similarity Trap across multiple sophisticated baselines; (2) the "IVT Paradox", removing Integrated Water Vapor Transport, widely regarded as essential for atmospheric river analysis, improves extreme convection detection by 270%; (3) architectural necessity demonstrated through operational flexibility (DART achieves CSI = 0.273 with bias = 2.52 vs. 6.72 for baselines at equivalent CSI), and (4) real-world validation with the August 2023 Chittagong flooding disaster as a case study. To our knowledge, this is the first work to systematically address this hybrid conversion-segmentation-downscaling task, with no direct prior benchmarks identified in existing literature. Our validation against diverse statistical and deep learning baselines sufficiently demonstrates DART's specialized design. The framework enables precise operational calibration through beta-tuning, trains in under 10 minutes on standard hardware, and integrates seamlessly with existing meteorological workflows, demonstrating a pathway toward trustworthy AI for extreme weather preparedness.
comment: 43 pages, 7 figures
☆ Clip Your Sequences Fairly: Enforcing Length Fairness for Sequence-Level RL
We propose FSPO (Fair Sequence Policy Optimization), a sequence-level reinforcement learning method for LLMs that enforces length-fair clipping directly in the importance-sampling (IS) weight space. We revisit sequence-level RL methods and identify a mismatch when PPO/GRPO-style clipping is transplanted to sequences: a fixed clip range systematically reweights short vs. long responses, distorting the effective objective. Theoretically, we formalize length fairness via a Length Reweighting Error (LRE) and prove that small LRE yields a directional cosine guarantee between the clipped and true updates. FSPO introduces a simple, Gaussian-motivated remedy: we clip the sequence log-IS ratio with a band that applies a KL-corrected drift term and scales as $\sqrt{L}$. Empirically, FSPO flattens clip rates across length bins, stabilizes training, and outperforms all baselines across multiple evaluation datasets.
☆ Quantum Machine Learning, Quantitative Trading, Reinforcement Learning, Deep Learning
The convergence of quantum-inspired neural networks and deep reinforcement learning offers a promising avenue for financial trading. We implemented a trading agent for USD/TWD by integrating Quantum Long Short-Term Memory (QLSTM) for short-term trend prediction with Quantum Asynchronous Advantage Actor-Critic (QA3C), a quantum-enhanced variant of the classical A3C. Trained on data from 2000-01-01 to 2025-04-30 (80\% training, 20\% testing), the long-only agent achieves 11.87\% return over around 5 years with 0.92\% max drawdown, outperforming several currency ETFs. We detail state design (QLSTM features and indicators), reward function for trend-following/risk control, and multi-core training. Results show hybrid models yield competitive FX trading performance. Implications include QLSTM's effectiveness for small-profit trades with tight risk and future enhancements. Key hyperparameters: QLSTM sequence length$=$4, QA3C workers$=$8. Limitations: classical quantum simulation and simplified strategy. \footnote{The views expressed in this article are those of the authors and do not represent the views of Wells Fargo. This article is for informational purposes only. Nothing contained in this article should be construed as investment advice. Wells Fargo makes no express or implied warranties and expressly disclaims all legal, tax, and accounting implications related to this article.
☆ Adaptive Pareto-Optimal Token Merging for Edge Transformer Models in Semantic Communication
Large-scale transformer models have emerged as a powerful tool for semantic communication systems, enabling edge devices to extract rich representations for robust inference across noisy wireless channels. However, their substantial computational demands remain a major barrier to practical deployment in resource-constrained 6G networks. In this paper, we present a training-free framework for adaptive token merging in pretrained vision transformers to jointly reduce inference time and transmission resource usage. We formulate the selection of per-layer merging proportions as a multi-objective optimization problem to balance accuracy and computational cost. We employ Gaussian process-based Bayesian optimization to construct a Pareto frontier of optimal configurations, enabling flexible runtime adaptation to dynamic application requirements and channel conditions. Extensive experiments demonstrate that our method consistently outperforms other baselines and achieves significant reductions in floating-point operations while maintaining competitive accuracy across a wide range of signal-to-noise ratio (SNR) conditions. Additional results highlight the effectiveness of adaptive policies that adjust merging aggressiveness in response to channel quality, providing a practical mechanism to trade off latency and semantic fidelity on demand. These findings establish a scalable and efficient approach for deploying transformer-based semantic communication in future edge intelligence systems.
comment: To appear in IEEE Globecom 2025
☆ HISPASpoof: A New Dataset For Spanish Speech Forensics ICASSP 2026
Zero-shot Voice Cloning (VC) and Text-to-Speech (TTS) methods have advanced rapidly, enabling the generation of highly realistic synthetic speech and raising serious concerns about their misuse. While numerous detectors have been developed for English and Chinese, Spanish-spoken by over 600 million people worldwide-remains underrepresented in speech forensics. To address this gap, we introduce HISPASpoof, the first large-scale Spanish dataset designed for synthetic speech detection and attribution. It includes real speech from public corpora across six accents and synthetic speech generated with six zero-shot TTS systems. We evaluate five representative methods, showing that detectors trained on English fail to generalize to Spanish, while training on HISPASpoof substantially improves detection. We also evaluate synthetic speech attribution performance on HISPASpoof, i.e., identifying the generation method of synthetic speech. HISPASpoof thus provides a critical benchmark for advancing reliable and inclusive speech forensics in Spanish.
comment: 8 pages, 1 figure, 10 tables, being submitted to ICASSP 2026 (IEEE International Conference on Acoustics, Speech, and Signal Processing 2026)
☆ Video Understanding by Design: How Datasets Shape Architectures and Insights
Video understanding has advanced rapidly, fueled by increasingly complex datasets and powerful architectures. Yet existing surveys largely classify models by task or family, overlooking the structural pressures through which datasets guide architectural evolution. This survey is the first to adopt a dataset-driven perspective, showing how motion complexity, temporal span, hierarchical composition, and multimodal richness impose inductive biases that models should encode. We reinterpret milestones, from two-stream and 3D CNNs to sequential, transformer, and multimodal foundation models, as concrete responses to these dataset-driven pressures. Building on this synthesis, we offer practical guidance for aligning model design with dataset invariances while balancing scalability and task demands. By unifying datasets, inductive biases, and architectures into a coherent framework, this survey provides both a comprehensive retrospective and a prescriptive roadmap for advancing general-purpose video understanding.
comment: Research report
☆ Peering Partner Recommendation for ISPs using Machine Learning
Internet service providers (ISPs) need to connect with other ISPs to provide global connectivity services to their users. To ensure global connectivity, ISPs can either use transit service(s) or establish direct peering relationships between themselves via Internet exchange points (IXPs). Peering offers more room for ISP-specific optimizations and is preferred, but it often involves a lengthy and complex process. Automating peering partner selection can enhance efficiency in the global Internet ecosystem. We explore the use of publicly available data on ISPs to develop a machine learning (ML) model that can predict whether an ISP pair should peer or not. At first, we explore public databases, e.g., PeeringDB, CAIDA, etc., to gather data on ISPs. Then, we evaluate the performance of three broad types of ML models for predicting peering relationships: tree-based, neural network-based, and transformer-based. Among these, we observe that tree-based models achieve the highest accuracy and efficiency in our experiments. The XGBoost model trained with publicly available data showed promising performance, with a 98% accuracy rate in predicting peering partners. In addition, the model demonstrated great resilience to variations in time, space, and missing data. We envision that ISPs can adopt our method to fully automate the peering partner selection process, thus transitioning to a more efficient and optimized Internet ecosystem.
comment: Submitted to IEEE Transactions on Machine Learning in Communications and Networking
☆ Continuous-Time Value Iteration for Multi-Agent Reinforcement Learning
Existing reinforcement learning (RL) methods struggle with complex dynamical systems that demand interactions at high frequencies or irregular time intervals. Continuous-time RL (CTRL) has emerged as a promising alternative by replacing discrete-time Bellman recursion with differential value functions defined as viscosity solutions of the Hamilton--Jacobi--Bellman (HJB) equation. While CTRL has shown promise, its applications have been largely limited to the single-agent domain. This limitation stems from two key challenges: (i) conventional solution methods for HJB equations suffer from the curse of dimensionality (CoD), making them intractable in high-dimensional systems; and (ii) even with HJB-based learning approaches, accurately approximating centralized value functions in multi-agent settings remains difficult, which in turn destabilizes policy training. In this paper, we propose a CT-MARL framework that uses physics-informed neural networks (PINNs) to approximate HJB-based value functions at scale. To ensure the value is consistent with its differential structure, we align value learning with value-gradient learning by introducing a Value Gradient Iteration (VGI) module that iteratively refines value gradients along trajectories. This improves gradient fidelity, in turn yielding more accurate values and stronger policy learning. We evaluate our method using continuous-time variants of standard benchmarks, including multi-agent particle environment (MPE) and multi-agent MuJoCo. Our results demonstrate that our approach consistently outperforms existing continuous-time RL baselines and scales to complex multi-agent dynamics.
comment: 19 pages, 10 figures
☆ Learning What Matters: Causal Time Series Modeling for Arctic Sea Ice Prediction IJCAI 2025
Conventional machine learning and deep learning models typically rely on correlation-based learning, which often fails to distinguish genuine causal relationships from spurious associations, limiting their robustness, interpretability, and ability to generalize. To overcome these limitations, we introduce a causality-aware deep learning framework that integrates Multivariate Granger Causality (MVGC) and PCMCI+ for causal feature selection within a hybrid neural architecture. Leveraging 43 years (1979-2021) of Arctic Sea Ice Extent (SIE) data and associated ocean-atmospheric variables at daily and monthly resolutions, the proposed method identifies causally influential predictors, prioritizes direct causes of SIE dynamics, reduces unnecessary features, and enhances computational efficiency. Experimental results show that incorporating causal inputs leads to improved prediction accuracy and interpretability across varying lead times. While demonstrated on Arctic SIE forecasting, the framework is broadly applicable to other dynamic, high-dimensional domains, offering a scalable approach that advances both the theoretical foundations and practical performance of causality-informed predictive modeling.
comment: Accepted and presented at the AI4TS Workshop @ IJCAI 2025 (non-archival)
☆ Sensitivity-LoRA: Low-Load Sensitivity-Based Fine-Tuning for Large Language Models
Large Language Models (LLMs) have transformed both everyday life and scientific research. However, adapting LLMs from general-purpose models to specialized tasks remains challenging, particularly in resource-constrained environments. Low-Rank Adaptation (LoRA), a prominent method within Parameter-Efficient Fine-Tuning (PEFT), has emerged as a promising approach to LLMs by approximating model weight updates using low-rank decomposition. However, LoRA is limited by its uniform rank ( r ) allocation to each incremental matrix, and existing rank allocation techniques aimed at addressing this issue remain computationally inefficient, complex, and unstable, hindering practical applications. To address these limitations, we propose Sensitivity-LoRA, an efficient fine-tuning method that dynamically allocates ranks to weight matrices based on both their global and local sensitivities. It leverages the second-order derivatives (Hessian Matrix) of the loss function to effectively capture weight sensitivity, enabling optimal rank allocation with minimal computational overhead. Our experimental results have demonstrated robust effectiveness, efficiency and stability of Sensitivity-LoRA across diverse tasks and benchmarks.
comment: 15 pages
☆ CryptGNN: Enabling Secure Inference for Graph Neural Networks
We present CryptGNN, a secure and effective inference solution for third-party graph neural network (GNN) models in the cloud, which are accessed by clients as ML as a service (MLaaS). The main novelty of CryptGNN is its secure message passing and feature transformation layers using distributed secure multi-party computation (SMPC) techniques. CryptGNN protects the client's input data and graph structure from the cloud provider and the third-party model owner, and it protects the model parameters from the cloud provider and the clients. CryptGNN works with any number of SMPC parties, does not require a trusted server, and is provably secure even if P-1 out of P parties in the cloud collude. Theoretical analysis and empirical experiments demonstrate the security and efficiency of CryptGNN.
☆ An entropy formula for the Deep Linear Network
We study the Riemannian geometry of the Deep Linear Network (DLN) as a foundation for a thermodynamic description of the learning process. The main tools are the use of group actions to analyze overparametrization and the use of Riemannian submersion from the space of parameters to the space of observables. The foliation of the balanced manifold in the parameter space by group orbits is used to define and compute a Boltzmann entropy. We also show that the Riemannian geometry on the space of observables defined in [2] is obtained by Riemannian submersion of the balanced manifold. The main technical step is an explicit construction of an orthonormal basis for the tangent space of the balanced manifold using the theory of Jacobi matrices.
☆ Scalable extensions to given-data Sobol' index estimators
Given-data methods for variance-based sensitivity analysis have significantly advanced the feasibility of Sobol' index computation for computationally expensive models and models with many inputs. However, the limitations of existing methods still preclude their application to models with an extremely large number of inputs. In this work, we present practical extensions to the existing given-data Sobol' index method, which allow variance-based sensitivity analysis to be efficiently performed on large models such as neural networks, which have $>10^4$ parameterizable inputs. For models of this size, holding all input-output evaluations simultaneously in memory -- as required by existing methods -- can quickly become impractical. These extensions also support nonstandard input distributions with many repeated values, which are not amenable to equiprobable partitions employed by existing given-data methods. Our extensions include a general definition of the given-data Sobol' index estimator with arbitrary partition, a streaming algorithm to process input-output samples in batches, and a heuristic to filter out small indices that are indistinguishable from zero indices due to statistical noise. We show that the equiprobable partition employed in existing given-data methods can introduce significant bias into Sobol' index estimates even at large sample sizes and provide numerical analyses that demonstrate why this can occur. We also show that our streaming algorithm can achieve comparable accuracy and runtimes with lower memory requirements, relative to current methods which process all samples at once. We demonstrate our novel developments on two application problems in neural network modeling.
☆ KoopMotion: Learning Almost Divergence Free Koopman Flow Fields for Motion Planning
In this work, we propose a novel flow field-based motion planning method that drives a robot from any initial state to a desired reference trajectory such that it converges to the trajectory's end point. Despite demonstrated efficacy in using Koopman operator theory for modeling dynamical systems, Koopman does not inherently enforce convergence to desired trajectories nor to specified goals -- a requirement when learning from demonstrations (LfD). We present KoopMotion which represents motion flow fields as dynamical systems, parameterized by Koopman Operators to mimic desired trajectories, and leverages the divergence properties of the learnt flow fields to obtain smooth motion fields that converge to a desired reference trajectory when a robot is placed away from the desired trajectory, and tracks the trajectory until the end point. To demonstrate the effectiveness of our approach, we show evaluations of KoopMotion on the LASA human handwriting dataset and a 3D manipulator end-effector trajectory dataset, including spectral analysis. We also perform experiments on a physical robot, verifying KoopMotion on a miniature autonomous surface vehicle operating in a non-static fluid flow environment. Our approach is highly sample efficient in both space and time, requiring only 3\% of the LASA dataset to generate dense motion plans. Additionally, KoopMotion provides a significant improvement over baselines when comparing metrics that measure spatial and temporal dynamics modeling efficacy.
comment: Accepted to CoRL 2025 (Conference on Robot Learning). 15 pages 11 figures
☆ "A 6 or a 9?": Ensemble Learning Through the Multiplicity of Performant Models and Explanations KDD
Creating models from past observations and ensuring their effectiveness on new data is the essence of machine learning. However, selecting models that generalize well remains a challenging task. Related to this topic, the Rashomon Effect refers to cases where multiple models perform similarly well for a given learning problem. This often occurs in real-world scenarios, like the manufacturing process or medical diagnosis, where diverse patterns in data lead to multiple high-performing solutions. We propose the Rashomon Ensemble, a method that strategically selects models from these diverse high-performing solutions to improve generalization. By grouping models based on both their performance and explanations, we construct ensembles that maximize diversity while maintaining predictive accuracy. This selection ensures that each model covers a distinct region of the solution space, making the ensemble more robust to distribution shifts and variations in unseen data. We validate our approach on both open and proprietary collaborative real-world datasets, demonstrating up to 0.20+ AUROC improvements in scenarios where the Rashomon ratio is large. Additionally, we demonstrate tangible benefits for businesses in various real-world applications, highlighting the robustness, practicality, and effectiveness of our approach.
comment: Paper accepted to the ACM Transactions on Knowledge Discovery from Data (TKDD) for publication (preprint version)
☆ STRIDE: Scalable and Interpretable XAI via Subset-Free Functional Decomposition
Most explainable AI (XAI) frameworks face two practical limitations: the exponential cost of reasoning over feature subsets and the reduced expressiveness of summarizing effects as single scalar values. We present STRIDE, a scalable framework that aims to mitigate both issues by framing explanation as a subset-enumeration-free, orthogonal functional decomposition in a Reproducing Kernel Hilbert Space (RKHS). Rather than focusing only on scalar attributions, STRIDE computes functional components f_S(x_S) via an analytical projection scheme based on a recursive kernel-centering procedure, avoiding explicit subset enumeration. In the tabular setups we study, the approach is model-agnostic, provides both local and global views, and is supported by theoretical results on orthogonality and L^2 convergence under stated assumptions. On public tabular benchmarks in our environment, we observed speedups ranging from 0.6 times (slower than TreeSHAP on a small dataset) to 9.7 times (California), with a median approximate 3.0 times across 10 datasets, while maintaining high fidelity (R^2 between 0.81 and 0.999) and substantial rank agreement on most datasets. Overall, STRIDE complements scalar attribution methods by offering a structured functional perspective, enabling novel diagnostics like 'component surgery' to quantitatively measure the impact of specific interactions within our experimental scope.
comment: 10 pages, 2 figures
☆ Variational Neural Networks for Observable Thermodynamics (V-NOTS)
Much attention has recently been devoted to data-based computing of evolution of physical systems. In such approaches, information about data points from past trajectories in phase space is used to reconstruct the equations of motion and to predict future solutions that have not been observed before. However, in many cases, the available data does not correspond to the variables that define the system's phase space. We focus our attention on the important example of dissipative dynamical systems. In that case, the phase space consists of coordinates, momenta and entropies; however, the momenta and entropies cannot, in general, be observed directly. To address this difficulty, we develop an efficient data-based computing framework based exclusively on observable variables, by constructing a novel approach based on the \emph{thermodynamic Lagrangian}, and constructing neural networks that respect the thermodynamics and guarantees the non-decreasing entropy evolution. We show that our network can provide an efficient description of phase space evolution based on a limited number of data points and a relatively small number of parameters in the system.
comment: 26 pages, 6 figures
☆ Accelerating 3D Photoacoustic Computed Tomography with End-to-End Physics-Aware Neural Operators
Photoacoustic computed tomography (PACT) combines optical contrast with ultrasonic resolution, achieving deep-tissue imaging beyond the optical diffusion limit. While three-dimensional PACT systems enable high-resolution volumetric imaging for applications spanning transcranial to breast imaging, current implementations require dense transducer arrays and prolonged acquisition times, limiting clinical translation. We introduce Pano (PACT imaging neural operator), an end-to-end physics-aware model that directly learns the inverse acoustic mapping from sensor measurements to volumetric reconstructions. Unlike existing approaches (e.g. universal back-projection algorithm), Pano learns both physics and data priors while also being agnostic to the input data resolution. Pano employs spherical discrete-continuous convolutions to preserve hemispherical sensor geometry, incorporates Helmholtz equation constraints to ensure physical consistency and operates resolutionindependently across varying sensor configurations. We demonstrate the robustness and efficiency of Pano in reconstructing high-quality images from both simulated and real experimental data, achieving consistent performance even with significantly reduced transducer counts and limited-angle acquisition configurations. The framework maintains reconstruction fidelity across diverse sparse sampling patterns while enabling real-time volumetric imaging capabilities. This advancement establishes a practical pathway for making 3D PACT more accessible and feasible for both preclinical research and clinical applications, substantially reducing hardware requirements without compromising image reconstruction quality.
☆ Automated Tuning for Diffusion Inverse Problem Solvers without Generative Prior Retraining
Diffusion/score-based models have recently emerged as powerful generative priors for solving inverse problems, including accelerated MRI reconstruction. While their flexibility allows decoupling the measurement model from the learned prior, their performance heavily depends on carefully tuned data fidelity weights, especially under fast sampling schedules with few denoising steps. Existing approaches often rely on heuristics or fixed weights, which fail to generalize across varying measurement conditions and irregular timestep schedules. In this work, we propose Zero-shot Adaptive Diffusion Sampling (ZADS), a test-time optimization method that adaptively tunes fidelity weights across arbitrary noise schedules without requiring retraining of the diffusion prior. ZADS treats the denoising process as a fixed unrolled sampler and optimizes fidelity weights in a self-supervised manner using only undersampled measurements. Experiments on the fastMRI knee dataset demonstrate that ZADS consistently outperforms both traditional compressed sensing and recent diffusion-based methods, showcasing its ability to deliver high-fidelity reconstructions across varying noise schedules and acquisition settings.
comment: IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), 2025
☆ Latency and Token-Aware Test-Time Compute
Inference-time scaling has emerged as a powerful way to improve large language model (LLM) performance by generating multiple candidate responses and selecting among them. However, existing work on dynamic allocation for test-time compute typically considers only parallel generation methods such as best-of-N, overlooking incremental decoding methods like beam search, and has largely ignored latency, focusing only on token usage. We formulate inference-time scaling as a problem of dynamic compute allocation and method selection, where the system must decide which strategy to apply and how much compute to allocate on a per-query basis. Our framework explicitly incorporates both token cost and wall-clock latency, the latter being critical for user experience and particularly for agentic workflows where models must issue multiple queries efficiently. Experiments on reasoning benchmarks show that our approach consistently outperforms static strategies, achieving favorable accuracy-cost trade-offs while remaining practical for deployment.
☆ Off Policy Lyapunov Stability in Reinforcement Learning
Traditional reinforcement learning lacks the ability to provide stability guarantees. More recent algorithms learn Lyapunov functions alongside the control policies to ensure stable learning. However, the current self-learned Lyapunov functions are sample inefficient due to their on-policy nature. This paper introduces a method for learning Lyapunov functions off-policy and incorporates the proposed off-policy Lyapunov function into the Soft Actor Critic and Proximal Policy Optimization algorithms to provide them with a data efficient stability certificate. Simulations of an inverted pendulum and a quadrotor illustrate the improved performance of the two algorithms when endowed with the proposed off-policy Lyapunov function.
comment: Conference on Robot Learning (CORL) 2025
☆ WAVE-DETR Multi-Modal Visible and Acoustic Real-Life Drone Detector
We introduce a multi-modal WAVE-DETR drone detector combining visible RGB and acoustic signals for robust real-life UAV object detection. Our approach fuses visual and acoustic features in a unified object detector model relying on the Deformable DETR and Wav2Vec2 architectures, achieving strong performance under challenging environmental conditions. Our work leverage the existing Drone-vs-Bird dataset and the newly generated ARDrone dataset containing more than 7,500 synchronized images and audio segments. We show how the acoustic information is used to improve the performance of the Deformable DETR object detector on the real ARDrone dataset. We developed, trained and tested four different fusion configurations based on a gated mechanism, linear layer, MLP and cross attention. The Wav2Vec2 acoustic embeddings are fused with the multi resolution feature mappings of the Deformable DETR and enhance the object detection performance over all drones dimensions. The best performer is the gated fusion approach, which improves the mAP of the Deformable DETR object detector on our in-distribution and out-of-distribution ARDrone datasets by 11.1% to 15.3% for small drones across all IoU thresholds between 0.5 and 0.9. The mAP scores for medium and large drones are also enhanced, with overall gains across all drone sizes ranging from 3.27% to 5.84%.
comment: 11 pages, 11 figures
☆ An Information-Theoretic Framework for Credit Risk Modeling: Unifying Industry Practice with Statistical Theory for Fair and Interpretable Scorecards
Credit risk modeling relies extensively on Weight of Evidence (WoE) and Information Value (IV) for feature engineering, and Population Stability Index (PSI) for drift monitoring, yet their theoretical foundations remain disconnected. We establish a unified information-theoretic framework revealing these industry-standard metrics as instances of classical information divergences. Specifically, we prove that IV exactly equals PSI (Jeffreys divergence) computed between good and bad credit outcomes over identical bins. Through the delta method applied to WoE transformations, we derive standard errors for IV and PSI, enabling formal hypothesis testing and probabilistic fairness constraints for the first time. We formalize credit modeling's inherent performance-fairness trade-off as maximizing IV for predictive power while minimizing IV for protected attributes. Using automated binning with depth-1 XGBoost stumps, we compare three encoding strategies: logistic regression with one-hot encoding, WoE transformation, and constrained XGBoost. All methods achieve comparable predictive performance (AUC 0.82-0.84), demonstrating that principled, information-theoretic binning outweighs encoding choice. Mixed-integer programming traces Pareto-efficient solutions along the performance-fairness frontier with uncertainty quantification. This framework bridges theory and practice, providing the first rigorous statistical foundation for widely-used credit risk metrics while offering principled tools for balancing accuracy and fairness in regulated environments.
☆ HGEN: Heterogeneous Graph Ensemble Networks IJCAI
This paper presents HGEN that pioneers ensemble learning for heterogeneous graphs. We argue that the heterogeneity in node types, nodal features, and local neighborhood topology poses significant challenges for ensemble learning, particularly in accommodating diverse graph learners. Our HGEN framework ensembles multiple learners through a meta-path and transformation-based optimization pipeline to uplift classification accuracy. Specifically, HGEN uses meta-path combined with random dropping to create Allele Graph Neural Networks (GNNs), whereby the base graph learners are trained and aligned for later ensembling. To ensure effective ensemble learning, HGEN presents two key components: 1) a residual-attention mechanism to calibrate allele GNNs of different meta-paths, thereby enforcing node embeddings to focus on more informative graphs to improve base learner accuracy, and 2) a correlation-regularization term to enlarge the disparity among embedding matrices generated from different meta-paths, thereby enriching base learner diversity. We analyze the convergence of HGEN and attest its higher regularization magnitude over simple voting. Experiments on five heterogeneous networks validate that HGEN consistently outperforms its state-of-the-art competitors by substantial margin.
comment: The paper is in proceedings of the 34th IJCAI Conference, 2025
☆ Revisiting Actor-Critic Methods in Discrete Action Off-Policy Reinforcement Learning
Value-based approaches such as DQN are the default methods for off-policy reinforcement learning with discrete-action environments such as Atari. Common policy-based methods are either on-policy and do not effectively learn from off-policy data (e.g. PPO), or have poor empirical performance in the discrete-action setting (e.g. SAC). Consequently, starting from discrete SAC (DSAC), we revisit the design of actor-critic methods in this setting. First, we determine that the coupling between the actor and critic entropy is the primary reason behind the poor performance of DSAC. We demonstrate that by merely decoupling these components, DSAC can have comparable performance as DQN. Motivated by this insight, we introduce a flexible off-policy actor-critic framework that subsumes DSAC as a special case. Our framework allows using an m-step Bellman operator for the critic update, and enables combining standard policy optimization methods with entropy regularization to instantiate the resulting actor objective. Theoretically, we prove that the proposed methods can guarantee convergence to the optimal regularized value function in the tabular setting. Empirically, we demonstrate that these methods can approach the performance of DQN on standard Atari games, and do so even without entropy regularization or explicit exploration.
☆ CoDiCodec: Unifying Continuous and Discrete Compressed Representations of Audio
Efficiently representing audio signals in a compressed latent space is critical for latent generative modelling. However, existing autoencoders often force a choice between continuous embeddings and discrete tokens. Furthermore, achieving high compression ratios while maintaining audio fidelity remains a challenge. We introduce CoDiCodec, a novel audio autoencoder that overcomes these limitations by both efficiently encoding global features via summary embeddings, and by producing both compressed continuous embeddings at ~ 11 Hz and discrete tokens at a rate of 2.38 kbps from the same trained model, offering unprecedented flexibility for different downstream generative tasks. This is achieved through Finite Scalar Quantization (FSQ) and a novel FSQ-dropout technique, and does not require additional loss terms beyond the single consistency loss used for end-to-end training. CoDiCodec supports both autoregressive decoding and a novel parallel decoding strategy, with the latter achieving superior audio quality and faster decoding. CoDiCodec outperforms existing continuous and discrete autoencoders at similar bitrates in terms of reconstruction audio quality. Our work enables a unified approach to audio compression, bridging the gap between continuous and discrete generative modelling paradigms.
comment: Accepted to ISMIR 2025
☆ DGFusion: Depth-Guided Sensor Fusion for Robust Semantic Perception
Robust semantic perception for autonomous vehicles relies on effectively combining multiple sensors with complementary strengths and weaknesses. State-of-the-art sensor fusion approaches to semantic perception often treat sensor data uniformly across the spatial extent of the input, which hinders performance when faced with challenging conditions. By contrast, we propose a novel depth-guided multimodal fusion method that upgrades condition-aware fusion by integrating depth information. Our network, DGFusion, poses multimodal segmentation as a multi-task problem, utilizing the lidar measurements, which are typically available in outdoor sensor suites, both as one of the model's inputs and as ground truth for learning depth. Our corresponding auxiliary depth head helps to learn depth-aware features, which are encoded into spatially varying local depth tokens that condition our attentive cross-modal fusion. Together with a global condition token, these local depth tokens dynamically adapt sensor fusion to the spatially varying reliability of each sensor across the scene, which largely depends on depth. In addition, we propose a robust loss for our depth, which is essential for learning from lidar inputs that are typically sparse and noisy in adverse conditions. Our method achieves state-of-the-art panoptic and semantic segmentation performance on the challenging MUSES and DELIVER datasets. Code and models will be available at https://github.com/timbroed/DGFusion
comment: Code and models will be available at https://github.com/timbroed/DGFusion
♻ ☆ Merge-of-Thought Distillation
Efficient reasoning distillation for long chain-of-thought (CoT) models is increasingly constrained by the assumption of a single oracle teacher, despite practical availability of multiple candidate teachers and growing CoT corpora. We revisit teacher selection and observe that different students have different "best teachers," and even for the same student the best teacher can vary across datasets. Therefore, to unify multiple teachers' reasoning abilities into student with overcoming conflicts among various teachers' supervision, we propose Merge-of-Thought Distillation (MoT), a lightweight framework that alternates between teacher-specific supervised fine-tuning branches and weight-space merging of the resulting student variants. On competition math benchmarks, using only about 200 high-quality CoT samples, applying MoT to a Qwen3-14B student surpasses strong models including DEEPSEEK-R1, QWEN3-30B-A3B, QWEN3-32B, and OPENAI-O1, demonstrating substantial gains. Besides, MoT consistently outperforms the best single-teacher distillation and the naive multi-teacher union, raises the performance ceiling while mitigating overfitting, and shows robustness to distribution-shifted and peer-level teachers. Moreover, MoT reduces catastrophic forgetting, improves general reasoning beyond mathematics and even cultivates a better teacher, indicating that consensus-filtered reasoning features transfer broadly. These results position MoT as a simple, scalable route to efficiently distilling long CoT capabilities from diverse teachers into compact students.
♻ ☆ Securing Private Federated Learning in a Malicious Setting: A Scalable TEE-Based Approach with Client Auditing
In cross-device private federated learning, differentially private follow-the-regularized-leader (DP-FTRL) has emerged as a promising privacy-preserving method. However, existing approaches assume a semi-honest server and have not addressed the challenge of securely removing this assumption. This is due to its statefulness, which becomes particularly problematic in practical settings where clients can drop out or be corrupted. While trusted execution environments (TEEs) might seem like an obvious solution, a straightforward implementation can introduce forking attacks or availability issues due to state management. To address this problem, our paper introduces a novel server extension that acts as a trusted computing base (TCB) to realize maliciously secure DP-FTRL. The TCB is implemented with an ephemeral TEE module on the server side to produce verifiable proofs of server actions. Some clients, upon being selected, participate in auditing these proofs with small additional communication and computational demands. This extension solution reduces the size of the TCB while maintaining the system's scalability and liveness. We provide formal proofs based on interactive differential privacy, demonstrating privacy guarantee in malicious settings. Finally, we experimentally show that our framework adds small constant overhead to clients in several realistic settings.
comment: Accepted at PoPETs 2026
♻ ☆ Generative Data Refinement: Just Ask for Better Data
For a fixed parameter size, the capabilities of large models are primarily determined by the quality and quantity of its training data. Consequently, training datasets now grow faster than the rate at which new data is indexed on the web, leading to projected data exhaustion over the next decade. Much more data exists as user-generated content that is not publicly indexed, but incorporating such data comes with considerable risks, such as leaking private information and other undesirable content. We introduce a framework, Generative Data Refinement (GDR), for using pretrained generative models to transform a dataset with undesirable content into a refined dataset that is more suitable for training. Our experiments show that GDR can outperform industry-grade solutions for dataset anonymization, as well as enable direct detoxification of highly unsafe datasets. Moreover, we show that by generating synthetic data that is conditioned on each example in the real dataset, GDR's refined outputs naturally match the diversity of web scale datasets, and thereby avoid the often challenging task of generating diverse synthetic data via model prompting. The simplicity and effectiveness of GDR make it a powerful tool for scaling up the total stock of training data for frontier models.
♻ ☆ MasconCube: Fast and Accurate Gravity Modeling with an Explicit Representation
The geodesy of irregularly shaped small bodies presents fundamental challenges for gravitational field modeling, particularly as deep space exploration missions increasingly target asteroids and comets. Traditional approaches suffer from critical limitations: spherical harmonics diverge within the Brillouin sphere where spacecraft typically operate, polyhedral models assume unrealistic homogeneous density distributions, and existing machine learning methods like GeodesyNets and Physics-Informed Neural Networks (PINN-GM) require extensive computational resources and training time. This work introduces MasconCubes, a novel self-supervised learning approach that formulates gravity inversion as a direct optimization problem over a regular 3D grid of point masses (mascons). Unlike implicit neural representations, MasconCubes explicitly model mass distributions while leveraging known asteroid shape information to constrain the solution space. Comprehensive evaluation on diverse asteroid models including Bennu, Eros, Itokawa, and synthetic planetesimals demonstrates that MasconCubes achieve superior performance across multiple metrics. Most notably, MasconCubes demonstrate computational efficiency advantages with training times approximately 40 times faster than GeodesyNets while maintaining physical interpretability through explicit mass distributions. These results establish MasconCubes as a promising approach for mission-critical gravitational modeling applications requiring high accuracy, computational efficiency, and physical insight into internal mass distributions of irregular celestial bodies.
♻ ☆ CAME-AB: Cross-Modality Attention with Mixture-of-Experts for Antibody Binding Site Prediction
Antibody binding site prediction plays a pivotal role in computational immunology and therapeutic antibody design. Existing sequence or structure methods rely on single-view features and fail to identify antibody-specific binding sites on the antigens. In this paper, we propose \textbf{CAME-AB}, a novel Cross-modality Attention framework with a Mixture-of-Experts (MoE) backbone for robust antibody binding site prediction. CAME-AB integrates five biologically grounded modalities, including raw amino acid encodings, BLOSUM substitution profiles, pretrained language model embeddings, structure-aware features, and GCN-refined biochemical graphs, into a unified multimodal representation. To enhance adaptive cross-modal reasoning, we propose an \emph{adaptive modality fusion} module that learns to dynamically weight each modality based on its global relevance and input-specific contribution. A Transformer encoder combined with an MoE module further promotes feature specialization and capacity expansion. We additionally incorporate a supervised contrastive learning objective to explicitly shape the latent space geometry, encouraging intra-class compactness and inter-class separability. To improve optimization stability and generalization, we apply stochastic weight averaging during training. Extensive experiments on benchmark antibody-antigen datasets demonstrate that CAME-AB consistently outperforms strong baselines on multiple metrics, including Precision, Recall, F1-score, AUC-ROC, and MCC. Ablation studies further validate the effectiveness of each architectural component and the benefit of multimodal feature integration. The model implementation details and the codes are available on https://anonymous.4open.science/r/CAME-AB-C525
♻ ☆ RoseCDL: Robust and Scalable Convolutional Dictionary Learning for Rare-event Detection
Identifying recurring patterns and rare events in large-scale signals is a fundamental challenge in fields such as astronomy, physical simulations, and biomedical science. Convolutional Dictionary Learning (CDL) offers a powerful framework for modeling local structures in signals, but its use for detecting rare or anomalous events remains largely unexplored. In particular, CDL faces two key challenges in this setting: high computational cost and sensitivity to artifacts and outliers. In this paper, we introduce RoseCDL, a scalable and robust CDL algorithm designed for unsupervised rare event detection in long signals. RoseCDL combines stochastic windowing for efficient training on large datasets with inline outlier detection to enhance robustness and isolate anomalous patterns. This reframes CDL as a practical tool for event discovery and characterization in real-world signals, extending its role beyond traditional tasks like compression or denoising.
♻ ☆ Adapting Vision-Language Models for Neutrino Event Classification in High-Energy Physics
Recent advances in Large Language Models (LLMs) have demonstrated their remarkable capacity to process and reason over structured and unstructured data modalities beyond natural language. In this work, we explore the applications of Vision Language Models (VLMs), specifically a fine-tuned variant of LLaMa 3.2, to the task of identifying neutrino interactions in pixelated detector data from high-energy physics (HEP) experiments. We benchmark this model against a state-of-the-art convolutional neural network (CNN) architecture, similar to those used in the NOvA and DUNE experiments, which have achieved high efficiency and purity in classifying electron and muon neutrino events. Our evaluation considers both the classification performance and interpretability of the model predictions. We find that VLMs can outperform CNNs, while also providing greater flexibility in integrating auxiliary textual or semantic information and offering more interpretable, reasoning-based predictions. This work highlights the potential of VLMs as a general-purpose backbone for physics event classification, due to their high performance, interpretability, and generalizability, which opens new avenues for integrating multimodal reasoning in experimental neutrino physics.
♻ ☆ Behind the Scenes: Mechanistic Interpretability of LoRA-adapted Whisper for Speech Emotion Recognition
Large pre-trained speech models such as Whisper offer strong generalization but pose significant challenges for resource-efficient adaptation. Low-Rank Adaptation (LoRA) has become a popular parameter-efficient fine-tuning method, yet its underlying mechanisms in speech tasks remain poorly understood. In this work, we conduct the first systematic mechanistic interpretability study of LoRA within the Whisper encoder for speech emotion recognition (SER). Using a suite of analytical tools, including layer contribution probing, logit-lens inspection, and representational similarity via singular value decomposition (SVD) and centered kernel alignment (CKA), we reveal two key mechanisms: a delayed specialization process that preserves general features in early layers before consolidating task-specific information, and a forward alignment, backward differentiation dynamic between LoRA's matrices. Our findings clarify how LoRA reshapes encoder hierarchies, providing both empirical insights and a deeper mechanistic understanding for designing efficient and interpretable adaptation strategies in large speech models. Our code is available at https://github.com/harryporry77/Behind-the-Scenes.
comment: Work in process
♻ ☆ Two Sides of the Same Optimization Coin: Model Degradation and Representation Collapse in Graph Foundation Models
Graph foundation models, inspired by the success of LLMs, are designed to learn the optimal embedding from multi-domain TAGs for the downstream cross-task generalization capability. During our investigation, graph VQ-MAE stands out among the increasingly diverse landscape of GFM architectures. This is attributed to its ability to jointly encode topology and textual attributes from multiple domains into discrete embedding spaces with clear semantic boundaries. Despite its potential, domain generalization conflicts cause imperceptible pitfalls. In this paper, we instantiate two of them, and they are just like two sides of the same GFM optimization coin - Side 1 Model Degradation: The encoder and codebook fail to capture the diversity of inputs; Side 2 Representation Collapse: The hidden embedding and codebook vector fail to preserve semantic separability due to constraints from narrow representation subspaces. These two pitfalls (sides) collectively impair the decoder and generate the low-quality reconstructed supervision, causing the GFM optimization dilemma during pre-training (coin). Through empirical investigation, we attribute the above challenges to Information Bottleneck and Regularization Deficit. To address them, we propose MoT (Mixture-of-Tinkers) - (1) Information Tinker for Two Pitfalls, which utilizes an edge-wise semantic fusion strategy and a mixture-of-codebooks with domain-aware routing to improve information capacity. (2) Regularization Tinker for Optimization Coin, which utilizes two additional regularizations to further improve gradient supervision in our proposed Information Tinker. Notably, as a flexible architecture, MoT adheres to the scaling laws of GFM, offering a controllable model scale. Compared to SOTA baselines, experiments on 22 datasets across 6 domains demonstrate that MoT achieves significant improvements in supervised, few-shot, and zero-shot scenarios.
♻ ☆ Joint Optimization of Energy Consumption and Completion Time in Federated Learning
Federated Learning (FL) is an intriguing distributed machine learning approach due to its privacy-preserving characteristics. To balance the trade-off between energy and execution latency, and thus accommodate different demands and application scenarios, we formulate an optimization problem to minimize a weighted sum of total energy consumption and completion time through two weight parameters. The optimization variables include bandwidth, transmission power and CPU frequency of each device in the FL system, where all devices are linked to a base station and train a global model collaboratively. Through decomposing the non-convex optimization problem into two subproblems, we devise a resource allocation algorithm to determine the bandwidth allocation, transmission power, and CPU frequency for each participating device. We further present the convergence analysis and computational complexity of the proposed algorithm. Numerical results show that our proposed algorithm not only has better performance at different weight parameters (i.e., different demands) but also outperforms the state of the art.
comment: This paper appears in the Proceedings of IEEE International Conference on Distributed Computing Systems (ICDCS) 2022. Please feel free to contact us for questions or remarks
♻ ☆ The Domain Mixed Unit: A New Neural Arithmetic Layer
The Domain Mixed Unit (DMU) is a new neural arithmetic unit that learns a single parameter gate that mixes between log-space and linear-space representations while performing either addition (DMU add) or subtraction (DMU sub). Two initializations are proposed for the DMU: one covering addition and multiplication, and another covering subtraction and division. The DMU achieves state-of-the-art performance on the NALM Benchmark, a dataset designed to test the ability of neural arithmetic units to generalize arithmetic operations, specifically performing with the highest percentage solved over all seeds on multiplication and division. The DMU will be submitted as a pull request to the open-source NALM benchmark, and its code is available on GitHub at https://github.com/marict?tab=repositories
comment: 7 pages, 5 tables, includes results on the NALM benchmark
♻ ☆ Demo: Healthcare Agent Orchestrator (HAO) for Patient Summarization in Molecular Tumor Boards
Molecular Tumor Boards (MTBs) are multidisciplinary forums where oncology specialists collaboratively assess complex patient cases to determine optimal treatment strategies. A central element of this process is the patient summary, typically compiled by a medical oncologist, radiation oncologist, or surgeon, or their trained medical assistant, who distills heterogeneous medical records into a concise narrative to facilitate discussion. This manual approach is often labor-intensive, subjective, and prone to omissions of critical information. To address these limitations, we introduce the Healthcare Agent Orchestrator (HAO), a Large Language Model (LLM)-driven AI agent that coordinates a multi-agent clinical workflow to generate accurate and comprehensive patient summaries for MTBs. Evaluating predicted patient summaries against ground truth presents additional challenges due to stylistic variation, ordering, synonym usage, and phrasing differences, which complicate the measurement of both succinctness and completeness. To overcome these evaluation hurdles, we propose TBFact, a ``model-as-a-judge'' framework designed to assess the comprehensiveness and succinctness of generated summaries. Using a benchmark dataset derived from de-identified tumor board discussions, we applied TBFact to evaluate our Patient History agent. Results show that the agent captured 94% of high-importance information (including partial entailments) and achieved a TBFact recall of 0.84 under strict entailment criteria. We further demonstrate that TBFact enables a data-free evaluation framework that institutions can deploy locally without sharing sensitive clinical data. Together, HAO and TBFact establish a robust foundation for delivering reliable and scalable support to MTBs.
comment: 9 pages, 1 figure; Added missing co-authors and contributors
♻ ☆ Investigating Energy Efficiency and Performance Trade-offs in LLM Inference Across Tasks and DVFS Settings
Large Language Models (LLMs) have demonstrated remarkable performance across a wide range of natural language processing (NLP) tasks, leading to widespread adoption in both research and industry. However, their inference workloads are computationally and energy intensive, raising concerns about sustainability and environmental impact. As LLMs continue to scale, it becomes essential to identify and optimize the factors that influence their runtime efficiency without compromising performance. In this work, we systematically investigate the energy-performance trade-offs of LLMs during inference. We benchmark models of varying sizes and architectures, including Falcon-7B, Mistral-7B-v0.1, LLaMA-3.2-1B, LLaMA-3.2-3B, and GPT-Neo-2.7B, across tasks such as question answering, commonsense reasoning, and factual generation. We analyze the effect of input characteristics, such as sequence length, entropy, named entity density and so on. Furthermore, we examine the impact of hardware-level optimizations through Dynamic Voltage and Frequency Scaling (DVFS), measuring how different GPU clock settings affect latency and power consumption. Our empirical findings show that model architecture, input complexity, and clock configuration significantly influence inference efficiency. By correlating input features with energy metrics and evaluating DVFS behavior, we identify practical strategies that reduce energy consumption by up to 30% while preserving model quality. This study provides actionable insights for designing energy-efficient and sustainable LLM inference systems.
♻ ☆ MM-Prompt: Cross-Modal Prompt Tuning for Continual Visual Question Answering
Continual Visual Question Answering (CVQA) based on pre-trained models(PTMs) has achieved promising progress by leveraging prompt tuning to enable continual multi-modal learning. However, most existing methods adopt cross-modal prompt isolation, constructing visual and textual prompts separately, which exacerbates modality imbalance and leads to degraded performance over time. To tackle this issue, we propose MM-Prompt, a novel framework incorporating cross-modal prompt query and cross-modal prompt recovery. The former enables balanced prompt selection by incorporating cross-modal signals during query formation, while the latter promotes joint prompt reconstruction through iterative cross-modal interactions, guided by an alignment loss to prevent representational drift. Extensive experiments show that MM-Prompt surpasses prior approaches in accuracy and knowledge retention, while maintaining balanced modality engagement throughout continual learning.
♻ ☆ Modular Jump Gaussian Processes
Gaussian processes (GPs) furnish accurate nonlinear predictions with well-calibrated uncertainty. However, the typical GP setup has a built-in stationarity assumption, making it ill-suited for modeling data from processes with sudden changes, or "jumps" in the output variable. The "jump GP" (JGP) was developed for modeling data from such processes, combining local GPs and latent "level" variables under a joint inferential framework. But joint modeling can be fraught with difficulty. We aim to simplify by suggesting a more modular setup, eschewing joint inference but retaining the main JGP themes: (a) learning optimal neighborhood sizes that locally respect manifolds of discontinuity; and (b) a new cluster-based (latent) feature to capture regions of distinct output levels on both sides of the manifold. We show that each of (a) and (b) separately leads to dramatic improvements when modeling processes with jumps. In tandem (but without requiring joint inference) that benefit is compounded, as illustrated on real and synthetic benchmark examples from the recent literature.
comment: 19 pages, 13 figures
♻ ☆ Directly Aligning the Full Diffusion Trajectory with Fine-Grained Human Preference
Recent studies have demonstrated the effectiveness of directly aligning diffusion models with human preferences using differentiable reward. However, they exhibit two primary challenges: (1) they rely on multistep denoising with gradient computation for reward scoring, which is computationally expensive, thus restricting optimization to only a few diffusion steps; (2) they often need continuous offline adaptation of reward models in order to achieve desired aesthetic quality, such as photorealism or precise lighting effects. To address the limitation of multistep denoising, we propose Direct-Align, a method that predefines a noise prior to effectively recover original images from any time steps via interpolation, leveraging the equation that diffusion states are interpolations between noise and target images, which effectively avoids over-optimization in late timesteps. Furthermore, we introduce Semantic Relative Preference Optimization (SRPO), in which rewards are formulated as text-conditioned signals. This approach enables online adjustment of rewards in response to positive and negative prompt augmentation, thereby reducing the reliance on offline reward fine-tuning. By fine-tuning the FLUX model with optimized denoising and online reward adjustment, we improve its human-evaluated realism and aesthetic quality by over 3x.
comment: 15 pages
♻ ☆ Near-Optimal Sample Complexity in Reward-Free Kernel-Based Reinforcement Learning AISTATS 2025
Reinforcement Learning (RL) problems are being considered under increasingly more complex structures. While tabular and linear models have been thoroughly explored, the analytical study of RL under nonlinear function approximation, especially kernel-based models, has recently gained traction for their strong representational capacity and theoretical tractability. In this context, we examine the question of statistical efficiency in kernel-based RL within the reward-free RL framework, specifically asking: how many samples are required to design a near-optimal policy? Existing work addresses this question under restrictive assumptions about the class of kernel functions. We first explore this question by assuming a generative model, then relax this assumption at the cost of increasing the sample complexity by a factor of H, the length of the episode. We tackle this fundamental problem using a broad class of kernels and a simpler algorithm compared to prior work. Our approach derives new confidence intervals for kernel ridge regression, specific to our RL setting, which may be of broader applicability. We further validate our theoretical findings through simulations.
comment: Accepted at AISTATS 2025
♻ ☆ AU-Harness: An Open-Source Toolkit for Holistic Evaluation of Audio LLMs
Large Audio Language Models (LALMs) are rapidly advancing, but evaluating them remains challenging due to inefficient toolkits that limit fair comparison and systematic assessment. Current frameworks suffer from three critical issues: slow processing that bottlenecks large-scale studies, inconsistent prompting that hurts reproducibility, and narrow task coverage that misses important audio reasoning capabilities. We introduce AU-Harness, an efficient and comprehensive evaluation framework for LALMs. Our system achieves a speedup of up to 127% over existing toolkits through optimized batch processing and parallel execution, enabling large-scale evaluations previously impractical. We provide standardized prompting protocols and flexible configurations for fair model comparison across diverse scenarios. Additionally, we introduce two new evaluation categories: LLM-Adaptive Diarization for temporal audio understanding and Spoken Language Reasoning for complex audio-based cognitive tasks. Through evaluation across 380+ tasks, we reveal significant gaps in current LALMs, particularly in temporal understanding and complex spoken language reasoning tasks. Our findings also highlight a lack of standardization in instruction modality existent across audio benchmarks, which can lead up performance differences up to 9.5 absolute points on the challenging complex instruction following downstream tasks. AU-Harness provides both practical evaluation tools and insights into model limitations, advancing systematic LALM development.
♻ ☆ Critical Challenges and Guidelines in Evaluating Synthetic Tabular Data: A Systematic Review
Generating synthetic tabular data can be challenging, however evaluation of their quality is just as challenging, if not more. This systematic review sheds light on the critical importance of rigorous evaluation of synthetic health data to ensure reliability, relevance, and their appropriate use. Based on screening of 1766 papers and a detailed review of 101 papers we identified key challenges, including lack of consensus on evaluation methods, improper use of evaluation metrics, limited input from domain experts, inadequate reporting of dataset characteristics, and limited reproducibility of results. In response, we provide several guidelines on the generation and evaluation of synthetic data, to allow the community to unlock and fully harness the transformative potential of synthetic data and accelerate innovation.
♻ ☆ DivMerge: A divergence-based model merging method for multi-tasking
Multi-task learning (MTL) is often achieved by merging datasets before fine-tuning, but the growing availability of fine-tuned models has led to new approaches such as model merging via task arithmetic. A major challenge in this setting is task interference, which worsens as the number of tasks increases. We propose a method that merges models trained on different tasks into a single model, maintaining strong performance across all tasks. Our approach leverages Jensen-Shannon divergence to guide the merging process without requiring additional labelled data, and automatically balances task importance. Unlike existing methods, our approach remains robust as the number of tasks grows and consistently outperforms prior work.
♻ ☆ Average Causal Effect Estimation in DAGs with Hidden Variables: Beyond Back-Door and Front-Door Criteria
The identification theory for causal effects in directed acyclic graphs (DAGs) with hidden variables is well established, but methods for estimating and inferring functionals that extend beyond the g-formula remain underdeveloped. Previous studies have introduced semiparametric estimators for such functionals in a broad class of DAGs with hidden variables. While these estimators exhibit desirable statistical properties such as double robustness in certain cases, they also face significant limitations. Notably, they encounter substantial computational challenges, particularly involving density estimation and numerical integration for continuous variables, and their estimates may fall outside the parameter space of the target estimand. Additionally, the asymptotic properties of these estimators is underexplored, especially when integrating flexible statistical and machine learning models for nuisance functional estimations. This paper addresses these challenges by introducing novel one-step corrected plug-in and targeted minimum loss-based estimators of causal effects for a class of hidden variable DAGs that go beyond classical back-door and front-door criteria (known as the treatment primal fixability criterion in prior literature). These estimators leverage data-adaptive machine learning algorithms to minimize modeling assumptions while ensuring key statistical properties including double robustness, efficiency, boundedness within the target parameter space, and asymptotic linearity under $L^2(P)$-rate conditions for nuisance functional estimates that yield root-n consistent causal effect estimates. To ensure our estimation methods are accessible in practice, we provide the flexCausal package in R.
♻ ☆ Variance-Aware Noisy Training: Hardening DNNs against Unstable Analog Computations
The disparity between the computational demands of deep learning and the capabilities of compute hardware is expanding drastically. Although deep learning achieves remarkable performance in countless tasks, its escalating requirements for computational power and energy consumption surpass the sustainable limits of even specialized neural processing units, including the Apple Neural Engine and NVIDIA TensorCores. This challenge is intensified by the slowdown in CMOS scaling. Analog computing presents a promising alternative, offering substantial improvements in energy efficiency by directly manipulating physical quantities such as current, voltage, charge, or photons. However, it is inherently vulnerable to manufacturing variations, nonlinearities, and noise, leading to degraded prediction accuracy. One of the most effective techniques for enhancing robustness, Noisy Training, introduces noise during the training phase to reinforce the model against disturbances encountered during inference. Although highly effective, its performance degrades in real-world environments where noise characteristics fluctuate due to external factors such as temperature variations and temporal drift. This study underscores the necessity of Noisy Training while revealing its fundamental limitations in the presence of dynamic noise. To address these challenges, we propose Variance-Aware Noisy Training, a novel approach that mitigates performance degradation by incorporating noise schedules which emulate the evolving noise conditions encountered during inference. Our method substantially improves model robustness, without training overhead. We demonstrate a significant increase in robustness, from 79.3\% with conventional Noisy Training to 97.6\% with Variance-Aware Noisy Training on CIFAR-10 and from 32.4\% to 99.7\% on Tiny ImageNet.
♻ ☆ DeepVoting: Learning and Fine-Tuning Voting Rules with Canonical Embeddings
Aggregating agent preferences into a collective decision is an important step in many problems (e.g., hiring, elections, peer review) and across areas of computer science (e.g., reinforcement learning, recommender systems). As Social Choice Theory has shown, the problem of designing aggregation rules with specific sets of properties (axioms) can be difficult, or provably impossible in some cases. Instead of designing algorithms by hand, one can learn aggregation rules, particularly voting rules, from data. However, prior work in this area has required extremely large models or been limited by the choice of preference representation, i.e., embedding. We recast the problem of designing voting rules with desirable properties into one of learning probabilistic functions that output distributions over a set of candidates. Specifically, we use neural networks to learn probabilistic social choice functions. Using standard embeddings from the social choice literature we show that preference profile encoding has significant impact on the efficiency and ability of neural networks to learn rules, allowing us to learn rules faster and with smaller networks than previous work. Moreover, we show that our learned rules can be fine-tuned using axiomatic properties to create novel voting rules and make them resistant to specific types of "attack". Namely, we fine-tune rules to resist a probabilistic version of the No Show Paradox.
♻ ☆ Development and Comparative Evaluation of Three Artificial Intelligence Models (NLP, LLM, JEPA) for Predicting Triage in Emergency Departments: A 7-Month Retrospective Proof-of-Concept
Emergency departments struggle with persistent triage errors, especially undertriage and overtriage, which are aggravated by growing patient volumes and staff shortages. This study evaluated three AI models [TRIAGEMASTER (NLP), URGENTIAPARSE (LLM), and EMERGINET (JEPA)] against the FRENCH triage scale and nurse practice, using seven months of adult triage data from Roger Salengro Hospital in Lille, France. Among the models, the LLM-based URGENTIAPARSE consistently outperformed both AI alternatives and nurse triage, achieving the highest accuracy (F1-score 0.900, AUC-ROC 0.879) and superior performance in predicting hospitalization needs (GEMSA). Its robustness across structured data and raw transcripts highlighted the advantage of LLM architectures in abstracting patient information. Overall, the findings suggest that integrating LLM-based AI into emergency department workflows could significantly enhance patient safety and operational efficiency, though successful adoption will depend on addressing limitations and ensuring ethical transparency.
comment: 13 pages, 7 figures, 3 tables
♻ ☆ Extended Neural Contractive Dynamical Systems: On Multiple Tasks and Riemannian Safety Regions
Stability guarantees are crucial when ensuring that a fully autonomous robot does not take undesirable or potentially harmful actions. We recently proposed the Neural Contractive Dynamical Systems (NCDS), which is a neural network architecture that guarantees contractive stability. With this, learning-from-demonstrations approaches can trivially provide stability guarantees. However, our early work left several unanswered questions, which we here address. Beyond providing an in-depth explanation of NCDS, this paper extends the framework with more careful regularization, a conditional variant of the framework for handling multiple tasks, and an uncertainty-driven approach to latent obstacle avoidance. Experiments verify that the developed system has the flexibility of ordinary neural networks while providing the stability guarantees needed for autonomous robotics.
comment: arXiv admin note: substantial text overlap with arXiv:2401.09352
♻ ☆ LLMs for sensory-motor control: Combining in-context and iterative learning
We propose a method that enables large language models (LLMs) to control embodied agents by directly mapping continuous observation vectors to continuous action vectors. At the outset, the LLMs generate a control strategy based on a textual description of the agent, its environment, and the intended goal. This strategy is then iteratively refined through a learning process in which the LLMs are repeatedly prompted to improve the current strategy, using performance feedback and sensory-motor data collected during its evaluation. The method is validated on classic control tasks from the Gymnasium library and the inverted pendulum task from the MuJoCo library. The approach proves effective with relatively compact models such as Gpt-oss:120b and Qwen2.5:72b. In most cases, it successfully identifies optimal or near-optimal solutions by integrating symbolic knowledge derived through reasoning with sub-symbolic sensory-motor data gathered as the agent interacts with its environment.
comment: Article updated with results from gpt-oss:120b. 24 pages (13 pages are from appendix), 6 figures, code for experiments replication and supplementary material provided at https://github.com/jtyska/llm-robotics-article/
♻ ☆ Learning functions through Diffusion Maps
We propose a data-driven method for approximating real-valued functions on smooth manifolds, building on the Diffusion Maps framework under the manifold hypothesis. Given pointwise evaluations of a function, the method constructs a smooth extension to the ambient space by exploiting diffusion geometry and its connection to the heat equation and the Laplace-Beltrami operator. To address the computational challenges of high-dimensional data, we introduce a dimensionality reduction strategy based on the low-rank structure of the distance matrix, revealed via singular value decomposition (SVD). In addition, we develop an online updating mechanism that enables efficient incorporation of new data, thereby improving scalability and reducing computational cost. Numerical experiments, including applications to sparse CT reconstruction, demonstrate that the proposed methodology outperforms classical feedforward neural networks and interpolation methods in terms of both accuracy and efficiency.
comment: Comments are welcome
♻ ☆ Euclidean Distance Deflation Under High-Dimensional Heteroskedastic Noise
Pairwise Euclidean distance calculation is a fundamental step in many machine learning and data analysis algorithms. In real-world applications, however, these distances are frequently distorted by heteroskedastic noise$\unicode{x2014}$a prevalent form of inhomogeneous corruption characterized by variable noise magnitudes across data observations. Such noise inflates the computed distances in a nontrivial way, leading to misrepresentations of the underlying data geometry. In this work, we address the tasks of estimating the noise magnitudes per observation and correcting the pairwise Euclidean distances under heteroskedastic noise. Perhaps surprisingly, we show that in general high-dimensional settings and without assuming prior knowledge on the clean data structure or noise distribution, both tasks can be performed reliably, even when the noise levels vary considerably. Specifically, we develop a principled, hyperparameter-free approach that jointly estimates the noise magnitudes and corrects the distances. We provide theoretical guarantees for our approach, establishing probabilistic bounds on the estimation errors of both noise magnitudes and distances. These bounds, measured in the normalized $\ell_1$ norm, converge to zero at polynomial rates as both feature dimension and dataset size increase. Experiments on synthetic datasets demonstrate that our method accurately estimates distances in challenging regimes, significantly improving the robustness of subsequent distance-based computations. Notably, when applied to single-cell RNA sequencing data, our method yields noise magnitude estimates consistent with an established prototypical model, enabling accurate nearest neighbor identification that is fundamental to many downstream analyses.
♻ ☆ Bridging Simplicity and Sophistication using GLinear: A Novel Architecture for Enhanced Time Series Prediction
Time Series Forecasting (TSF) is an important application across many fields. There is a debate about whether Transformers, despite being good at understanding long sequences, struggle with preserving temporal relationships in time series data. Recent research suggests that simpler linear models might outperform or at least provide competitive performance compared to complex Transformer-based models for TSF tasks. In this paper, we propose a novel data-efficient architecture, \textit{Gaussian-activated Linear model (GLinear)}, for multivariate TSF that exploits periodic patterns to provide better accuracy. It achieves higher prediction accuracy while requiring less historical data than other state-of-the-art linear predictors. Four different datasets (ETTh1, Electricity, Traffic, and Weather) are used to evaluate the performance of the proposed predictor. A performance comparison with state-of-the-art linear architectures (such as NLinear, DLinear, and RLinear) and transformer-based time series predictors (Autoformer) shows that the GLinear, despite being data efficient, outperforms the existing architectures in most cases of multivariate TSF while being competitive in others. We hope that the proposed GLinear model opens new fronts of research and development of simpler and more sophisticated architectures for data and computationally efficient time-series analysis. The source code is publicly available on GitHub.
comment: Submitted to Digital Signal Processing Journal
♻ ☆ Asynchronous Gossip Algorithms for Rank-Based Statistical Methods
As decentralized AI and edge intelligence become increasingly prevalent, ensuring robustness and trustworthiness in such distributed settings has become a critical issue-especially in the presence of corrupted or adversarial data. Traditional decentralized algorithms are vulnerable to data contamination as they typically rely on simple statistics (e.g., means or sum), motivating the need for more robust statistics. In line with recent work on decentralized estimation of trimmed means and ranks, we develop gossip algorithms for computing a broad class of rank-based statistics, including L-statistics and rank statistics-both known for their robustness to outliers. We apply our method to perform robust distributed two-sample hypothesis testing, introducing the first gossip algorithm for Wilcoxon rank-sum tests. We provide rigorous convergence guarantees, including the first convergence rate bound for asynchronous gossip-based rank estimation. We empirically validate our theoretical results through experiments on diverse network topologies.
♻ ☆ Tensor-Based Foundations of Ordinary Least Squares and Neural Network Regression Models
This article introduces a novel approach to the mathematical development of Ordinary Least Squares and Neural Network regression models, diverging from traditional methods in current Machine Learning literature. By leveraging Tensor Analysis and fundamental matrix computations, the theoretical foundations of both models are meticulously detailed and extended to their complete algorithmic forms. The study culminates in the presentation of three algorithms, including a streamlined version of the Backpropagation Algorithm for Neural Networks, illustrating the benefits of this new mathematical approach.
comment: 16 pages, 3 algorithms
♻ ☆ LoRA-PAR: A Flexible Dual-System LoRA Partitioning Approach to Efficient LLM Fine-Tuning
Large-scale generative models like DeepSeek-R1 and OpenAI-O1 benefit substantially from chain-of-thought (CoT) reasoning, yet pushing their performance typically requires vast data, large model sizes, and full-parameter fine-tuning. While parameter-efficient fine-tuning (PEFT) helps reduce cost, most existing approaches primarily address domain adaptation or layer-wise allocation rather than explicitly tailoring data and parameters to different response demands. Inspired by "Thinking, Fast and Slow," which characterizes two distinct modes of thought-System 1 (fast, intuitive, often automatic) and System 2 (slower, more deliberative and analytic)-we draw an analogy that different "subregions" of an LLM's parameters might similarly specialize for tasks that demand quick, intuitive responses versus those requiring multi-step logical reasoning. Therefore, we propose LoRA-PAR, a dual-system LoRA framework that partitions both data and parameters by System 1 or System 2 demands, using fewer yet more focused parameters for each task. Specifically, we classify task data via multi-model role-playing and voting, and partition parameters based on importance scoring, then adopt a two-stage fine-tuning strategy of training System 1 tasks with supervised fine-tuning (SFT) to enhance knowledge and intuition and refine System 2 tasks with reinforcement learning (RL) to reinforce deeper logical deliberation next. Extensive experiments show that the two-stage fine-tuning strategy, SFT and RL, lowers active parameter usage while matching or surpassing SOTA PEFT baselines.
comment: 12 pages
♻ ☆ Revisiting Non-Acyclic GFlowNets in Discrete Environments ICML 2025
Generative Flow Networks (GFlowNets) are a family of generative models that learn to sample objects from a given probability distribution, potentially known up to a normalizing constant. Instead of working in the object space, GFlowNets proceed by sampling trajectories in an appropriately constructed directed acyclic graph environment, greatly relying on the acyclicity of the graph. In our paper, we revisit the theory that relaxes the acyclicity assumption and present a simpler theoretical framework for non-acyclic GFlowNets in discrete environments. Moreover, we provide various novel theoretical insights related to training with fixed backward policies, the nature of flow functions, and connections between entropy-regularized RL and non-acyclic GFlowNets, which naturally generalize the respective concepts and theoretical results from the acyclic setting. In addition, we experimentally re-examine the concept of loss stability in non-acyclic GFlowNet training, as well as validate our own theoretical findings.
comment: ICML 2025; minor corrections in proofs of Proposition 3.6 and 3.8 in v3, all results remain unchanged
♻ ☆ The Information Dynamics of Generative Diffusion
Generative diffusion models have emerged as a powerful class of models in machine learning, yet a unified theoretical understanding of their operation is still developing. This paper provides an integrated perspective on generative diffusion by connecting their dynamic, information-theoretic, and thermodynamic properties under a unified mathematical framework. We demonstrate that the rate of conditional entropy production during generation (i.e. the generative bandwidth) is directly governed by the expected divergence of the score function's vector field. This divergence, in turn, is linked to the branching of trajectories and generative bifurcations, which we characterize as symmetry-breaking phase transitions in the energy landscape. This synthesis offers a powerful insight: the process of generation is fundamentally driven by the controlled, noise-induced breaking of (approximate) symmetries, where peaks in information transfer correspond to critical transitions between possible outcomes. The score function acts as a dynamic non-linear filter that regulates the bandwidth of the noise by suppressing fluctuations that are incompatible with the data.
♻ ☆ Contextualize-then-Aggregate: Circuits for In-Context Learning in Gemma-2 2B
In-Context Learning (ICL) is an intriguing ability of large language models (LLMs). Despite a substantial amount of work on its behavioral aspects and how it emerges in miniature setups, it remains unclear which mechanism assembles task information from the individual examples in a fewshot prompt. We use causal interventions to identify information flow in Gemma-2 2B for five naturalistic ICL tasks. We find that the model infers task information using a two-step strategy we call contextualize-then-aggregate: In the lower layers, the model builds up representations of individual fewshot examples, which are contextualized by preceding examples through connections between fewshot input and output tokens across the sequence. In the higher layers, these representations are aggregated to identify the task and prepare prediction of the next output. The importance of the contextualization step differs between tasks, and it may become more important in the presence of ambiguous examples. Overall, by providing rigorous causal analysis, our results shed light on the mechanisms through which ICL happens in language models.
♻ ☆ Convergence Analysis of Asynchronous Federated Learning with Gradient Compression for Non-Convex Optimization
Gradient compression is an effective technique for reducing communication overhead in federated learning (FL), and error feedback (EF) is widely adopted to remedy the compression errors. However, in asynchronous FL settings-which inherently face three major challenges: asynchronous delay, data heterogeneity, and flexible client participation-the complex interactions among these system/statistical constraints and compression/EF mechanisms remain poorly understood theoretically. There is a significant lack of systematic convergence analysis that adequately captures these complex couplings. In this paper, we fill this gap by analyzing the convergence behaviors of FL under different frameworks. We first consider a basic asynchronous FL framework AsynFL, and establish an improved convergence analysis that relies on fewer assumptions and yields a superior convergence rate than prior studies. Then, we consider a variant framework with gradient compression, AsynFLC. We derive sufficient conditions for its convergence, indicating the nonlinear interaction between asynchronous delay and compression rate. Our analysis further demonstrates how asynchronous delay and data heterogeneity jointly amplify compression-induced errors, thereby hindering convergence. Furthermore, we study the convergence of AsynFLC-EF, the framework that further integrates EF. We prove that EF can effectively reduce the variance of gradient estimation despite asynchronous delays, which enables AsynFLC-EF to match the convergence rate of AsynFL. We also show that the impact of asynchronous delay and flexible participation on EF is limited to slowing down the higher-order convergence term. Experimental results substantiate our analytical findings very well.
♻ ☆ Physics consistent machine learning framework for inverse modeling with applications to ICF capsule implosions
In high energy density physics (HEDP) and inertial confinement fusion (ICF), predictive modeling is complicated by uncertainty in parameters that characterize various aspects of the modeled system, such as those characterizing material properties, equation of state (EOS), opacities, and initial conditions. Typically, however, these parameters are not directly observable. What is observed instead is a time sequence of radiographic projections using X-rays. In this work, we define a set of sparse hydrodynamic features derived from the outgoing shock profile and outer material edge, which can be obtained from radiographic measurements, to directly infer such parameters. Our machine learning (ML)-based methodology involves a pipeline of two architectures, a radiograph-to-features network (R2FNet) and a features-to-parameters network (F2PNet), that are trained independently and later combined to approximate a posterior distribution for the parameters from radiographs. We show that the estimated parameters can be used in a hydrodynamics code to obtain density fields and hydrodynamic shock and outer edge features that are consistent with the data. Finally, we demonstrate that features resulting from an unknown EOS model can be successfully mapped onto parameters of a chosen analytical EOS model, implying that network predictions are learning physics, with a degree of invariance to the underlying choice of EOS model.
♻ ☆ Unveiling Multiple Descents in Unsupervised Autoencoders
The phenomenon of double descent has challenged the traditional bias-variance trade-off in supervised learning but remains unexplored in unsupervised learning, with some studies arguing for its absence. In this study, we first demonstrate analytically that double descent does not occur in linear unsupervised autoencoders (AEs). In contrast, we show for the first time that both double and triple descent can be observed with nonlinear AEs across various data models and architectural designs. We examine the effects of partial sample and feature noise and highlight the importance of bottleneck size in influencing the double descent curve. Through extensive experiments on both synthetic and real datasets, we uncover model-wise, epoch-wise, and sample-wise double descent across several data types and architectures. Our findings indicate that over-parameterized models not only improve reconstruction but also enhance performance in downstream tasks such as anomaly detection and domain adaptation, highlighting their practical value in complex real-world scenarios.
♻ ☆ Sigma Flows for Image and Data Labeling and Learning Structured Prediction
This paper introduces the sigma flow model for the prediction of structured labelings of data observed on Riemannian manifolds, including Euclidean image domains as special case. The approach combines the Laplace-Beltrami framework for image denoising and enhancement, introduced by Sochen, Kimmel and Malladi about 25 years ago, and the assignment flow approach introduced and studied by the authors. The sigma flow arises as Riemannian gradient flow of generalized harmonic energies and thus is governed by a nonlinear geometric PDE which determines a harmonic map from a closed Riemannian domain manifold to a statistical manifold, equipped with the Fisher-Rao metric from information geometry. A specific ingredient of the sigma flow is the mutual dependency of the Riemannian metric of the domain manifold on the evolving state. This makes the approach amenable to machine learning in a specific way, by realizing this dependency through a mapping with compact time-variant parametrization that can be learned from data. Proof of concept experiments demonstrate the expressivity of the sigma flow model and prediction performance. Structural similarities to transformer network architectures and networks generated by the geometric integration of sigma flows are pointed out, which highlights the connection to deep learning and, conversely, may stimulate the use of geometric design principles for structured prediction in other areas of scientific machine learning.
comment: 51 pages, revised experimental section
♻ ☆ Self-Optimizing Machine Learning Potential Assisted Automated Workflow for Highly Efficient Complex Systems Material Design
Machine learning interatomic potentials have revolutionized complex materials design by enabling rapid exploration of material configurational spaces via crystal structure prediction with ab initio accuracy. However, critical challenges persist in ensuring robust generalization to unknown structures and minimizing the requirement for substantial expert knowledge and time-consuming manual interventions. Here, we propose an automated crystal structure prediction framework built upon the attention-coupled neural networks potential to address these limitations. The generalizability of the potential is achieved by sampling regions across the local minima of the potential energy surface, where the self-evolving pipeline autonomously refines the potential iteratively while minimizing human intervention. The workflow is validated on Mg-Ca-H ternary and Be-P-N-O quaternary systems by exploring nearly 10 million configurations, demonstrating substantial speedup compared to first-principles calculations. These results underscore the effectiveness of our approach in accelerating the exploration and discovery of complex multi-component functional materials.
♻ ☆ A Comprehensive Guide to Differential Privacy: From Theory to User Expectations
The increasing availability of personal data has enabled significant advances in fields such as machine learning, healthcare, and cybersecurity. However, this data abundance also raises serious privacy concerns, especially in light of powerful re-identification attacks and growing legal and ethical demands for responsible data use. Differential privacy (DP) has emerged as a principled, mathematically grounded framework for mitigating these risks. This review provides a comprehensive survey of DP, covering its theoretical foundations, practical mechanisms, and real-world applications. It explores key algorithmic tools and domain-specific challenges - particularly in privacy-preserving machine learning and synthetic data generation. The report also highlights usability issues and the need for improved communication and transparency in DP systems. Overall, the goal is to support informed adoption of DP by researchers and practitioners navigating the evolving landscape of data privacy.
♻ ☆ On the Relationship Between Adversarial Robustness and Decision Region in Deep Neural Networks
In general, Deep Neural Networks (DNNs) are evaluated by the generalization performance measured on unseen data excluded from the training phase. Along with the development of DNNs, the generalization performance converges to the state-of-the-art and it becomes difficult to evaluate DNNs solely based on this metric. The robustness against adversarial attack has been used as an additional metric to evaluate DNNs by measuring their vulnerability. However, few studies have been performed to analyze the adversarial robustness in terms of the geometry in DNNs. In this work, we perform an empirical study to analyze the internal properties of DNNs that affect model robustness under adversarial attacks. In particular, we propose the novel concept of the Populated Region Set (PRS), where training samples are populated more frequently, to represent the internal properties of DNNs in a practical setting. From systematic experiments with the proposed concept, we provide empirical evidence to validate that a low PRS ratio has a strong relationship with the adversarial robustness of DNNs. We also devise PRS regularizer leveraging the characteristics of PRS to improve the adversarial robustness without adversarial training.
comment: 10 pages
♻ ☆ AdaWaveNet: Adaptive Wavelet Network for Time Series Analysis
Time series data analysis is a critical component in various domains such as finance, healthcare, and meteorology. Despite the progress in deep learning for time series analysis, there remains a challenge in addressing the non-stationary nature of time series data. Traditional models, which are built on the assumption of constant statistical properties over time, often struggle to capture the temporal dynamics in realistic time series, resulting in bias and error in time series analysis. This paper introduces the Adaptive Wavelet Network (AdaWaveNet), a novel approach that employs Adaptive Wavelet Transformation for multi-scale analysis of non-stationary time series data. AdaWaveNet designed a lifting scheme-based wavelet decomposition and construction mechanism for adaptive and learnable wavelet transforms, which offers enhanced flexibility and robustness in analysis. We conduct extensive experiments on 10 datasets across 3 different tasks, including forecasting, imputation, and a newly established super-resolution task. The evaluations demonstrate the effectiveness of AdaWaveNet over existing methods in all three tasks, which illustrates its potential in various real-world applications.
comment: Transactions on Machine Learning Research; code: https://github.com/comp-well-org/AdaWaveNet ; TMLR review: https://openreview.net/forum?id=m4bE9Y9FlX
♻ ☆ Effort-aware Fairness: Incorporating a Philosophy-informed, Human-centered Notion of Effort into Algorithmic Fairness Metrics
Although popularized AI fairness metrics, e.g., demographic parity, have uncovered bias in AI-assisted decision-making outcomes, they do not consider how much effort one has spent to get to where one is today in the input feature space. However, the notion of effort is important in how Philosophy and humans understand fairness. We propose a philosophy-informed approach to conceptualize and evaluate Effort-aware Fairness (EaF), grounded in the concept of Force, which represents the temporal trajectory of predictive features coupled with inertia. Besides theoretical formulation, our empirical contributions include: (1) a pre-registered human subjects experiment, which shows that for both stages of the (individual) fairness evaluation process, people consider the temporal trajectory of a predictive feature more than its aggregate value; (2) pipelines to compute Effort-aware Individual/Group Fairness in the criminal justice and personal finance contexts. Our work may enable AI model auditors to uncover and potentially correct unfair decisions against individuals who have spent significant efforts to improve but are still stuck with systemic disadvantages outside their control.
comment: AIES 2025
♻ ☆ Understanding Large Language Models in Your Pockets: Performance Study on COTS Mobile Devices
As large language models (LLMs) increasingly integrate into every aspect of our work and daily lives, there are growing concerns about user privacy, which push the trend toward local deployment of these models. There are a number of lightweight LLMs (e.g., Gemini Nano, LLAMA2 7B) that can run locally on smartphones, providing users with greater control over their personal data. As a rapidly emerging application, we are concerned about their performance on commercial-off-the-shelf mobile devices. To fully understand the current landscape of LLM deployment on mobile platforms, we conduct a comprehensive measurement study on mobile devices. We evaluate both metrics that affect user experience, including token throughput, latency, and battery consumption, as well as factors critical to developers, such as resource utilization, DVFS strategies, and inference engines. In addition, we provide a detailed analysis of how these hardware capabilities and system dynamics affect on-device LLM performance, which may help developers identify and address bottlenecks for mobile LLM applications. We also provide comprehensive comparisons across the mobile system-on-chips (SoCs) from major vendors, highlighting their performance differences in handling LLM workloads. We hope that this study can provide insights for both the development of on-device LLMs and the design for future mobile system architecture.
♻ ☆ LiDAR-BIND-T: Improved and Temporally Consistent Sensor Modality Translation and Fusion for Robotic Applications
This paper extends LiDAR-BIND, a modular multi-modal fusion framework that binds heterogeneous sensors (radar, sonar) to a LiDAR-defined latent space, with mechanisms that explicitly enforce temporal consistency. We introduce three contributions: (i) temporal embedding similarity that aligns consecutive latent representations, (ii) a motion-aligned transformation loss that matches displacement between predictions and ground truth LiDAR, and (iii) windowed temporal fusion using a specialised temporal module. We further update the model architecture to better preserve spatial structure. Evaluations on radar/sonar-to-LiDAR translation demonstrate improved temporal and spatial coherence, yielding lower absolute trajectory error and better occupancy map accuracy in Cartographer-based SLAM (Simultaneous Localisation and Mapping). We propose different metrics based on the Fr\'echet Video Motion Distance (FVMD) and a correlation-peak distance metric providing practical temporal quality indicators to evaluate SLAM performance. The proposed temporal LiDAR-BIND, or LiDAR-BIND-T, maintains plug-and-play modality fusion while substantially enhancing temporal stability, resulting in improved robustness and performance for downstream SLAM.
♻ ☆ CogGuide: Human-Like Guidance for Zero-Shot Omni-Modal Reasoning
Targeting the issues of "shortcuts" and insufficient contextual understanding in complex cross-modal reasoning of multimodal large models, this paper proposes a zero-shot multimodal reasoning component guided by human-like cognitive strategies centered on an "intent sketch". The component comprises a plug-and-play three-module pipeline-Intent Perceiver, Strategy Generator, and Strategy Selector-that explicitly constructs a "understand-plan-select" cognitive process. By generating and filtering "intent sketch" strategies to guide the final reasoning, it requires no parameter fine-tuning and achieves cross-model transfer solely through in-context engineering. Information-theoretic analysis shows that this process can reduce conditional entropy and improve information utilization efficiency, thereby suppressing unintended shortcut reasoning. Experiments on IntentBench, WorldSense, and Daily-Omni validate the method's generality and robust gains; compared with their respective baselines, the complete "three-module" scheme yields consistent improvements across different reasoning engines and pipeline combinations, with gains up to approximately 9.51 percentage points, demonstrating the practical value and portability of the "intent sketch" reasoning component in zero-shot scenarios.
♻ ☆ Discovering physical laws with parallel symbolic enumeration
Symbolic regression plays a crucial role in modern scientific research thanks to its capability of discovering concise and interpretable mathematical expressions from data. A key challenge lies in the search for parsimonious and generalizable mathematical formulas, in an infinite search space, while intending to fit the training data. Existing algorithms have faced a critical bottleneck of accuracy and efficiency over a decade when handling problems of complexity, which essentially hinders the pace of applying symbolic regression for scientific exploration across interdisciplinary domains. To this end, we introduce parallel symbolic enumeration (PSE) to efficiently distill generic mathematical expressions from limited data. Experiments show that PSE achieves higher accuracy and faster computation compared to the state-of-the-art baseline algorithms across over 200 synthetic and experimental problem sets (e.g., improving the recovery accuracy by up to 99% and reducing runtime by an order of magnitude). PSE represents an advance in accurate and efficient data-driven discovery of symbolic, interpretable models (e.g., underlying physical laws), and improves the scalability of symbolic learning.
♻ ☆ A User-Centric, Privacy-Preserving, and Verifiable Ecosystem for Personal Data Management and Utilization
In the current paradigm of digital personalized services, the centralized management of personal data raises significant privacy concerns, security vulnerabilities, and diminished individual autonomy over sensitive information. Despite their efficiency, traditional centralized architectures frequently fail to satisfy rigorous privacy requirements and expose users to data breaches and unauthorized access risks. This pressing challenge calls for a fundamental paradigm shift in methodologies for collecting, storing, and utilizing personal data across diverse sectors, including education, healthcare, and finance. This paper introduces a novel decentralized, privacy-preserving architecture that handles heterogeneous personal information, ranging from educational credentials to health records and financial data. Unlike traditional models, our system grants users complete data ownership and control, allowing them to selectively share information without compromising privacy. The architecture's foundation comprises advanced privacy-enhancing technologies, including secure enclaves and federated learning, enabling secure computation, verification, and data sharing. The system supports diverse functionalities, including local computation, model training, and privacy-preserving data sharing, while ensuring data credibility and robust user privacy.
♻ ☆ Beyond the Pre-Service Horizon: Infusing In-Service Behavior for Improved Financial Risk Forecasting ICDM 2025
Typical financial risk management involves distinct phases for pre-service risk assessment and in-service default detection, often modeled separately. This paper proposes a novel framework, Multi-Granularity Knowledge Distillation (abbreviated as MGKD), aimed at improving pre-service risk prediction through the integration of in-service user behavior data. MGKD follows the idea of knowledge distillation, where the teacher model, trained on historical in-service data, guides the student model, which is trained on pre-service data. By using soft labels derived from in-service data, the teacher model helps the student model improve its risk prediction prior to service activation. Meanwhile, a multi-granularity distillation strategy is introduced, including coarse-grained, fine-grained, and self-distillation, to align the representations and predictions of the teacher and student models. This approach not only reinforces the representation of default cases but also enables the transfer of key behavioral patterns associated with defaulters from the teacher to the student model, thereby improving the overall performance of pre-service risk assessment. Moreover, we adopt a re-weighting strategy to mitigate the model's bias towards the minority class. Experimental results on large-scale real-world datasets from Tencent Mobile Payment demonstrate the effectiveness of our proposed approach in both offline and online scenarios.
comment: Accepted to IEEE ICDM 2025
♻ ☆ Uniform convergence for Gaussian kernel ridge regression
This paper establishes the first polynomial convergence rates for Gaussian kernel ridge regression (KRR) with a fixed hyperparameter in both the uniform and the $L^{2}$-norm. The uniform convergence result closes a gap in the theoretical understanding of KRR with the Gaussian kernel, where no such rates were previously known. In addition, we prove a polynomial $L^{2}$-convergence rate in the case, where the Gaussian kernel's width parameter is fixed. This also contributes to the broader understanding of smooth kernels, for which previously only sub-polynomial $L^{2}$-rates were known in similar settings. Together, these results provide new theoretical justification for the use of Gaussian KRR with fixed hyperparameters in nonparametric regression.
comment: The submission is being withdrawn because the authorship of the manuscript does not comply with the publishing/authorship guidelines of our department
♻ ☆ villa-X: Enhancing Latent Action Modeling in Vision-Language-Action Models
Visual-Language-Action (VLA) models have emerged as a popular paradigm for learning robot manipulation policies that can follow language instructions and generalize to novel scenarios. Recent work has begun to explore the incorporation of latent actions, an abstract representation of visual change between two frames, into VLA pre-training. In this paper, we introduce villa-X, a novel Visual-Language-Latent-Action (ViLLA) framework that advances latent action modeling for learning generalizable robot manipulation policies. Our approach improves both how latent actions are learned and how they are incorporated into VLA pre-training. Together, these contributions enable villa-X to achieve superior performance across simulated environments including SIMPLER and LIBERO, as well as on two real-world robot setups including gripper and dexterous hand manipulation. We believe the ViLLA paradigm holds significant promise, and that our villa-X provides a strong foundation for future research.
comment: Project page: https://aka.ms/villa-x
♻ ☆ A Vector-Quantized Foundation Model for Patient Behavior Monitoring
Foundation models have achieved remarkable success across various domains, yet their adoption in healthcare remains limited. While significant advances have been made in medical imaging, genetic biomarkers, and time series from electronic health records, the potential of foundation models for patient behavior monitoring through personal digital devices remains underexplored. The data generated by these devices are inherently heterogeneous, multisource, and often exhibit high rates of missing data, posing unique challenges. This paper introduces a novel foundation model based on a modified vector quantized variational autoencoder, specifically designed to process real-world data from smartphones and wearable devices. We leveraged the discrete latent representation of this model to effectively perform two downstream tasks, suicide risk assessment and emotional state prediction, on different held-out clinical cohorts without the need of fine-tuning. We also highlight the existence of a trade-off between discrete and continuous latent structures, suggesting that hybrid models may be optimal for balancing accuracy across various supervised and unsupervised tasks.
comment: 10 pages (32 with references and supplementary material). Submitted to Elsevier's journal on Artificial Intelligence in Medicine
♻ ☆ Rethinking Disentanglement under Dependent Factors of Variation
Representation learning is an approach that allows to discover and extract the factors of variation from the data. Intuitively, a representation is said to be disentangled if it separates the different factors of variation in a way that is understandable to humans. Definitions of disentanglement and metrics to measure it usually assume that the factors of variation are independent of each other. However, this is generally false in the real world, which limits the use of these definitions and metrics to very specific and unrealistic scenarios. In this paper we give a definition of disentanglement based on information theory that is also valid when the factors of variation are not independent. Furthermore, we relate this definition to the Information Bottleneck Method. Finally, we propose a method to measure the degree of disentanglement from the given definition that works when the factors of variation are not independent. We show through different experiments that the method proposed in this paper correctly measures disentanglement with non-independent factors of variation, while other methods fail in this scenario.
♻ ☆ Group Expectation Policy Optimization for Heterogeneous Reinforcement Learning
As single-center computing approaches power constraints, decentralized training is becoming essential. Reinforcement Learning (RL) post-training enhances Large Language Models (LLMs) but faces challenges in heterogeneous distributed environments due to its tightly-coupled sampling-learning alternation. We propose HeteroRL, an asynchronous RL architecture that decouples rollout sampling from parameter learning, enabling robust deployment across geographically distributed nodes under network delays. We identify that latency-induced KL divergence causes importance sampling failure due to high variance. To address this, we propose Group Expectation Policy Optimization (GEPO), which reduces importance weight variance through a refined sampling mechanism. Theoretically, GEPO achieves exponential variance reduction. Experiments show it maintains superior stability over methods like GRPO, with less than 3% performance degradation under 1800-second delays, demonstrating strong potential for decentralized RL in heterogeneous networks.
♻ ☆ Iterative Methods for Full-Scale Gaussian Process Approximations for Large Spatial Data
Gaussian processes are flexible probabilistic regression models which are widely used in statistics and machine learning. However, a drawback is their limited scalability to large data sets. To alleviate this, full-scale approximations (FSAs) combine predictive process methods and covariance tapering, thus approximating both global and local structures. We show how iterative methods can be used to reduce computational costs in calculating likelihoods, gradients, and predictive distributions with FSAs. In particular, we introduce a novel preconditioner and show theoretically and empirically that it accelerates the conjugate gradient method's convergence speed and mitigates its sensitivity with respect to the FSA parameters and the eigenvalue structure of the original covariance matrix, and we demonstrate empirically that it outperforms a state-of-the-art pivoted Cholesky preconditioner. Furthermore, we introduce an accurate and fast way to calculate predictive variances using stochastic simulation and iterative methods. In addition, we show how our newly proposed FITC preconditioner can also be used in iterative methods for Vecchia approximations. In our experiments, it outperforms existing state-of-the-art preconditioners for Vecchia approximations. All methods are implemented in a free C++ software library with high-level Python and R packages.
♻ ☆ Temporal Query Network for Efficient Multivariate Time Series Forecasting ICML 2025
Sufficiently modeling the correlations among variables (aka channels) is crucial for achieving accurate multivariate time series forecasting (MTSF). In this paper, we propose a novel technique called Temporal Query (TQ) to more effectively capture multivariate correlations, thereby improving model performance in MTSF tasks. Technically, the TQ technique employs periodically shifted learnable vectors as queries in the attention mechanism to capture global inter-variable patterns, while the keys and values are derived from the raw input data to encode local, sample-level correlations. Building upon the TQ technique, we develop a simple yet efficient model named Temporal Query Network (TQNet), which employs only a single-layer attention mechanism and a lightweight multi-layer perceptron (MLP). Extensive experiments demonstrate that TQNet learns more robust multivariate correlations, achieving state-of-the-art forecasting accuracy across 12 challenging real-world datasets. Furthermore, TQNet achieves high efficiency comparable to linear-based methods even on high-dimensional datasets, balancing performance and computational cost. The code is available at: https://github.com/ACAT-SCUT/TQNet.
comment: ICML 2025
♻ ☆ Scalable Evaluation of Online Facilitation Strategies via Synthetic Simulation of Discussions
Limited large-scale evaluations exist for facilitation strategies of online discussions due to significant costs associated with human involvement. An effective solution is synthetic discussion simulations using Large Language Models (LLMs) to create initial pilot experiments. We propose design principles based on existing methodologies for synthetic discussion generation. Based on these principles, we propose a simple, generalizable, LLM-driven methodology to prototype the development of LLM facilitators by generating synthetic data without human involvement, and which surpasses current baselines. We use our methodology to test whether current Social Science strategies for facilitation can improve the performance of LLM facilitators. We find that, while LLM facilitators significantly improve synthetic discussions, there is no evidence that the application of these strategies leads to further improvements in discussion quality. In an effort to aid research in the field of facilitation, we release a large, publicly available dataset containing LLM-generated and LLM-annotated discussions using multiple open-source models. This dataset can be used for LLM facilitator finetuning as well as behavioral analysis of current out-of-the-box LLMs in the task. We also release an open-source python framework that efficiently implements our methodology at great scale.
comment: 15 pages, 3 tables, 12 figures
♻ ☆ Towards Robust Influence Functions with Flat Validation Minima ICML 2025
The Influence Function (IF) is a widely used technique for assessing the impact of individual training samples on model predictions. However, existing IF methods often fail to provide reliable influence estimates in deep neural networks, particularly when applied to noisy training data. This issue does not stem from inaccuracies in parameter change estimation, which has been the primary focus of prior research, but rather from deficiencies in loss change estimation, specifically due to the sharpness of validation risk. In this work, we establish a theoretical connection between influence estimation error, validation set risk, and its sharpness, underscoring the importance of flat validation minima for accurate influence estimation. Furthermore, we introduce a novel estimation form of Influence Function specifically designed for flat validation minima. Experimental results across various tasks validate the superiority of our approach.
comment: Accepted by ICML 2025. arXiv admin note: text overlap with arXiv:2310.00902 by other authors
♻ ☆ Uncertainty-aware Diffusion and Reinforcement Learning for Joint Plane Localization and Anomaly Diagnosis in 3D Ultrasound MICCAI 2025
Congenital uterine anomalies (CUAs) can lead to infertility, miscarriage, preterm birth, and an increased risk of pregnancy complications. Compared to traditional 2D ultrasound (US), 3D US can reconstruct the coronal plane, providing a clear visualization of the uterine morphology for assessing CUAs accurately. In this paper, we propose an intelligent system for simultaneous automated plane localization and CUA diagnosis. Our highlights are: 1) we develop a denoising diffusion model with local (plane) and global (volume/text) guidance, using an adaptive weighting strategy to optimize attention allocation to different conditions; 2) we introduce a reinforcement learning-based framework with unsupervised rewards to extract the key slice summary from redundant sequences, fully integrating information across multiple planes to reduce learning difficulty; 3) we provide text-driven uncertainty modeling for coarse prediction, and leverage it to adjust the classification probability for overall performance improvement. Extensive experiments on a large 3D uterine US dataset show the efficacy of our method, in terms of plane localization and CUA diagnosis. Code is available at https://github.com/yuhoo0302/CUA-US.
comment: Accepted by MICCAI 2025;10 pages, 3 figures
♻ ☆ MOLLM: Multi-Objective Large Language Model for Molecular Design -- Optimizing with Experts
Molecular design plays a critical role in advancing fields such as drug discovery, materials science, and chemical engineering. This work introduces the Multi-Objective Large Language Model for Molecular Design (MOLLM), a novel framework that combines domain-specific knowledge with the adaptability of large language models to optimize molecular properties across multiple objectives. Leveraging in-context learning and multi-objective optimization, MOLLM achieves superior performance and innovation, consistently surpassing state-of-the-art (SOTA) methods. We significantly improve the efficiency of our framework, making it 14 times faster and substantially more cost-effective without compromising performance compared to the latest similar work. Our results demonstrate that MOLLM consistently outperforms SOTA models across experiments and excels on the PMO benchmark. In addition, we provide extensive ablation studies and analysis to evaluate the effectiveness of each component and the quality of the output molecules.
comment: 9 pages, under review
♻ ☆ SimMark: A Robust Sentence-Level Similarity-Based Watermarking Algorithm for Large Language Models EMNLP 25
The widespread adoption of large language models (LLMs) necessitates reliable methods to detect LLM-generated text. We introduce SimMark, a robust sentence-level watermarking algorithm that makes LLMs' outputs traceable without requiring access to model internals, making it compatible with both open and API-based LLMs. By leveraging the similarity of semantic sentence embeddings combined with rejection sampling to embed detectable statistical patterns imperceptible to humans, and employing a soft counting mechanism, SimMark achieves robustness against paraphrasing attacks. Experimental results demonstrate that SimMark sets a new benchmark for robust watermarking of LLM-generated content, surpassing prior sentence-level watermarking techniques in robustness, sampling efficiency, and applicability across diverse domains, all while maintaining the text quality and fluency.
comment: Accepted to EMNLP 25 main
♻ ☆ Efficient Optimization Accelerator Framework for Multistate Ising Problems
Ising Machines are emerging hardware architectures that efficiently solve NP-Hard combinatorial optimization problems. Generally, combinatorial problems are transformed into quadratic unconstrained binary optimization (QUBO) form, but this transformation often complicates the solution landscape, degrading performance, especially for multi-state problems. To address this challenge, we model spin interactions as generalized boolean logic function to significantly reduce the exploration space. We demonstrate the effectiveness of our approach on graph coloring problem using probabilistic Ising solvers, achieving similar accuracy compared to state-of-the-art heuristics and machine learning algorithms. It also shows significant improvement over state-of-the-art QUBO-based Ising solvers, including probabilistic Ising and simulated bifurcation machines. We also design 1024-neuron all-to-all connected probabilistic Ising accelerator on FPGA with the proposed approach that shows ~10000x performance acceleration compared to GPU-based Tabucol heuristics and reducing physical neurons by 1.5-4x over baseline Ising frameworks. Thus, this work establishes superior efficiency, scalability and solution quality for multi-state optimization problems.
comment: 9 page main text, 4 main figures, 2 main table, 3 page supplementary, 10 supplementary figures,
♻ ☆ Harmonia: A Multi-Agent Reinforcement Learning Approach to Data Placement and Migration in Hybrid Storage Systems
Hybrid storage systems (HSS) integrate multiple storage devices with diverse characteristics to deliver high performance and capacity at low cost. The performance of an HSS highly depends on the effectiveness of two key policies: (1) the data-placement policy, which determines the best-fit storage device for incoming data, and (2) the data-migration policy, which dynamically rearranges stored data (i.e., prefetches hot data and evicts cold data) across the devices to sustain high HSS performance. Prior works optimize either data placement or data migration in isolation, which leads to suboptimal HSS performance. Unfortunately, no prior work tries to optimize both policies together. Our goal is to design a holistic data-management technique that optimizes both data-placement and data-migration policies to fully exploit the potential of an HSS, and thus significantly improve system performance. We propose Harmonia, a multi-agent reinforcement learning (RL)-based data-management technique that employs two lightweight autonomous RL agents, a data-placement agent and a data-migration agent, that adapt their policies for the current workload and HSS configuration while coordinating with each other to improve overall HSS performance. We evaluate Harmonia on real HSS configurations with up to four heterogeneous storage devices and seventeen data-intensive workloads. On performance-optimized (cost-optimized) HSS with two storage devices, Harmonia outperforms the best-performing prior approach by 49.5% (31.7%) on average. On an HSS with three (four) devices, Harmonia outperforms the best-performing prior work by 37.0% (42.0%) on average. Harmonia's performance benefits come with low latency (240ns for inference) and storage overheads (206 KiB in DRAM for both RL agents combined). We will open-source Harmonia's implementation to aid future research on HSS.
♻ ☆ EgoAgent: A Joint Predictive Agent Model in Egocentric Worlds
Learning an agent model that behaves like humans-capable of jointly perceiving the environment, predicting the future, and taking actions from a first-person perspective-is a fundamental challenge in computer vision. Existing methods typically train separate models for these abilities, which fail to capture their intrinsic relationships and prevent them from learning from each other. Inspired by how humans learn through the perception-action loop, we propose EgoAgent, a unified agent model that simultaneously learns to represent, predict, and act within a single transformer. EgoAgent explicitly models the causal and temporal dependencies among these abilities by formulating the task as an interleaved sequence of states and actions. It further introduces a joint embedding-action-prediction architecture with temporally asymmetric predictor and observer branches, enabling synergistic optimization across all three capabilities. Comprehensive evaluations of EgoAgent on representative tasks such as image classification, egocentric future state prediction, and 3D human motion prediction demonstrate the superiority of our method. The code and trained models will be publicly available at https://github.com/zju3dv/EgoAgent.
comment: Project Page: https://egoagent.github.io | Demo Video: https://youtu.be/qhfHp_sfDvY
♻ ☆ Imagine, Verify, Execute: Memory-guided Agentic Exploration with Vision-Language Models
Exploration is essential for general-purpose robotic learning, especially in open-ended environments where dense rewards, explicit goals, or task-specific supervision are scarce. Vision-language models (VLMs), with their semantic reasoning over objects, spatial relations, and potential outcomes, present a compelling foundation for generating high-level exploratory behaviors. However, their outputs are often ungrounded, making it difficult to determine whether imagined transitions are physically feasible or informative. To bridge the gap between imagination and execution, we present IVE (Imagine, Verify, Execute), an agentic exploration framework inspired by human curiosity. Human exploration is often driven by the desire to discover novel scene configurations and to deepen understanding of the environment. Similarly, IVE leverages VLMs to abstract RGB-D observations into semantic scene graphs, imagine novel scenes, predict their physical plausibility, and generate executable skill sequences through action tools. We evaluate IVE in both simulated and real-world tabletop environments. The results show that IVE enables more diverse and meaningful exploration than RL baselines, as evidenced by a 4.1 to 7.8x increase in the entropy of visited states. Moreover, the collected experience supports downstream learning, producing policies that closely match or exceed the performance of those trained on human-collected demonstrations.
comment: Project webpage: https://ive-robot.github.io/
♻ ☆ Closing the Gap between TD Learning and Supervised Learning with $Q$-Conditioned Maximization
Recently, supervised learning (SL) methodology has emerged as an effective approach for offline reinforcement learning (RL) due to their simplicity, stability, and efficiency. However, recent studies show that SL methods lack the trajectory stitching capability, typically associated with temporal difference (TD)-based approaches. A question naturally surfaces: \textit{How can we endow SL methods with stitching capability and close its performance gap with TD learning?} To answer this question, we introduce $Q$-conditioned maximization supervised learning for offline goal-conditioned RL, which enhances SL with the stitching capability through $Q$-conditioned policy and $Q$-conditioned maximization. Concretely, we propose \textbf{G}oal-\textbf{C}onditioned \textbf{\textit{Rein}}forced \textbf{S}upervised \textbf{L}earning (\textbf{GC\textit{Rein}SL}), which consists of (1) estimating the $Q$-function by Normalizing Flows from the offline dataset and (2) finding the maximum $Q$-value within the data support by integrating $Q$-function maximization with Expectile Regression. In inference time, our policy chooses optimal actions based on such a maximum $Q$-value. Experimental results from stitching evaluations on offline RL datasets demonstrate that our method outperforms prior SL approaches with stitching capabilities and goal data augmentation techniques.
♻ ☆ Diffusion Graph Neural Networks for Robustness in Olfaction Sensors and Datasets
Robotic odour source localization (OSL) is a critical capability for autonomous systems operating in complex environments. However, current OSL methods often suffer from ambiguities, particularly when robots misattribute odours to incorrect objects due to limitations in olfactory datasets and sensor resolutions. To address this challenge, we introduce a novel machine learning method using diffusion-based molecular generation to enhance odour localization accuracy that can be used by itself or with automated olfactory dataset construction pipelines. This generative process of our diffusion model expands the chemical space beyond the limitations of both current olfactory datasets and training methods, enabling the identification of potential odourant molecules not previously documented. The generated molecules can then be more accurately validated using advanced olfactory sensors, enabling them to detect more compounds and inform better hardware design. By integrating visual analysis, language processing, and molecular generation, our framework enhances the ability of olfaction-vision models on robots to accurately associate odours with their correct sources, thereby improving navigation and decision-making through better sensor selection for a target compound in critical applications such as explosives detection, narcotics screening, and search and rescue. Our methodology represents a foundational advancement in the field of artificial olfaction, offering a scalable solution to challenges posed by limited olfactory data and sensor ambiguities. Code and data are made available to the community at the following URL: https://github.com/KordelFranceTech/OlfactionVisionLanguage-Dataset.
♻ ☆ Inferring entropy production in many-body systems using nonequilibrium MaxEnt
We propose a method for inferring entropy production (EP) in high-dimensional stochastic systems, including many-body systems and non-Markovian systems with long memory. Standard techniques for estimating EP become intractable in such systems due to computational and statistical limitations. We infer trajectory-level EP and lower bounds on average EP by exploiting a nonequilibrium analogue of the Maximum Entropy principle, along with convex duality. Our approach uses only samples of trajectory observables, such as spatiotemporal correlations. It does not require reconstruction of high-dimensional probability distributions or rate matrices, nor impose any special assumptions such as discrete states or multipartite dynamics. In addition, it may be used to compute a hierarchical decomposition of EP, reflecting contributions from different interaction orders, and it has an intuitive physical interpretation as a "thermodynamic uncertainty relation." We demonstrate its numerical performance on a disordered nonequilibrium spin model with 1000 spins and a large neural spike-train dataset.
♻ ☆ SWI: Speaking with Intent in Large Language Models
Intent, typically clearly formulated and planned, functions as a cognitive framework for communication and problem-solving. This paper introduces the concept of Speaking with Intent (SWI) in large language models (LLMs), where the explicitly generated intent encapsulates the model's underlying intention and provides high-level planning to guide subsequent analysis and action. By emulating deliberate and purposeful thoughts in the human mind, SWI is hypothesized to enhance the reasoning capabilities and generation quality of LLMs. Extensive experiments on text summarization, multi-task question answering, and mathematical reasoning benchmarks consistently demonstrate the effectiveness and generalizability of Speaking with Intent over direct generation without explicit intent. Further analysis corroborates the generalizability of SWI under different experimental settings. Moreover, human evaluations verify the coherence, effectiveness, and interpretability of the intent produced by SWI. The promising results in enhancing LLMs with explicit intents pave a new avenue for boosting LLMs' generation and reasoning abilities with cognitive notions.
comment: Code: https://github.com/YuweiYin/SWI
♻ ☆ Your Image is Secretly the Last Frame of a Pseudo Video ICLR 2025
Diffusion models, which can be viewed as a special case of hierarchical variational autoencoders (HVAEs), have shown profound success in generating photo-realistic images. In contrast, standard HVAEs often produce images of inferior quality compared to diffusion models. In this paper, we hypothesize that the success of diffusion models can be partly attributed to the additional self-supervision information for their intermediate latent states provided by corrupted images, which along with the original image form a pseudo video. Based on this hypothesis, we explore the possibility of improving other types of generative models with such pseudo videos. Specifically, we first extend a given image generative model to their video generative model counterpart, and then train the video generative model on pseudo videos constructed by applying data augmentation to the original images. Furthermore, we analyze the potential issues of first-order Markov data augmentation methods, which are typically used in diffusion models, and propose to use more expressive data augmentation to construct more useful information in pseudo videos. Our empirical results on the CIFAR10 and CelebA datasets demonstrate that improved image generation quality can be achieved with additional self-supervised information from pseudo videos.
comment: Presented at the ICLR 2025 Workshop on Deep Generative Model in Machine Learning: Theory, Principle and Efficacy (DeLTa). 1-frame results for CIFAR10 in Table 2 corrected. Code released
♻ ☆ A Topic Modeling Analysis of Stigma Dimensions, Social, and Related Behavioral Circumstances in Clinical Notes Among Patients with HIV
Objective: To characterize stigma dimensions, social, and related behavioral circumstances in people living with HIV(PLWHs) seeking care, using NLP methods applied to a large collection of EHR clinical notes from a large integrated health system in the southeast United States. Methods: We identified a cohort of PLWHs from the UF Health IDR and performed topic modeling analysis using Latent Dirichlet Allocation to uncover stigma-related dimensions and related social and behavioral contexts. Domain experts created a seed list of HIV-related stigma keywords, then applied a snowball strategy to review notes for additional terms until saturation was reached iteratively. To identify more target topics, we tested three keyword-based filtering strategies. The detected topics were evaluated using three widely used metrics and manually reviewed by specialists. In addition, we conducted word frequency analysis and topic variation analysis among subgroups to examine differences across age and sex-specific demographics. Results: We identified 9140 PLWHs at UF Health and collected 2.9 million clinical notes. Through the iterative keyword approach, we generated a list of 91 keywords associated with HIV-related stigma. Topic modeling on sentences containing at least one keyword uncovered a wide range of topic themes, such as "Mental Health Concern, Stigma", "Treatment Refusal, Isolation", and "Substance Abuse". Topic variation analysis across age subgroups revealed substantial differences. Conclusion: Extracting and understanding the HIV-related stigma and associated social and behavioral circumstances from EHR clinical notes enables scalable, time-efficient assessment and overcoming the limitations of traditional questionnaires. Findings from this research provide actionable insights to inform patient care and interventions to improve HIV-care outcomes.
♻ ☆ Efficient transformer adaptation for analog in-memory computing via low-rank adapters
Analog In-Memory Computing (AIMC) offers a promising solution to the von Neumann bottleneck. However, deploying transformer models on AIMC remains challenging due to their inherent need for flexibility and adaptability across diverse tasks. For the benefits of AIMC to be fully realized, weights of static vector-matrix multiplications must be mapped and programmed to analog devices in a weight-stationary manner. This poses two challenges for adapting a base network to hardware and downstream tasks: (i) conventional analog hardware-aware (AHWA) training requires retraining the entire model, and (ii) reprogramming analog devices is both time- and energy-intensive. To address these issues, we propose Analog Hardware-Aware Low-Rank Adaptation (AHWA-LoRA) training, a novel approach for efficiently adapting transformers to AIMC hardware. AHWA-LoRA training keeps the analog weights fixed as meta-weights and introduces lightweight external LoRA modules for both hardware and task adaptation. We validate AHWA-LoRA training on SQuAD v1.1 and the GLUE benchmark, demonstrate its scalability to larger models, and show its effectiveness in instruction tuning and reinforcement learning. We further evaluate a practical deployment scenario that balances AIMC tile latency with digital LoRA processing using optimized pipeline strategies, with RISC-V-based programmable multi-core accelerators. This hybrid architecture achieves efficient transformer inference with only a 4% per-layer overhead compared to a fully AIMC implementation.
comment: 18 pages
♻ ☆ Musculoskeletal simulation of limb movement biomechanics in Drosophila melanogaster
Computational models are critical to advance our understanding of how neural, biomechanical, and physical systems interact to orchestrate animal behaviors. Despite the availability of near-complete reconstructions of the Drosophila melanogaster central nervous system, musculature, and exoskeleton, anatomically and physically grounded models of fly leg muscles are still missing. These models provide an indispensable bridge between motor neuron activity and joint movements. Here, we introduce the first 3D, data-driven musculoskeletal model of Drosophila legs, implemented in both OpenSim and MuJoCo simulation environments. Our model incorporates a Hill-type muscle representation based on high-resolution X-ray scans from multiple fixed specimens. We present a pipeline for constructing muscle models using morphological imaging data and for optimizing unknown muscle parameters specific to the fly. We then combine our musculoskeletal models with detailed 3D pose estimation data from behaving flies to achieve muscle-actuated behavioral replay in OpenSim. Simulations of muscle activity across diverse walking and grooming behaviors predict coordinated muscle synergies that can be tested experimentally. Furthermore, by training imitation learning policies in MuJoCo, we test the effect of different passive joint properties on learning speed and find that damping and stiffness facilitate learning. Overall, our model enables the investigation of motor control in an experimentally tractable model organism, providing insights into how biomechanics contribute to generation of complex limb movements. Moreover, our model can be used to control embodied artificial agents to generate naturalistic and compliant locomotion in simulated environments.
comment: 23 pages, 11 figures
♻ ☆ HiLight: A Hierarchical Reinforcement Learning Framework with Global Adversarial Guidance for Large-Scale Traffic Signal Control
Efficient traffic signal control (TSC) is essential for mitigating urban congestion, yet existing reinforcement learning (RL) methods face challenges in scaling to large networks while maintaining global coordination. Centralized RL suffers from scalability issues, while decentralized approaches often lack unified objectives, resulting in limited network-level efficiency. In this paper, we propose HiLight, a hierarchical reinforcement learning framework with global adversarial guidance for large-scale TSC. HiLight consists of a high-level Meta-Policy, which partitions the traffic network into subregions and generates sub-goals using a Transformer-LSTM architecture, and a low-level Sub-Policy, which controls individual intersections with global awareness. To improve the alignment between global planning and local execution, we introduce an adversarial training mechanism, where the Meta-Policy generates challenging yet informative sub-goals, and the Sub-Policy learns to surpass these targets, leading to more effective coordination. We evaluate HiLight across both synthetic and real-world benchmarks, and additionally construct a large-scale Manhattan network with diverse traffic conditions, including peak transitions, adverse weather, and holiday surges. Experimental results show that HiLight exhibits significant advantages in large-scale scenarios and remains competitive across standard benchmarks of varying sizes.
♻ ☆ MEMOIR: Lifelong Model Editing with Minimal Overwrite and Informed Retention for LLMs
Language models deployed in real-world systems often require post-hoc updates to incorporate new or corrected knowledge. However, editing such models efficiently and reliably-without retraining or forgetting previous information-remains a major challenge. Existing methods for lifelong model editing either compromise generalization, interfere with past edits, or fail to scale to long editing sequences. We propose MEMOIR, a novel scalable framework that injects knowledge through a residual memory, i.e., a dedicated parameter module, while preserving the core capabilities of the pre-trained model. By sparsifying input activations through sample-dependent masks, MEMOIR confines each edit to a distinct subset of the memory parameters, minimizing interference among edits. At inference, it identifies relevant edits by comparing the sparse activation patterns of new queries to those stored during editing. This enables generalization to rephrased queries by activating only the relevant knowledge while suppressing unnecessary memory activation for unrelated prompts. Experiments on question answering, hallucination correction, and out-of-distribution generalization benchmarks for LLaMA-3 and Mistral backbones demonstrate that MEMOIR achieves state-of-the-art performance across reliability, generalization, and locality metrics, scaling to thousands of sequential edits with minimal forgetting.
comment: The first two authors contributed equally to this work
♻ ☆ Data Matters Most: Auditing Social Bias in Contrastive Vision Language Models
Vision-language models (VLMs) deliver strong zero-shot recognition but frequently inherit social biases from their training data. We systematically disentangle three design factors -- model size, training-data scale, and training-data source -- by comparing CLIP and OpenCLIP, two models that share an identical contrastive objective yet differ in encoder width and in the image-text corpora on which they are pre-trained (400M proprietary pairs vs. 400M/2B LAION). Across balanced face-analysis benchmarks, enlarging the encoder reduces gender skew in CLIP but amplifies both gender and racial skew in OpenCLIP; increasing the LAION corpus from 400M to 2B further increases OpenCLIP bias. At matched model and data budgets, substituting proprietary data with LAION improves gender fairness while increasing racial skew, underscoring data source as the primary driver of bias patterns. We also evaluate three post-hoc, test-time debiasing strategies -- Bias Prompts, Prompt Array, and SANER. Debiasing reduces but does not eliminate harm, and its effectiveness is source- and size-dependent: Bias Prompts most effectively reduce gender skew in CLIP at smaller model sizes, whereas Prompt Array and SANER more reliably reduce racial skew in OpenCLIP; scaling LAION reconfigures which method is most fair. Taken together, these findings challenge the assumption that bigger models or datasets are automatically fairer and foreground training data source as the key determinant of both bias and mitigation efficacy. We release code and evaluation scripts to enable transparent, reproducible auditing of future VLMs.
♻ ☆ Counterfactual Probabilistic Diffusion with Expert Models
Predicting counterfactual distributions in complex dynamical systems is essential for scientific modeling and decision-making in domains such as public health and medicine. However, existing methods often rely on point estimates or purely data-driven models, which tend to falter under data scarcity. We propose a time series diffusion-based framework that incorporates guidance from imperfect expert models by extracting high-level signals to serve as structured priors for generative modeling. Our method, ODE-Diff, bridges mechanistic and data-driven approaches, enabling more reliable and interpretable causal inference. We evaluate ODE-Diff across semi-synthetic COVID-19 simulations, synthetic pharmacological dynamics, and real-world case studies, demonstrating that it consistently outperforms strong baselines in both point prediction and distributional accuracy.
♻ ☆ Breaking Language Barriers or Reinforcing Bias? A Study of Gender and Racial Disparities in Multilingual Contrastive Vision Language Models
Multilingual vision-language models (VLMs) promise universal image-text retrieval, yet their social biases remain underexplored. We perform the first systematic audit of four public multilingual CLIP variants: M-CLIP, NLLB-CLIP, CAPIVARA-CLIP, and the debiased SigLIP-2, covering ten languages that differ in resource availability and morphological gender marking. Using balanced subsets of FairFace and the PATA stereotype suite in a zero-shot setting, we quantify race and gender bias and measure stereotype amplification. Contrary to the intuition that multilinguality mitigates bias, every model exhibits stronger gender skew than its English-only baseline. CAPIVARA-CLIP shows its largest biases precisely in the low-resource languages it targets, while the shared encoder of NLLB-CLIP and SigLIP-2 transfers English gender stereotypes into gender-neutral languages; loosely coupled encoders largely avoid this leakage. Although SigLIP-2 reduces agency and communion skews, it inherits -- and in caption-sparse contexts (e.g., Xhosa) amplifies -- the English anchor's crime associations. Highly gendered languages consistently magnify all bias types, yet gender-neutral languages remain vulnerable whenever cross-lingual weight sharing imports foreign stereotypes. Aggregated metrics thus mask language-specific hot spots, underscoring the need for fine-grained, language-aware bias evaluation in future multilingual VLM research.
♻ ☆ Estimating carbon pools in the shelf sea environment: reanalysis or model-informed machine learning?
Shelf seas are important for carbon sequestration and carbon cycle, but shelf sea observations for carbon pools are often sparse, or highly uncertain. Alternative can be provided by reanalyses, but these are often expensive to run. We propose to use an ensemble of neural networks (i.e. deep ensemble) to learn from a coupled physics-biogeochemistry model the relationship between the directly observable variables and carbon pools. We demonstrate for North-West European Shelf (NWES) sea environment, that when the deep ensemble trained on a model free run simulation is applied to the NWES reanalysis, it is capable to reproduce the reanalysis outputs for carbon pools and additionally provide uncertainty information. We focus on explainability of the results and demonstrate potential use of the deep ensembles for future climate what-if scenarios. We suggest that model-informed machine learning presents a viable alternative to expensive reanalyses and could complement observations, wherever they are missing and/or highly uncertain.
comment: 24 pages, 9 figures (3 in the appendix), v2 - minor changes
Computer Vision and Pattern Recognition 129
☆ SAFT: Shape and Appearance of Fabrics from Template via Differentiable Physical Simulations from Monocular Video
The reconstruction of three-dimensional dynamic scenes is a well-established yet challenging task within the domain of computer vision. In this paper, we propose a novel approach that combines the domains of 3D geometry reconstruction and appearance estimation for physically based rendering and present a system that is able to perform both tasks for fabrics, utilizing only a single monocular RGB video sequence as input. In order to obtain realistic and high-quality deformations and renderings, a physical simulation of the cloth geometry and differentiable rendering are employed. In this paper, we introduce two novel regularization terms for the 3D reconstruction task that improve the plausibility of the reconstruction by addressing the depth ambiguity problem in monocular video. In comparison with the most recent methods in the field, we have reduced the error in the 3D reconstruction by a factor of 2.64 while requiring a medium runtime of 30 min per scene. Furthermore, the optimized motion achieves sufficient quality to perform an appearance estimation of the deforming object, recovering sharp details from this single monocular RGB video.
comment: Project page: https://cg.cs.uni-bonn.de/publication/stotko-2025-saft Video: https://www.youtube.com/watch?v=EvioNjBOARc GitHub: https://github.com/vc-bonn/saft
☆ RewardDance: Reward Scaling in Visual Generation
Reward Models (RMs) are critical for improving generation models via Reinforcement Learning (RL), yet the RM scaling paradigm in visual generation remains largely unexplored. It primarily due to fundamental limitations in existing approaches: CLIP-based RMs suffer from architectural and input modality constraints, while prevalent Bradley-Terry losses are fundamentally misaligned with the next-token prediction mechanism of Vision-Language Models (VLMs), hindering effective scaling. More critically, the RLHF optimization process is plagued by Reward Hacking issue, where models exploit flaws in the reward signal without improving true quality. To address these challenges, we introduce RewardDance, a scalable reward modeling framework that overcomes these barriers through a novel generative reward paradigm. By reformulating the reward score as the model's probability of predicting a "yes" token, indicating that the generated image outperforms a reference image according to specific criteria, RewardDance intrinsically aligns reward objectives with VLM architectures. This alignment unlocks scaling across two dimensions: (1) Model Scaling: Systematic scaling of RMs up to 26 billion parameters; (2) Context Scaling: Integration of task-specific instructions, reference examples, and chain-of-thought (CoT) reasoning. Extensive experiments demonstrate that RewardDance significantly surpasses state-of-the-art methods in text-to-image, text-to-video, and image-to-video generation. Crucially, we resolve the persistent challenge of "reward hacking": Our large-scale RMs exhibit and maintain high reward variance during RL fine-tuning, proving their resistance to hacking and ability to produce diverse, high-quality outputs. It greatly relieves the mode collapse problem that plagues smaller models.
comment: Bytedance Seed Technical Report
☆ GeneVA: A Dataset of Human Annotations for Generative Text to Video Artifacts
Recent advances in probabilistic generative models have extended capabilities from static image synthesis to text-driven video generation. However, the inherent randomness of their generation process can lead to unpredictable artifacts, such as impossible physics and temporal inconsistency. Progress in addressing these challenges requires systematic benchmarks, yet existing datasets primarily focus on generative images due to the unique spatio-temporal complexities of videos. To bridge this gap, we introduce GeneVA, a large-scale artifact dataset with rich human annotations that focuses on spatio-temporal artifacts in videos generated from natural text prompts. We hope GeneVA can enable and assist critical applications, such as benchmarking model performance and improving generative video quality.
☆ Handling Multiple Hypotheses in Coarse-to-Fine Dense Image Matching
Dense image matching aims to find a correspondent for every pixel of a source image in a partially overlapping target image. State-of-the-art methods typically rely on a coarse-to-fine mechanism where a single correspondent hypothesis is produced per source location at each scale. In challenging cases -- such as at depth discontinuities or when the target image is a strong zoom-in of the source image -- the correspondents of neighboring source locations are often widely spread and predicting a single correspondent hypothesis per source location at each scale may lead to erroneous matches. In this paper, we investigate the idea of predicting multiple correspondent hypotheses per source location at each scale instead. We consider a beam search strategy to propagat multiple hypotheses at each scale and propose integrating these multiple hypotheses into cross-attention layers, resulting in a novel dense matching architecture called BEAMER. BEAMER learns to preserve and propagate multiple hypotheses across scales, making it significantly more robust than state-of-the-art methods, especially at depth discontinuities or when the target image is a strong zoom-in of the source image.
☆ PianoVAM: A Multimodal Piano Performance Dataset
The multimodal nature of music performance has driven increasing interest in data beyond the audio domain within the music information retrieval (MIR) community. This paper introduces PianoVAM, a comprehensive piano performance dataset that includes videos, audio, MIDI, hand landmarks, fingering labels, and rich metadata. The dataset was recorded using a Disklavier piano, capturing audio and MIDI from amateur pianists during their daily practice sessions, alongside synchronized top-view videos in realistic and varied performance conditions. Hand landmarks and fingering labels were extracted using a pretrained hand pose estimation model and a semi-automated fingering annotation algorithm. We discuss the challenges encountered during data collection and the alignment process across different modalities. Additionally, we describe our fingering annotation method based on hand landmarks extracted from videos. Finally, we present benchmarking results for both audio-only and audio-visual piano transcription using the PianoVAM dataset and discuss additional potential applications.
comment: Accepted to the 26th International Society for Music Information Retrieval (ISMIR) Conference, 2025
☆ Quantifying Accuracy of an Event-Based Star Tracker via Earth's Rotation
Event-based cameras (EBCs) are a promising new technology for star tracking-based attitude determination, but prior studies have struggled to determine accurate ground truth for real data. We analyze the accuracy of an EBC star tracking system utilizing the Earth's motion as the ground truth for comparison. The Earth rotates in a regular way with very small irregularities which are measured to the level of milli-arcseconds. By keeping an event camera static and pointing it through a ground-based telescope at the night sky, we create a system where the only camera motion in the celestial reference frame is that induced by the Earth's rotation. The resulting event stream is processed to generate estimates of orientation which we compare to the International Earth Rotation and Reference System (IERS) measured orientation of the Earth. The event camera system is able to achieve a root mean squared across error of 18.47 arcseconds and an about error of 78.84 arcseconds. Combined with the other benefits of event cameras over framing sensors (reduced computation due to sparser data streams, higher dynamic range, lower energy consumption, faster update rates), this level of accuracy suggests the utility of event cameras for low-cost and low-latency star tracking. We provide all code and data used to generate our results: https://gitlab.kitware.com/nest-public/telescope_accuracy_quantification.
☆ An End-to-End Deep Learning Framework for Arsenicosis Diagnosis Using Mobile-Captured Skin Images
Background: Arsenicosis is a serious public health concern in South and Southeast Asia, primarily caused by long-term consumption of arsenic-contaminated water. Its early cutaneous manifestations are clinically significant but often underdiagnosed, particularly in rural areas with limited access to dermatologists. Automated, image-based diagnostic solutions can support early detection and timely interventions. Methods: In this study, we propose an end-to-end framework for arsenicosis diagnosis using mobile phone-captured skin images. A dataset comprising 20 classes and over 11000 images of arsenic-induced and other dermatological conditions was curated. Multiple deep learning architectures, including convolutional neural networks (CNNs) and Transformer-based models, were benchmarked for arsenicosis detection. Model interpretability was integrated via LIME and Grad-CAM, while deployment feasibility was demonstrated through a web-based diagnostic tool. Results: Transformer-based models significantly outperformed CNNs, with the Swin Transformer achieving the best results (86\\% accuracy). LIME and Grad-CAM visualizations confirmed that the models attended to lesion-relevant regions, increasing clinical transparency and aiding in error analysis. The framework also demonstrated strong performance on external validation samples, confirming its ability to generalize beyond the curated dataset. Conclusion: The proposed framework demonstrates the potential of deep learning for non-invasive, accessible, and explainable diagnosis of arsenicosis from mobile-acquired images. By enabling reliable image-based screening, it can serve as a practical diagnostic aid in rural and resource-limited communities, where access to dermatologists is scarce, thereby supporting early detection and timely intervention.
☆ Calibrating MLLM-as-a-judge via Multimodal Bayesian Prompt Ensembles ICCV 2025
Multimodal large language models (MLLMs) are increasingly used to evaluate text-to-image (TTI) generation systems, providing automated judgments based on visual and textual context. However, these "judge" models often suffer from biases, overconfidence, and inconsistent performance across diverse image domains. While prompt ensembling has shown promise for mitigating these issues in unimodal, text-only settings, our experiments reveal that standard ensembling methods fail to generalize effectively for TTI tasks. To address these limitations, we propose a new multimodal-aware method called Multimodal Mixture-of-Bayesian Prompt Ensembles (MMB). Our method uses a Bayesian prompt ensemble approach augmented by image clustering, allowing the judge to dynamically assign prompt weights based on the visual characteristics of each sample. We show that MMB improves accuracy in pairwise preference judgments and greatly enhances calibration, making it easier to gauge the judge's true uncertainty. In evaluations on two TTI benchmarks, HPSv2 and MJBench, MMB outperforms existing baselines in alignment with human annotations and calibration across varied image content. Our findings highlight the importance of multimodal-specific strategies for judge calibration and suggest a promising path forward for reliable large-scale TTI evaluation.
comment: 17 pages, 8 figures, Accepted at ICCV 2025
☆ ArgoTweak: Towards Self-Updating HD Maps through Structured Priors ICCV 2025
Reliable integration of prior information is crucial for self-verifying and self-updating HD maps. However, no public dataset includes the required triplet of prior maps, current maps, and sensor data. As a result, existing methods must rely on synthetic priors, which create inconsistencies and lead to a significant sim2real gap. To address this, we introduce ArgoTweak, the first dataset to complete the triplet with realistic map priors. At its core, ArgoTweak employs a bijective mapping framework, breaking down large-scale modifications into fine-grained atomic changes at the map element level, thus ensuring interpretability. This paradigm shift enables accurate change detection and integration while preserving unchanged elements with high fidelity. Experiments show that training models on ArgoTweak significantly reduces the sim2real gap compared to synthetic priors. Extensive ablations further highlight the impact of structured priors and detailed change annotations. By establishing a benchmark for explainable, prior-aided HD mapping, ArgoTweak advances scalable, self-improving mapping solutions. The dataset, baselines, map modification toolbox, and further resources are available at https://kth-rpl.github.io/ArgoTweak/.
comment: ICCV 2025
☆ SocialNav-SUB: Benchmarking VLMs for Scene Understanding in Social Robot Navigation
Robot navigation in dynamic, human-centered environments requires socially-compliant decisions grounded in robust scene understanding. Recent Vision-Language Models (VLMs) exhibit promising capabilities such as object recognition, common-sense reasoning, and contextual understanding-capabilities that align with the nuanced requirements of social robot navigation. However, it remains unclear whether VLMs can accurately understand complex social navigation scenes (e.g., inferring the spatial-temporal relations among agents and human intentions), which is essential for safe and socially compliant robot navigation. While some recent works have explored the use of VLMs in social robot navigation, no existing work systematically evaluates their ability to meet these necessary conditions. In this paper, we introduce the Social Navigation Scene Understanding Benchmark (SocialNav-SUB), a Visual Question Answering (VQA) dataset and benchmark designed to evaluate VLMs for scene understanding in real-world social robot navigation scenarios. SocialNav-SUB provides a unified framework for evaluating VLMs against human and rule-based baselines across VQA tasks requiring spatial, spatiotemporal, and social reasoning in social robot navigation. Through experiments with state-of-the-art VLMs, we find that while the best-performing VLM achieves an encouraging probability of agreeing with human answers, it still underperforms simpler rule-based approach and human consensus baselines, indicating critical gaps in social scene understanding of current VLMs. Our benchmark sets the stage for further research on foundation models for social robot navigation, offering a framework to explore how VLMs can be tailored to meet real-world social robot navigation needs. An overview of this paper along with the code and data can be found at https://larg.github.io/socialnav-sub .
comment: Conference on Robot Learning (CoRL) 2025 Project site: https://larg.github.io/socialnav-sub
☆ CrowdQuery: Density-Guided Query Module for Enhanced 2D and 3D Detection in Crowded Scenes IROS 2025
This paper introduces a novel method for end-to-end crowd detection that leverages object density information to enhance existing transformer-based detectors. We present CrowdQuery (CQ), whose core component is our CQ module that predicts and subsequently embeds an object density map. The embedded density information is then systematically integrated into the decoder. Existing density map definitions typically depend on head positions or object-based spatial statistics. Our method extends these definitions to include individual bounding box dimensions. By incorporating density information into object queries, our method utilizes density-guided queries to improve detection in crowded scenes. CQ is universally applicable to both 2D and 3D detection without requiring additional data. Consequently, we are the first to design a method that effectively bridges 2D and 3D detection in crowded environments. We demonstrate the integration of CQ into both a general 2D and 3D transformer-based object detector, introducing the architectures CQ2D and CQ3D. CQ is not limited to the specific transformer models we selected. Experiments on the STCrowd dataset for both 2D and 3D domains show significant performance improvements compared to the base models, outperforming most state-of-the-art methods. When integrated into a state-of-the-art crowd detector, CQ can further improve performance on the challenging CrowdHuman dataset, demonstrating its generalizability. The code is released at https://github.com/mdaehl/CrowdQuery.
comment: 8 pages, 5 figures, accepted by IROS 2025
☆ BcQLM: Efficient Vision-Language Understanding with Distilled Q-Gated Cross-Modal Fusion
As multimodal large language models (MLLMs) advance, their large-scale architectures pose challenges for deployment in resource-constrained environments. In the age of large models, where energy efficiency, computational scalability and environmental sustainability are paramount, the development of lightweight and high-performance models is critical for real-world applications. As such, we propose a lightweight MLLM framework for end-to-end visual question answering. Our proposed approach centres on BreezeCLIP, a compact yet powerful vision-language encoder optimised for efficient multimodal understanding. With only 1.2 billion parameters overall, our model significantly reduces computational cost while achieving performance comparable to standard-size MLLMs. Experiments conducted on multiple datasets further validate its effectiveness in balancing accuracy and efficiency. The modular and extensible design enables generalisation to broader multimodal tasks. The proposed lightweight vision-language framework is denoted as BcQLM (BreezeCLIP-enhanced Q-Gated Multimodal Language Model). It offers a promising path toward deployable MLLMs under practical hardware constraints. The source code is available at https://github.com/thico0224/BcQLM.
☆ Computational Imaging for Enhanced Computer Vision
This paper presents a comprehensive survey of computational imaging (CI) techniques and their transformative impact on computer vision (CV) applications. Conventional imaging methods often fail to deliver high-fidelity visual data in challenging conditions, such as low light, motion blur, or high dynamic range scenes, thereby limiting the performance of state-of-the-art CV systems. Computational imaging techniques, including light field imaging, high dynamic range (HDR) imaging, deblurring, high-speed imaging, and glare mitigation, address these limitations by enhancing image acquisition and reconstruc- tion processes. This survey systematically explores the synergies between CI techniques and core CV tasks, including object detection, depth estimation, optical flow, face recognition, and keypoint detection. By analyzing the relationships between CI methods and their practical contributions to CV applications, this work highlights emerging opportunities, challenges, and future research directions. We emphasize the potential for task-specific, adaptive imaging pipelines that improve robustness, accuracy, and efficiency in real-world scenarios, such as autonomous navigation, surveillance, augmented reality, and robotics.
☆ TANGO: Traversability-Aware Navigation with Local Metric Control for Topological Goals ICRA 2025
Visual navigation in robotics traditionally relies on globally-consistent 3D maps or learned controllers, which can be computationally expensive and difficult to generalize across diverse environments. In this work, we present a novel RGB-only, object-level topometric navigation pipeline that enables zero-shot, long-horizon robot navigation without requiring 3D maps or pre-trained controllers. Our approach integrates global topological path planning with local metric trajectory control, allowing the robot to navigate towards object-level sub-goals while avoiding obstacles. We address key limitations of previous methods by continuously predicting local trajectory using monocular depth and traversability estimation, and incorporating an auto-switching mechanism that falls back to a baseline controller when necessary. The system operates using foundational models, ensuring open-set applicability without the need for domain-specific fine-tuning. We demonstrate the effectiveness of our method in both simulated environments and real-world tests, highlighting its robustness and deployability. Our approach outperforms existing state-of-the-art methods, offering a more adaptable and effective solution for visual navigation in open-set environments. The source code is made publicly available: https://github.com/podgorki/TANGO.
comment: 9 pages, 5 figures, ICRA 2025
☆ Multi-Modal Robust Enhancement for Coastal Water Segmentation: A Systematic HSV-Guided Framework
Coastal water segmentation from satellite imagery presents unique challenges due to complex spectral characteristics and irregular boundary patterns. Traditional RGB-based approaches often suffer from training instability and poor generalization in diverse maritime environments. This paper introduces a systematic robust enhancement framework, referred to as Robust U-Net, that leverages HSV color space supervision and multi-modal constraints for improved coastal water segmentation. Our approach integrates five synergistic components: HSV-guided color supervision, gradient-based coastline optimization, morphological post-processing, sea area cleanup, and connectivity control. Through comprehensive ablation studies, we demonstrate that HSV supervision provides the highest impact (0.85 influence score), while the complete framework achieves superior training stability (84\% variance reduction) and enhanced segmentation quality. Our method shows consistent improvements across multiple evaluation metrics while maintaining computational efficiency. For reproducibility, our training configurations and code are available here: https://github.com/UofgCoastline/ICASSP-2026-Robust-Unet.
☆ FractalPINN-Flow: A Fractal-Inspired Network for Unsupervised Optical Flow Estimation with Total Variation Regularization
We present FractalPINN-Flow, an unsupervised deep learning framework for dense optical flow estimation that learns directly from consecutive grayscale frames without requiring ground truth. The architecture centers on the Fractal Deformation Network (FDN) - a recursive encoder-decoder inspired by fractal geometry and self-similarity. Unlike traditional CNNs with sequential downsampling, FDN uses repeated encoder-decoder nesting with skip connections to capture both fine-grained details and long-range motion patterns. The training objective is based on a classical variational formulation using total variation (TV) regularization. Specifically, we minimize an energy functional that combines $L^1$ and $L^2$ data fidelity terms to enforce brightness constancy, along with a TV term that promotes spatial smoothness and coherent flow fields. Experiments on synthetic and benchmark datasets show that FractalPINN-Flow produces accurate, smooth, and edge-preserving optical flow fields. The model is especially effective for high-resolution data and scenarios with limited annotations.
☆ Skeleton-based sign language recognition using a dual-stream spatio-temporal dynamic graph convolutional network ICASSP
Isolated Sign Language Recognition (ISLR) is challenged by gestures that are morphologically similar yet semantically distinct, a problem rooted in the complex interplay between hand shape and motion trajectory. Existing methods, often relying on a single reference frame, struggle to resolve this geometric ambiguity. This paper introduces Dual-SignLanguageNet (DSLNet), a dual-reference, dual-stream architecture that decouples and models gesture morphology and trajectory in separate, complementary coordinate systems. Our approach utilizes a wrist-centric frame for view-invariant shape analysis and a facial-centric frame for context-aware trajectory modeling. These streams are processed by specialized networks-a topology-aware graph convolution for shape and a Finsler geometry-based encoder for trajectory-and are integrated via a geometry-driven optimal transport fusion mechanism. DSLNet sets a new state-of-the-art, achieving 93.70%, 89.97% and 99.79% accuracy on the challenging WLASL-100, WLASL-300 and LSA64 datasets, respectively, with significantly fewer parameters than competing models.
comment: 5 pages, 3 figures, ICASSP
☆ X-Part: high fidelity and structure coherent shape decomposition
Generating 3D shapes at part level is pivotal for downstream applications such as mesh retopology, UV mapping, and 3D printing. However, existing part-based generation methods often lack sufficient controllability and suffer from poor semantically meaningful decomposition. To this end, we introduce X-Part, a controllable generative model designed to decompose a holistic 3D object into semantically meaningful and structurally coherent parts with high geometric fidelity. X-Part exploits the bounding box as prompts for the part generation and injects point-wise semantic features for meaningful decomposition. Furthermore, we design an editable pipeline for interactive part generation. Extensive experimental results show that X-Part achieves state-of-the-art performance in part-level shape generation. This work establishes a new paradigm for creating production-ready, editable, and structurally sound 3D assets. Codes will be released for public research.
comment: Tech Report
☆ RoentMod: A Synthetic Chest X-Ray Modification Model to Identify and Correct Image Interpretation Model Shortcuts
Chest radiographs (CXRs) are among the most common tests in medicine. Automated image interpretation may reduce radiologists\' workload and expand access to diagnostic expertise. Deep learning multi-task and foundation models have shown strong performance for CXR interpretation but are vulnerable to shortcut learning, where models rely on spurious and off-target correlations rather than clinically relevant features to make decisions. We introduce RoentMod, a counterfactual image editing framework that generates anatomically realistic CXRs with user-specified, synthetic pathology while preserving unrelated anatomical features of the original scan. RoentMod combines an open-source medical image generator (RoentGen) with an image-to-image modification model without requiring retraining. In reader studies with board-certified radiologists and radiology residents, RoentMod-produced images appeared realistic in 93\% of cases, correctly incorporated the specified finding in 89-99\% of cases, and preserved native anatomy comparable to real follow-up CXRs. Using RoentMod, we demonstrate that state-of-the-art multi-task and foundation models frequently exploit off-target pathology as shortcuts, limiting their specificity. Incorporating RoentMod-generated counterfactual images during training mitigated this vulnerability, improving model discrimination across multiple pathologies by 3-19\% AUC in internal validation and by 1-11\% for 5 out of 6 tested pathologies in external testing. These findings establish RoentMod as a broadly applicable tool for probing and correcting shortcut learning in medical AI. By enabling controlled counterfactual interventions, RoentMod enhances the robustness and interpretability of CXR interpretation models and provides a generalizable strategy for improving foundation models in medical imaging.
comment: 25 + 8 pages, 4 + 7 figures
☆ LADB: Latent Aligned Diffusion Bridges for Semi-Supervised Domain Translation
Diffusion models excel at generating high-quality outputs but face challenges in data-scarce domains, where exhaustive retraining or costly paired data are often required. To address these limitations, we propose Latent Aligned Diffusion Bridges (LADB), a semi-supervised framework for sample-to-sample translation that effectively bridges domain gaps using partially paired data. By aligning source and target distributions within a shared latent space, LADB seamlessly integrates pretrained source-domain diffusion models with a target-domain Latent Aligned Diffusion Model (LADM), trained on partially paired latent representations. This approach enables deterministic domain mapping without the need for full supervision. Compared to unpaired methods, which often lack controllability, and fully paired approaches that require large, domain-specific datasets, LADB strikes a balance between fidelity and diversity by leveraging a mixture of paired and unpaired latent-target couplings. Our experimental results demonstrate superior performance in depth-to-image translation under partial supervision. Furthermore, we extend LADB to handle multi-source translation (from depth maps and segmentation masks) and multi-target translation in a class-conditioned style transfer task, showcasing its versatility in handling diverse and heterogeneous use cases. Ultimately, we present LADB as a scalable and versatile solution for real-world domain translation, particularly in scenarios where data annotation is costly or incomplete.
☆ UOPSL: Unpaired OCT Predilection Sites Learning for Fundus Image Diagnosis Augmentation
Significant advancements in AI-driven multimodal medical image diagnosis have led to substantial improvements in ophthalmic disease identification in recent years. However, acquiring paired multimodal ophthalmic images remains prohibitively expensive. While fundus photography is simple and cost-effective, the limited availability of OCT data and inherent modality imbalance hinder further progress. Conventional approaches that rely solely on fundus or textual features often fail to capture fine-grained spatial information, as each imaging modality provides distinct cues about lesion predilection sites. In this study, we propose a novel unpaired multimodal framework \UOPSL that utilizes extensive OCT-derived spatial priors to dynamically identify predilection sites, enhancing fundus image-based disease recognition. Our approach bridges unpaired fundus and OCTs via extended disease text descriptions. Initially, we employ contrastive learning on a large corpus of unpaired OCT and fundus images while simultaneously learning the predilection sites matrix in the OCT latent space. Through extensive optimization, this matrix captures lesion localization patterns within the OCT feature space. During the fine-tuning or inference phase of the downstream classification task based solely on fundus images, where paired OCT data is unavailable, we eliminate OCT input and utilize the predilection sites matrix to assist in fundus image classification learning. Extensive experiments conducted on 9 diverse datasets across 28 critical categories demonstrate that our framework outperforms existing benchmarks.
comment: BIBM
☆ AdsQA: Towards Advertisement Video Understanding ICCV-2025
Large language models (LLMs) have taken a great step towards AGI. Meanwhile, an increasing number of domain-specific problems such as math and programming boost these general-purpose models to continuously evolve via learning deeper expertise. Now is thus the time further to extend the diversity of specialized applications for knowledgeable LLMs, though collecting high quality data with unexpected and informative tasks is challenging. In this paper, we propose to use advertisement (ad) videos as a challenging test-bed to probe the ability of LLMs in perceiving beyond the objective physical content of common visual domain. Our motivation is to take full advantage of the clue-rich and information-dense ad videos' traits, e.g., marketing logic, persuasive strategies, and audience engagement. Our contribution is three-fold: (1) To our knowledge, this is the first attempt to use ad videos with well-designed tasks to evaluate LLMs. We contribute AdsQA, a challenging ad Video QA benchmark derived from 1,544 ad videos with 10,962 clips, totaling 22.7 hours, providing 5 challenging tasks. (2) We propose ReAd-R, a Deepseek-R1 styled RL model that reflects on questions, and generates answers via reward-driven optimization. (3) We benchmark 14 top-tier LLMs on AdsQA, and our \texttt{ReAd-R}~achieves the state-of-the-art outperforming strong competitors equipped with long-chain reasoning capabilities by a clear margin.
comment: ICCV-2025
☆ CLAPS: A CLIP-Unified Auto-Prompt Segmentation for Multi-Modal Retinal Imaging
Recent advancements in foundation models, such as the Segment Anything Model (SAM), have significantly impacted medical image segmentation, especially in retinal imaging, where precise segmentation is vital for diagnosis. Despite this progress, current methods face critical challenges: 1) modality ambiguity in textual disease descriptions, 2) a continued reliance on manual prompting for SAM-based workflows, and 3) a lack of a unified framework, with most methods being modality- and task-specific. To overcome these hurdles, we propose CLIP-unified Auto-Prompt Segmentation (\CLAPS), a novel method for unified segmentation across diverse tasks and modalities in retinal imaging. Our approach begins by pre-training a CLIP-based image encoder on a large, multi-modal retinal dataset to handle data scarcity and distribution imbalance. We then leverage GroundingDINO to automatically generate spatial bounding box prompts by detecting local lesions. To unify tasks and resolve ambiguity, we use text prompts enhanced with a unique "modality signature" for each imaging modality. Ultimately, these automated textual and spatial prompts guide SAM to execute precise segmentation, creating a fully automated and unified pipeline. Extensive experiments on 12 diverse datasets across 11 critical segmentation categories show that CLAPS achieves performance on par with specialized expert models while surpassing existing benchmarks across most metrics, demonstrating its broad generalizability as a foundation model.
comment: BIBM
☆ CNN-ViT Hybrid for Pneumonia Detection: Theory and Empiric on Limited Data without Pretraining
This research explored the hybridization of CNN and ViT within a training dataset of limited size, and introduced a distinct class imbalance. The training was made from scratch with a mere focus on theoretically and experimentally exploring the architectural strengths of the proposed hybrid model. Experiments were conducted across varied data fractions with balanced and imbalanced training datasets. Comparatively, the hybrid model, complementing the strengths of CNN and ViT, achieved the highest recall of 0.9443 (50% data fraction in balanced) and consistency in F1 score around 0.85, suggesting reliability in diagnosis. Additionally, the model was successful in outperforming CNN and ViT in imbalanced datasets. Despite its complex architecture, it required comparable training time to the transformers in all data fractions.
comment: 8 pages, 5 Tables, 5 Figures. Manuscript submitted to ICOIICS 2025 Conference. Currently, under peer review
☆ EfficientIML: Efficient High-Resolution Image Manipulation Localization
With imaging devices delivering ever-higher resolutions and the emerging diffusion-based forgery methods, current detectors trained only on traditional datasets (with splicing, copy-moving and object removal forgeries) lack exposure to this new manipulation type. To address this, we propose a novel high-resolution SIF dataset of 1200+ diffusion-generated manipulations with semantically extracted masks. However, this also imposes a challenge on existing methods, as they face significant computational resource constraints due to their prohibitive computational complexities. Therefore, we propose a novel EfficientIML model with a lightweight, three-stage EfficientRWKV backbone. EfficientRWKV's hybrid state-space and attention network captures global context and local details in parallel, while a multi-scale supervision strategy enforces consistency across hierarchical predictions. Extensive evaluations on our dataset and standard benchmarks demonstrate that our approach outperforms ViT-based and other SOTA lightweight baselines in localization performance, FLOPs and inference speed, underscoring its suitability for real-time forensic applications.
☆ Implicit Shape-Prior for Few-Shot Assisted 3D Segmentation
The objective of this paper is to significantly reduce the manual workload required from medical professionals in complex 3D segmentation tasks that cannot be yet fully automated. For instance, in radiotherapy planning, organs at risk must be accurately identified in computed tomography (CT) or magnetic resonance imaging (MRI) scans to ensure they are spared from harmful radiation. Similarly, diagnosing age-related degenerative diseases such as sarcopenia, which involve progressive muscle volume loss and strength, is commonly based on muscular mass measurements often obtained from manual segmentation of medical volumes. To alleviate the manual-segmentation burden, this paper introduces an implicit shape prior to segment volumes from sparse slice manual annotations generalized to the multi-organ case, along with a simple framework for automatically selecting the most informative slices to guide and minimize the next interactions. The experimental validation shows the method's effectiveness on two medical use cases: assisted segmentation in the context of at risks organs for brain cancer patients, and acceleration of the creation of a new database with unseen muscle shapes for patients with sarcopenia.
comment: Both first Authors contributed equally to this work, lastnames in alphabetical order. This preprint has not undergone peer review or any post-submission improvements or corrections. The Version of Record of this contribution will be published in a Springer Nature Computer Science book series (CCIS, LNAI, LNBI, LNBIP, LNCS) and the doi will soon be released
☆ Improving Greenland Bed Topography Mapping with Uncertainty-Aware Graph Learning on Sparse Radar Data
Accurate maps of Greenland's subglacial bed are essential for sea-level projections, but radar observations are sparse and uneven. We introduce GraphTopoNet, a graph-learning framework that fuses heterogeneous supervision and explicitly models uncertainty via Monte Carlo dropout. Spatial graphs built from surface observables (elevation, velocity, mass balance) are augmented with gradient features and polynomial trends to capture both local variability and broad structure. To handle data gaps, we employ a hybrid loss that combines confidence-weighted radar supervision with dynamically balanced regularization. Applied to three Greenland subregions, GraphTopoNet outperforms interpolation, convolutional, and graph-based baselines, reducing error by up to 60 percent while preserving fine-scale glacial features. The resulting bed maps improve reliability for operational modeling, supporting agencies engaged in climate forecasting and policy. More broadly, GraphTopoNet shows how graph machine learning can convert sparse, uncertain geophysical observations into actionable knowledge at continental scale.
☆ Vision-Language Semantic Aggregation Leveraging Foundation Model for Generalizable Medical Image Segmentation
Multimodal models have achieved remarkable success in natural image segmentation, yet they often underperform when applied to the medical domain. Through extensive study, we attribute this performance gap to the challenges of multimodal fusion, primarily the significant semantic gap between abstract textual prompts and fine-grained medical visual features, as well as the resulting feature dispersion. To address these issues, we revisit the problem from the perspective of semantic aggregation. Specifically, we propose an Expectation-Maximization (EM) Aggregation mechanism and a Text-Guided Pixel Decoder. The former mitigates feature dispersion by dynamically clustering features into compact semantic centers to enhance cross-modal correspondence. The latter is designed to bridge the semantic gap by leveraging domain-invariant textual knowledge to effectively guide deep visual representations. The synergy between these two mechanisms significantly improves the model's generalization ability. Extensive experiments on public cardiac and fundus datasets demonstrate that our method consistently outperforms existing SOTA approaches across multiple domain generalization benchmarks.
comment: 29 pages and 8 figures
☆ ViewSparsifier: Killing Redundancy in Multi-View Plant Phenotyping
Plant phenotyping involves analyzing observable characteristics of plants to better understand their growth, health, and development. In the context of deep learning, this analysis is often approached through single-view classification or regression models. However, these methods often fail to capture all information required for accurate estimation of target phenotypic traits, which can adversely affect plant health assessment and harvest readiness prediction. To address this, the Growth Modelling (GroMo) Grand Challenge at ACM Multimedia 2025 provides a multi-view dataset featuring multiple plants and two tasks: Plant Age Prediction and Leaf Count Estimation. Each plant is photographed from multiple heights and angles, leading to significant overlap and redundancy in the captured information. To learn view-invariant embeddings, we incorporate 24 views, referred to as the selection vector, in a random selection. Our ViewSparsifier approach won both tasks. For further improvement and as a direction for future research, we also experimented with randomized view selection across all five height levels (120 views total), referred to as selection matrices.
☆ MESH -- Understanding Videos Like Human: Measuring Hallucinations in Large Video Models
Large Video Models (LVMs) build on the semantic capabilities of Large Language Models (LLMs) and vision modules by integrating temporal information to better understand dynamic video content. Despite their progress, LVMs are prone to hallucinations-producing inaccurate or irrelevant descriptions. Current benchmarks for video hallucination depend heavily on manual categorization of video content, neglecting the perception-based processes through which humans naturally interpret videos. We introduce MESH, a benchmark designed to evaluate hallucinations in LVMs systematically. MESH uses a Question-Answering framework with binary and multi-choice formats incorporating target and trap instances. It follows a bottom-up approach, evaluating basic objects, coarse-to-fine subject features, and subject-action pairs, aligning with human video understanding. We demonstrate that MESH offers an effective and comprehensive approach for identifying hallucinations in videos. Our evaluations show that while LVMs excel at recognizing basic objects and features, their susceptibility to hallucinations increases markedly when handling fine details or aligning multiple actions involving various subjects in longer videos.
☆ HuMo: Human-Centric Video Generation via Collaborative Multi-Modal Conditioning
Human-Centric Video Generation (HCVG) methods seek to synthesize human videos from multimodal inputs, including text, image, and audio. Existing methods struggle to effectively coordinate these heterogeneous modalities due to two challenges: the scarcity of training data with paired triplet conditions and the difficulty of collaborating the sub-tasks of subject preservation and audio-visual sync with multimodal inputs. In this work, we present HuMo, a unified HCVG framework for collaborative multimodal control. For the first challenge, we construct a high-quality dataset with diverse and paired text, reference images, and audio. For the second challenge, we propose a two-stage progressive multimodal training paradigm with task-specific strategies. For the subject preservation task, to maintain the prompt following and visual generation abilities of the foundation model, we adopt the minimal-invasive image injection strategy. For the audio-visual sync task, besides the commonly adopted audio cross-attention layer, we propose a focus-by-predicting strategy that implicitly guides the model to associate audio with facial regions. For joint learning of controllabilities across multimodal inputs, building on previously acquired capabilities, we progressively incorporate the audio-visual sync task. During inference, for flexible and fine-grained multimodal control, we design a time-adaptive Classifier-Free Guidance strategy that dynamically adjusts guidance weights across denoising steps. Extensive experimental results demonstrate that HuMo surpasses specialized state-of-the-art methods in sub-tasks, establishing a unified framework for collaborative multimodal-conditioned HCVG. Project Page: https://phantom-video.github.io/HuMo.
☆ Chirality in Action: Time-Aware Video Representation Learning by Latent Straightening
Our objective is to develop compact video representations that are sensitive to visual change over time. To measure such time-sensitivity, we introduce a new task: chiral action recognition, where one needs to distinguish between a pair of temporally opposite actions, such as "opening vs. closing a door", "approaching vs. moving away from something", "folding vs. unfolding paper", etc. Such actions (i) occur frequently in everyday life, (ii) require understanding of simple visual change over time (in object state, size, spatial position, count . . . ), and (iii) are known to be poorly represented by many video embeddings. Our goal is to build time aware video representations which offer linear separability between these chiral pairs. To that end, we propose a self-supervised adaptation recipe to inject time-sensitivity into a sequence of frozen image features. Our model is based on an auto-encoder with a latent space with inductive bias inspired by perceptual straightening. We show that this results in a compact but time-sensitive video representation for the proposed task across three datasets: Something-Something, EPIC-Kitchens, and Charade. Our method (i) outperforms much larger video models pre-trained on large-scale video datasets, and (ii) leads to an improvement in classification performance on standard benchmarks when combined with these existing models.
comment: 24 pages, 10 figures
☆ A Structured Review of Underwater Object Detection Challenges and Solutions: From Traditional to Large Vision Language Models
Underwater object detection (UOD) is vital to diverse marine applications, including oceanographic research, underwater robotics, and marine conservation. However, UOD faces numerous challenges that compromise its performance. Over the years, various methods have been proposed to address these issues, but they often fail to fully capture the complexities of underwater environments. This review systematically categorizes UOD challenges into five key areas: Image quality degradation, target-related issues, data-related challenges, computational and processing constraints, and limitations in detection methodologies. To address these challenges, we analyze the progression from traditional image processing and object detection techniques to modern approaches. Additionally, we explore the potential of large vision-language models (LVLMs) in UOD, leveraging their multi-modal capabilities demonstrated in other domains. We also present case studies, including synthetic dataset generation using DALL-E 3 and fine-tuning Florence-2 LVLM for UOD. This review identifies three key insights: (i) Current UOD methods are insufficient to fully address challenges like image degradation and small object detection in dynamic underwater environments. (ii) Synthetic data generation using LVLMs shows potential for augmenting datasets but requires further refinement to ensure realism and applicability. (iii) LVLMs hold significant promise for UOD, but their real-time application remains under-explored, requiring further research on optimization techniques.
comment: 72 Pages, 11 Figures
Prompt-Driven Image Analysis with Multimodal Generative AI: Detection, Segmentation, Inpainting, and Interpretation
Prompt-driven image analysis converts a single natural-language instruction into multiple steps: locate, segment, edit, and describe. We present a practical case study of a unified pipeline that combines open-vocabulary detection, promptable segmentation, text-conditioned inpainting, and vision-language description into a single workflow. The system works end to end from a single prompt, retains intermediate artifacts for transparent debugging (such as detections, masks, overlays, edited images, and before and after composites), and provides the same functionality through an interactive UI and a scriptable CLI for consistent, repeatable runs. We highlight integration choices that reduce brittleness, including threshold adjustments, mask inspection with light morphology, and resource-aware defaults. In a small, single-word prompt segment, detection and segmentation produced usable masks in over 90% of cases with an accuracy above 85% based on our criteria. On a high-end GPU, inpainting makes up 60 to 75% of total runtime under typical guidance and sampling settings, which highlights the need for careful tuning. The study offers implementation-guided advice on thresholds, mask tightness, and diffusion parameters, and details version pinning, artifact logging, and seed control to support replay. Our contribution is a transparent, reliable pattern for assembling modern vision and multimodal models behind a single prompt, with clear guardrails and operational practices that improve reliability in object replacement, scene augmentation, and removal.
comment: 14 pages. Preprint
☆ Maximally Useful and Minimally Redundant: The Key to Self Supervised Learning for Imbalanced Data
The robustness of contrastive self-supervised learning (CSSL) for imbalanced datasets is largely unexplored. CSSL usually makes use of \emph{multi-view} assumptions to learn discriminatory features via similar and dissimilar data samples. CSSL works well on balanced datasets, but does not generalize well for imbalanced datasets. In a very recent paper, as part of future work, Yann LeCun pointed out that the self-supervised multiview framework can be extended to cases involving \emph{more than two views}. Taking a cue from this insight we propose a theoretical justification based on the concept of \emph{mutual information} to support the \emph{more than two views} objective and apply it to the problem of dataset imbalance in self-supervised learning. The proposed method helps extract representative characteristics of the tail classes by segregating between \emph{intra} and \emph{inter} discriminatory characteristics. We introduce a loss function that helps us to learn better representations by filtering out extreme features. Experimental evaluation on a variety of self-supervised frameworks (both contrastive and non-contrastive) also prove that the \emph{more than two view} objective works well for imbalanced datasets. We achieve a new state-of-the-art accuracy in self-supervised imbalanced dataset classification (2\% improvement in Cifar10-LT using Resnet-18, 5\% improvement in Cifar100-LT using Resnet-18, 3\% improvement in Imagenet-LT (1k) using Resnet-50).
☆ Adapting Vision-Language Models for Neutrino Event Classification in High-Energy Physics
Recent advances in Large Language Models (LLMs) have demonstrated their remarkable capacity to process and reason over structured and unstructured data modalities beyond natural language. In this work, we explore the applications of Vision Language Models (VLMs), specifically a fine-tuned variant of LLaMa 3.2, to the task of identifying neutrino interactions in pixelated detector data from high-energy physics (HEP) experiments. We benchmark this model against a state-of-the-art convolutional neural network (CNN) architecture, similar to those used in the NOvA and DUNE experiments, which have achieved high efficiency and purity in classifying electron and muon neutrino events. Our evaluation considers both the classification performance and interpretability of the model predictions. We find that VLMs can outperform CNNs, while also providing greater flexibility in integrating auxiliary textual or semantic information and offering more interpretable, reasoning-based predictions. This work highlights the potential of VLMs as a general-purpose backbone for physics event classification, due to their high performance, interpretability, and generalizability, which opens new avenues for integrating multimodal reasoning in experimental neutrino physics.
☆ First-order State Space Model for Lightweight Image Super-resolution ICASSP 2025
State space models (SSMs), particularly Mamba, have shown promise in NLP tasks and are increasingly applied to vision tasks. However, most Mamba-based vision models focus on network architecture and scan paths, with little attention to the SSM module. In order to explore the potential of SSMs, we modified the calculation process of SSM without increasing the number of parameters to improve the performance on lightweight super-resolution tasks. In this paper, we introduce the First-order State Space Model (FSSM) to improve the original Mamba module, enhancing performance by incorporating token correlations. We apply a first-order hold condition in SSMs, derive the new discretized form, and analyzed cumulative error. Extensive experimental results demonstrate that FSSM improves the performance of MambaIR on five benchmark datasets without additionally increasing the number of parameters, and surpasses current lightweight SR methods, achieving state-of-the-art results.
comment: Accept by ICASSP 2025 (Oral)
☆ Spherical Brownian Bridge Diffusion Models for Conditional Cortical Thickness Forecasting
Accurate forecasting of individualized, high-resolution cortical thickness (CTh) trajectories is essential for detecting subtle cortical changes, providing invaluable insights into neurodegenerative processes and facilitating earlier and more precise intervention strategies. However, CTh forecasting is a challenging task due to the intricate non-Euclidean geometry of the cerebral cortex and the need to integrate multi-modal data for subject-specific predictions. To address these challenges, we introduce the Spherical Brownian Bridge Diffusion Model (SBDM). Specifically, we propose a bidirectional conditional Brownian bridge diffusion process to forecast CTh trajectories at the vertex level of registered cortical surfaces. Our technical contribution includes a new denoising model, the conditional spherical U-Net (CoS-UNet), which combines spherical convolutions and dense cross-attention to integrate cortical surfaces and tabular conditions seamlessly. Compared to previous approaches, SBDM achieves significantly reduced prediction errors, as demonstrated by our experiments based on longitudinal datasets from the ADNI and OASIS. Additionally, we demonstrate SBDM's ability to generate individual factual and counterfactual CTh trajectories, offering a novel framework for exploring hypothetical scenarios of cortical development.
☆ Beyond Distribution Shifts: Adaptive Hyperspectral Image Classification at Test Time
Hyperspectral image (HSI) classification models are highly sensitive to distribution shifts caused by various real-world degradations such as noise, blur, compression, and atmospheric effects. To address this challenge, we propose HyperTTA, a unified framework designed to enhance model robustness under diverse degradation conditions. Specifically, we first construct a multi-degradation hyperspectral dataset that systematically simulates nine representative types of degradations, providing a comprehensive benchmark for robust classification evaluation. Based on this, we design a spectral-spatial transformer classifier (SSTC) enhanced with a multi-level receptive field mechanism and label smoothing regularization to jointly capture multi-scale spatial context and improve generalization. Furthermore, HyperTTA incorporates a lightweight test-time adaptation (TTA) strategy, the confidence-aware entropy-minimized LayerNorm adapter (CELA), which updates only the affine parameters of LayerNorm layers by minimizing prediction entropy on high-confidence unlabeled target samples. This confidence-aware adaptation prevents unreliable updates from noisy predictions, enabling robust and dynamic adaptation without access to source data or target annotations. Extensive experiments on two benchmark datasets demonstrate that HyperTTA outperforms existing baselines across a wide range of degradation scenarios, validating the effectiveness of both its classification backbone and the proposed TTA scheme. Code will be made available publicly.
☆ LD-ViCE: Latent Diffusion Model for Video Counterfactual Explanations
Video-based AI systems are increasingly adopted in safety-critical domains such as autonomous driving and healthcare. However, interpreting their decisions remains challenging due to the inherent spatiotemporal complexity of video data and the opacity of deep learning models. Existing explanation techniques often suffer from limited temporal coherence, insufficient robustness, and a lack of actionable causal insights. Current counterfactual explanation methods typically do not incorporate guidance from the target model, reducing semantic fidelity and practical utility. We introduce Latent Diffusion for Video Counterfactual Explanations (LD-ViCE), a novel framework designed to explain the behavior of video-based AI models. Compared to previous approaches, LD-ViCE reduces the computational costs of generating explanations by operating in latent space using a state-of-the-art diffusion model, while producing realistic and interpretable counterfactuals through an additional refinement step. Our experiments demonstrate the effectiveness of LD-ViCE across three diverse video datasets, including EchoNet-Dynamic (cardiac ultrasound), FERV39k (facial expression), and Something-Something V2 (action recognition). LD-ViCE outperforms a recent state-of-the-art method, achieving an increase in R2 score of up to 68% while reducing inference time by half. Qualitative analysis confirms that LD-ViCE generates semantically meaningful and temporally coherent explanations, offering valuable insights into the target model behavior. LD-ViCE represents a valuable step toward the trustworthy deployment of AI in safety-critical domains.
comment: 30 pages
☆ Sparse BEV Fusion with Self-View Consistency for Multi-View Detection and Tracking
Multi-View Multi-Object Tracking (MVMOT) is essential for applications such as surveillance, autonomous driving, and sports analytics. However, maintaining consistent object identities across multiple cameras remains challenging due to viewpoint changes, lighting variations, and occlusions, which often lead to tracking errors.Recent methods project features from multiple cameras into a unified Bird's-Eye-View (BEV) space to improve robustness against occlusion. However, this projection introduces feature distortion and non-uniform density caused by variations in object scale with distance. These issues degrade the quality of the fused representation and reduce detection and tracking accuracy.To address these problems, we propose SCFusion, a framework that combines three techniques to improve multi-view feature integration. First, it applies a sparse transformation to avoid unnatural interpolation during projection. Next, it performs density-aware weighting to adaptively fuse features based on spatial confidence and camera distance. Finally, it introduces a multi-view consistency loss that encourages each camera to learn discriminative features independently before fusion.Experiments show that SCFusion achieves state-of-the-art performance, reaching an IDF1 score of 95.9% on WildTrack and a MODP of 89.2% on MultiviewX, outperforming the baseline method TrackTacular. These results demonstrate that SCFusion effectively mitigates the limitations of conventional BEV projection and provides a robust and accurate solution for multi-view object detection and tracking.
☆ VRAE: Vertical Residual Autoencoder for License Plate Denoising and Deblurring
In real-world traffic surveillance, vehicle images captured under adverse weather, poor lighting, or high-speed motion often suffer from severe noise and blur. Such degradations significantly reduce the accuracy of license plate recognition systems, especially when the plate occupies only a small region within the full vehicle image. Restoring these degraded images a fast realtime manner is thus a crucial pre-processing step to enhance recognition performance. In this work, we propose a Vertical Residual Autoencoder (VRAE) architecture designed for the image enhancement task in traffic surveillance. The method incorporates an enhancement strategy that employs an auxiliary block, which injects input-aware features at each encoding stage to guide the representation learning process, enabling better general information preservation throughout the network compared to conventional autoencoders. Experiments on a vehicle image dataset with visible license plates demonstrate that our method consistently outperforms Autoencoder (AE), Generative Adversarial Network (GAN), and Flow-Based (FB) approaches. Compared with AE at the same depth, it improves PSNR by about 20\%, reduces NMSE by around 50\%, and enhances SSIM by 1\%, while requiring only a marginal increase of roughly 1\% in parameters.
☆ Semantic Causality-Aware Vision-Based 3D Occupancy Prediction ICCV 2025
Vision-based 3D semantic occupancy prediction is a critical task in 3D vision that integrates volumetric 3D reconstruction with semantic understanding. Existing methods, however, often rely on modular pipelines. These modules are typically optimized independently or use pre-configured inputs, leading to cascading errors. In this paper, we address this limitation by designing a novel causal loss that enables holistic, end-to-end supervision of the modular 2D-to-3D transformation pipeline. Grounded in the principle of 2D-to-3D semantic causality, this loss regulates the gradient flow from 3D voxel representations back to the 2D features. Consequently, it renders the entire pipeline differentiable, unifying the learning process and making previously non-trainable components fully learnable. Building on this principle, we propose the Semantic Causality-Aware 2D-to-3D Transformation, which comprises three components guided by our causal loss: Channel-Grouped Lifting for adaptive semantic mapping, Learnable Camera Offsets for enhanced robustness against camera perturbations, and Normalized Convolution for effective feature propagation. Extensive experiments demonstrate that our method achieves state-of-the-art performance on the Occ3D benchmark, demonstrating significant robustness to camera perturbations and improved 2D-to-3D semantic consistency.
comment: ICCV 2025
☆ Bitrate-Controlled Diffusion for Disentangling Motion and Content in Video
We propose a novel and general framework to disentangle video data into its dynamic motion and static content components. Our proposed method is a self-supervised pipeline with less assumptions and inductive biases than previous works: it utilizes a transformer-based architecture to jointly generate flexible implicit features for frame-wise motion and clip-wise content, and incorporates a low-bitrate vector quantization as an information bottleneck to promote disentanglement and form a meaningful discrete motion space. The bitrate-controlled latent motion and content are used as conditional inputs to a denoising diffusion model to facilitate self-supervised representation learning. We validate our disentangled representation learning framework on real-world talking head videos with motion transfer and auto-regressive motion generation tasks. Furthermore, we also show that our method can generalize to other types of video data, such as pixel sprites of 2D cartoon characters. Our work presents a new perspective on self-supervised learning of disentangled video representations, contributing to the broader field of video analysis and generation.
☆ InsFusion: Rethink Instance-level LiDAR-Camera Fusion for 3D Object Detection
Three-dimensional Object Detection from multi-view cameras and LiDAR is a crucial component for autonomous driving and smart transportation. However, in the process of basic feature extraction, perspective transformation, and feature fusion, noise and error will gradually accumulate. To address this issue, we propose InsFusion, which can extract proposals from both raw and fused features and utilizes these proposals to query the raw features, thereby mitigating the impact of accumulated errors. Additionally, by incorporating attention mechanisms applied to the raw features, it thereby mitigates the impact of accumulated errors. Experiments on the nuScenes dataset demonstrate that InsFusion is compatible with various advanced baseline methods and delivers new state-of-the-art performance for 3D object detection.
☆ Retrieval-Augmented VLMs for Multimodal Melanoma Diagnosis MICCAI
Accurate and early diagnosis of malignant melanoma is critical for improving patient outcomes. While convolutional neural networks (CNNs) have shown promise in dermoscopic image analysis, they often neglect clinical metadata and require extensive preprocessing. Vision-language models (VLMs) offer a multimodal alternative but struggle to capture clinical specificity when trained on general-domain data. To address this, we propose a retrieval-augmented VLM framework that incorporates semantically similar patient cases into the diagnostic prompt. Our method enables informed predictions without fine-tuning and significantly improves classification accuracy and error correction over conventional baselines. These results demonstrate that retrieval-augmented prompting provides a robust strategy for clinical decision support.
comment: Medical Image Computing and Computer-Assisted Intervention (MICCAI) ISIC Skin Image Analysis Workshop (MICCAI ISIC) 2025; 10 pages
☆ Good Deep Features to Track: Self-Supervised Feature Extraction and Tracking in Visual Odometry
Visual-based localization has made significant progress, yet its performance often drops in large-scale, outdoor, and long-term settings due to factors like lighting changes, dynamic scenes, and low-texture areas. These challenges degrade feature extraction and tracking, which are critical for accurate motion estimation. While learning-based methods such as SuperPoint and SuperGlue show improved feature coverage and robustness, they still face generalization issues with out-of-distribution data. We address this by enhancing deep feature extraction and tracking through self-supervised learning with task specific feedback. Our method promotes stable and informative features, improving generalization and reliability in challenging environments.
comment: This short paper has been accepted as a workshop paper at European Conference on Mobile Robots 2025
☆ Physics-Guided Rectified Flow for Low-light RAW Image Enhancement
Enhancing RAW images captured under low light conditions is a challenging task. Recent deep learning based RAW enhancement methods have shifted from using real paired data to relying on synthetic datasets. These synthetic datasets are typically generated by physically modeling sensor noise, but existing approaches often consider only additive noise, ignore multiplicative components, and rely on global calibration that overlooks pixel level manufacturing variations. As a result, such methods struggle to accurately reproduce real sensor noise. To address these limitations, this paper derives a noise model from the physical noise generation mechanisms that occur under low illumination and proposes a novel composite model that integrates both additive and multiplicative noise. To solve the model, we introduce a physics based per pixel noise simulation and calibration scheme that estimates and synthesizes noise for each individual pixel, thereby overcoming the restrictions of traditional global calibration and capturing spatial noise variations induced by microscopic CMOS manufacturing differences. Motivated by the strong performance of rectified flow methods in image generation and processing, we further combine the physics-based noise synthesis with a rectified flow generative framework and present PGRF a physics-guided rectified flow framework for low light image enhancement. PGRF leverages the ability of rectified flows to model complex data distributions and uses physical guidance to steer the generation toward the desired clean image. To validate the effectiveness of the proposed model, we established the LLID dataset, an indoor low light benchmark captured with the Sony A7S II camera. Experimental results demonstrate that the proposed framework achieves significant improvements in low light RAW image enhancement.
comment: 21pages,7figures
☆ Boosted Training of Lightweight Early Exits for Optimizing CNN Image Classification Inference
Real-time image classification on resource-constrained platforms demands inference methods that balance accuracy with strict latency and power budgets. Early-exit strategies address this need by attaching auxiliary classifiers to intermediate layers of convolutional neural networks (CNNs), allowing "easy" samples to terminate inference early. However, conventional training of early exits introduces a covariance shift: downstream branches are trained on full datasets, while at inference they process only the harder, non-exited samples. This mismatch limits efficiency--accuracy trade-offs in practice. We introduce the Boosted Training Scheme for Early Exits (BTS-EE), a sequential training approach that aligns branch training with inference-time data distributions. Each branch is trained and calibrated before the next, ensuring robustness under selective inference conditions. To further support embedded deployment, we propose a lightweight branch architecture based on 1D convolutions and a Class Precision Margin (CPM) calibration method that enables per-class threshold tuning for reliable exit decisions. Experiments on the CINIC-10 dataset with a ResNet18 backbone demonstrate that BTS-EE consistently outperforms non-boosted training across 64 configurations, achieving up to 45 percent reduction in computation with only 2 percent accuracy degradation. These results expand the design space for deploying CNNs in real-time image processing systems, offering practical efficiency gains for applications such as industrial inspection, embedded vision, and UAV-based monitoring.
comment: 9 pages, 4 figures
☆ SimCroP: Radiograph Representation Learning with Similarity-driven Cross-granularity Pre-training MICCAI 2025
Medical vision-language pre-training shows great potential in learning representative features from massive paired radiographs and reports. However, in computed tomography (CT) scans, the distribution of lesions which contain intricate structures is characterized by spatial sparsity. Besides, the complex and implicit relationships between different pathological descriptions in each sentence of the report and their corresponding sub-regions in radiographs pose additional challenges. In this paper, we propose a Similarity-Driven Cross-Granularity Pre-training (SimCroP) framework on chest CTs, which combines similarity-driven alignment and cross-granularity fusion to improve radiograph interpretation. We first leverage multi-modal masked modeling to optimize the encoder for understanding precise low-level semantics from radiographs. Then, similarity-driven alignment is designed to pre-train the encoder to adaptively select and align the correct patches corresponding to each sentence in reports. The cross-granularity fusion module integrates multimodal information across instance level and word-patch level, which helps the model better capture key pathology structures in sparse radiographs, resulting in improved performance for multi-scale downstream tasks. SimCroP is pre-trained on a large-scale paired CT-reports dataset and validated on image classification and segmentation tasks across five public datasets. Experimental results demonstrate that SimCroP outperforms both cutting-edge medical self-supervised learning methods and medical vision-language pre-training methods. Codes and models are available at https://github.com/ToniChopp/SimCroP.
comment: Accepted by MICCAI 2025
☆ An Open Benchmark Dataset for GeoAI Foundation Models for Oil Palm Mapping in Indonesia
Oil palm cultivation remains one of the leading causes of deforestation in Indonesia. To better track and address this challenge, detailed and reliable mapping is needed to support sustainability efforts and emerging regulatory frameworks. We present an open-access geospatial dataset of oil palm plantations and related land cover types in Indonesia, produced through expert labeling of high-resolution satellite imagery from 2020 to 2024. The dataset provides polygon-based, wall-to-wall annotations across a range of agro-ecological zones and includes a hierarchical typology that distinguishes oil palm planting stages as well as similar perennial crops. Quality was ensured through multi-interpreter consensus and field validation. The dataset was created using wall-to-wall digitization over large grids, making it suitable for training and benchmarking both conventional convolutional neural networks and newer geospatial foundation models. Released under a CC-BY license, it fills a key gap in training data for remote sensing and aims to improve the accuracy of land cover types mapping. By supporting transparent monitoring of oil palm expansion, the resource contributes to global deforestation reduction goals and follows FAIR data principles.
☆ Foundation Models for Autonomous Driving Perception: A Survey Through Core Capabilities
Foundation models are revolutionizing autonomous driving perception, transitioning the field from narrow, task-specific deep learning models to versatile, general-purpose architectures trained on vast, diverse datasets. This survey examines how these models address critical challenges in autonomous perception, including limitations in generalization, scalability, and robustness to distributional shifts. The survey introduces a novel taxonomy structured around four essential capabilities for robust performance in dynamic driving environments: generalized knowledge, spatial understanding, multi-sensor robustness, and temporal reasoning. For each capability, the survey elucidates its significance and comprehensively reviews cutting-edge approaches. Diverging from traditional method-centric surveys, our unique framework prioritizes conceptual design principles, providing a capability-driven guide for model development and clearer insights into foundational aspects. We conclude by discussing key challenges, particularly those associated with the integration of these capabilities into real-time, scalable systems, and broader deployment challenges related to computational demands and ensuring model reliability against issues like hallucinations and out-of-distribution failures. The survey also outlines crucial future research directions to enable the safe and effective deployment of foundation models in autonomous driving systems.
comment: 32 pages, 14 figures, accepted at IEEE Open Journal of Vehicular Technology (OJVT)
☆ Dual-Thresholding Heatmaps to Cluster Proposals for Weakly Supervised Object Detection
Weakly supervised object detection (WSOD) has attracted significant attention in recent years, as it does not require box-level annotations. State-of-the-art methods generally adopt a multi-module network, which employs WSDDN as the multiple instance detection network module and multiple instance refinement modules to refine performance. However, these approaches suffer from three key limitations. First, existing methods tend to generate pseudo GT boxes that either focus only on discriminative parts, failing to capture the whole object, or cover the entire object but fail to distinguish between adjacent intra-class instances. Second, the foundational WSDDN architecture lacks a crucial background class representation for each proposal and exhibits a large semantic gap between its branches. Third, prior methods discard ignored proposals during optimization, leading to slow convergence. To address these challenges, we first design a heatmap-guided proposal selector (HGPS) algorithm, which utilizes dual thresholds on heatmaps to pre-select proposals, enabling pseudo GT boxes to both capture the full object extent and distinguish between adjacent intra-class instances. We then present a weakly supervised basic detection network (WSBDN), which augments each proposal with a background class representation and uses heatmaps for pre-supervision to bridge the semantic gap between matrices. At last, we introduce a negative certainty supervision loss on ignored proposals to accelerate convergence. Extensive experiments on the challenging PASCAL VOC 2007 and 2012 datasets demonstrate the effectiveness of our framework. We achieve mAP/mCorLoc scores of 58.5%/81.8% on VOC 2007 and 55.6%/80.5% on VOC 2012, performing favorably against the state-of-the-art WSOD methods. Our code is publicly available at https://github.com/gyl2565309278/DTH-CP.
comment: This work has been submitted to the IEEE for possible publication
☆ Generalized Zero-Shot Learning for Point Cloud Segmentation with Evidence-Based Dynamic Calibration AAAI 2025
Generalized zero-shot semantic segmentation of 3D point clouds aims to classify each point into both seen and unseen classes. A significant challenge with these models is their tendency to make biased predictions, often favoring the classes encountered during training. This problem is more pronounced in 3D applications, where the scale of the training data is typically smaller than in image-based tasks. To address this problem, we propose a novel method called E3DPC-GZSL, which reduces overconfident predictions towards seen classes without relying on separate classifiers for seen and unseen data. E3DPC-GZSL tackles the overconfidence problem by integrating an evidence-based uncertainty estimator into a classifier. This estimator is then used to adjust prediction probabilities using a dynamic calibrated stacking factor that accounts for pointwise prediction uncertainty. In addition, E3DPC-GZSL introduces a novel training strategy that improves uncertainty estimation by refining the semantic space. This is achieved by merging learnable parameters with text-derived features, thereby improving model optimization for unseen data. Extensive experiments demonstrate that the proposed approach achieves state-of-the-art performance on generalized zero-shot semantic segmentation datasets, including ScanNet v2 and S3DIS.
comment: 20 pages, 12 figures, AAAI 2025
☆ Examining Vision Language Models through Multi-dimensional Experiments with Vision and Text Features
Recent research on Vision Language Models (VLMs) suggests that they rely on inherent biases learned during training to respond to questions about visual properties of an image. These biases are exacerbated when VLMs are asked highly specific questions that require focusing on specific areas of the image. For example, a VLM tasked with counting stars on a modified American flag (e.g., with more than 50 stars) will often disregard the visual evidence and fail to answer accurately. We build upon this research and develop a multi-dimensional examination framework to systematically determine which characteristics of the input data, including both the image and the accompanying prompt, lead to such differences in performance. Using open-source VLMs, we further examine how attention values fluctuate with varying input parameters (e.g., image size, number of objects in the image, background color, prompt specificity). This research aims to learn how the behavior of vision language models changes and to explore methods for characterizing such changes. Our results suggest, among other things, that even minor modifications in image characteristics and prompt specificity can lead to large changes in how a VLM formulates its answer and, subsequently, its overall performance.
☆ Hyperspectral Mamba for Hyperspectral Object Tracking
Hyperspectral object tracking holds great promise due to the rich spectral information and fine-grained material distinctions in hyperspectral images, which are beneficial in challenging scenarios. While existing hyperspectral trackers have made progress by either transforming hyperspectral data into false-color images or incorporating modality fusion strategies, they often fail to capture the intrinsic spectral information, temporal dependencies, and cross-depth interactions. To address these limitations, a new hyperspectral object tracking network equipped with Mamba (HyMamba), is proposed. It unifies spectral, cross-depth, and temporal modeling through state space modules (SSMs). The core of HyMamba lies in the Spectral State Integration (SSI) module, which enables progressive refinement and propagation of spectral features with cross-depth and temporal spectral information. Embedded within each SSI, the Hyperspectral Mamba (HSM) module is introduced to learn spatial and spectral information synchronously via three directional scanning SSMs. Based on SSI and HSM, HyMamba constructs joint features from false-color and hyperspectral inputs, and enhances them through interaction with original spectral features extracted from raw hyperspectral images. Extensive experiments conducted on seven benchmark datasets demonstrate that HyMamba achieves state-of-the-art performance. For instance, it achieves 73.0\% of the AUC score and 96.3\% of the DP@20 score on the HOTC2020 dataset. The code will be released at https://github.com/lgao001/HyMamba.
☆ EVDI++: Event-based Video Deblurring and Interpolation via Self-Supervised Learning
Frame-based cameras with extended exposure times often produce perceptible visual blurring and information loss between frames, significantly degrading video quality. To address this challenge, we introduce EVDI++, a unified self-supervised framework for Event-based Video Deblurring and Interpolation that leverages the high temporal resolution of event cameras to mitigate motion blur and enable intermediate frame prediction. Specifically, the Learnable Double Integral (LDI) network is designed to estimate the mapping relation between reference frames and sharp latent images. Then, we refine the coarse results and optimize overall training efficiency by introducing a learning-based division reconstruction module, enabling images to be converted with varying exposure intervals. We devise an adaptive parameter-free fusion strategy to obtain the final results, utilizing the confidence embedded in the LDI outputs of concurrent events. A self-supervised learning framework is proposed to enable network training with real-world blurry videos and events by exploring the mutual constraints among blurry frames, latent images, and event streams. We further construct a dataset with real-world blurry images and events using a DAVIS346c camera, demonstrating the generalizability of the proposed EVDI++ in real-world scenarios. Extensive experiments on both synthetic and real-world datasets show that our method achieves state-of-the-art performance in video deblurring and interpolation tasks.
comment: 18 pages
☆ Symmetry Interactive Transformer with CNN Framework for Diagnosis of Alzheimer's Disease Using Structural MRI
Structural magnetic resonance imaging (sMRI) combined with deep learning has achieved remarkable progress in the prediction and diagnosis of Alzheimer's disease (AD). Existing studies have used CNN and transformer to build a well-performing network, but most of them are based on pretraining or ignoring the asymmetrical character caused by brain disorders. We propose an end-to-end network for the detection of disease-based asymmetric induced by left and right brain atrophy which consist of 3D CNN Encoder and Symmetry Interactive Transformer (SIT). Following the inter-equal grid block fetch operation, the corresponding left and right hemisphere features are aligned and subsequently fed into the SIT for diagnostic analysis. SIT can help the model focus more on the regions of asymmetry caused by structural changes, thus improving diagnostic performance. We evaluated our method based on the ADNI dataset, and the results show that the method achieves better diagnostic accuracy (92.5\%) compared to several CNN methods and CNNs combined with a general transformer. The visualization results show that our network pays more attention in regions of brain atrophy, especially for the asymmetric pathological characteristics induced by AD, demonstrating the interpretability and effectiveness of the method.
☆ RepViT-CXR: A Channel Replication Strategy for Vision Transformers in Chest X-ray Tuberculosis and Pneumonia Classification
Chest X-ray (CXR) imaging remains one of the most widely used diagnostic tools for detecting pulmonary diseases such as tuberculosis (TB) and pneumonia. Recent advances in deep learning, particularly Vision Transformers (ViTs), have shown strong potential for automated medical image analysis. However, most ViT architectures are pretrained on natural images and require three-channel inputs, while CXR scans are inherently grayscale. To address this gap, we propose RepViT-CXR, a channel replication strategy that adapts single-channel CXR images into a ViT-compatible format without introducing additional information loss. We evaluate RepViT-CXR on three benchmark datasets. On the TB-CXR dataset,our method achieved an accuracy of 99.9% and an AUC of 99.9%, surpassing prior state-of-the-art methods such as Topo-CXR (99.3% accuracy, 99.8% AUC). For the Pediatric Pneumonia dataset, RepViT-CXR obtained 99.0% accuracy, with 99.2% recall, 99.3% precision, and an AUC of 99.0%, outperforming strong baselines including DCNN and VGG16. On the Shenzhen TB dataset, our approach achieved 91.1% accuracy and an AUC of 91.2%, marking a performance improvement over previously reported CNN-based methods. These results demonstrate that a simple yet effective channel replication strategy allows ViTs to fully leverage their representational power on grayscale medical imaging tasks. RepViT-CXR establishes a new state of the art for TB and pneumonia detection from chest X-rays, showing strong potential for deployment in real-world clinical screening systems.
comment: 10 pages, 5 figures
☆ GTA-Crime: A Synthetic Dataset and Generation Framework for Fatal Violence Detection with Adversarial Snippet-Level Domain Adaptation
Recent advancements in video anomaly detection (VAD) have enabled identification of various criminal activities in surveillance videos, but detecting fatal incidents such as shootings and stabbings remains difficult due to their rarity and ethical issues in data collection. Recognizing this limitation, we introduce GTA-Crime, a fatal video anomaly dataset and generation framework using Grand Theft Auto 5 (GTA5). Our dataset contains fatal situations such as shootings and stabbings, captured from CCTV multiview perspectives under diverse conditions including action types, weather, time of day, and viewpoints. To address the rarity of such scenarios, we also release a framework for generating these types of videos. Additionally, we propose a snippet-level domain adaptation strategy using Wasserstein adversarial training to bridge the gap between synthetic GTA-Crime features and real-world features like UCF-Crime. Experimental results validate our GTA-Crime dataset and demonstrate that incorporating GTA-Crime with our domain adaptation strategy consistently enhances real world fatal violence detection accuracy. Our dataset and the data generation framework are publicly available at https://github.com/ta-ho/GTA-Crime.
☆ Sparse Transformer for Ultra-sparse Sampled Video Compressive Sensing
Digital cameras consume ~0.1 microjoule per pixel to capture and encode video, resulting in a power usage of ~20W for a 4K sensor operating at 30 fps. Imagining gigapixel cameras operating at 100-1000 fps, the current processing model is unsustainable. To address this, physical layer compressive measurement has been proposed to reduce power consumption per pixel by 10-100X. Video Snapshot Compressive Imaging (SCI) introduces high frequency modulation in the optical sensor layer to increase effective frame rate. A commonly used sampling strategy of video SCI is Random Sampling (RS) where each mask element value is randomly set to be 0 or 1. Similarly, image inpainting (I2P) has demonstrated that images can be recovered from a fraction of the image pixels. Inspired by I2P, we propose Ultra-Sparse Sampling (USS) regime, where at each spatial location, only one sub-frame is set to 1 and all others are set to 0. We then build a Digital Micro-mirror Device (DMD) encoding system to verify the effectiveness of our USS strategy. Ideally, we can decompose the USS measurement into sub-measurements for which we can utilize I2P algorithms to recover high-speed frames. However, due to the mismatch between the DMD and CCD, the USS measurement cannot be perfectly decomposed. To this end, we propose BSTFormer, a sparse TransFormer that utilizes local Block attention, global Sparse attention, and global Temporal attention to exploit the sparsity of the USS measurement. Extensive results on both simulated and real-world data show that our method significantly outperforms all previous state-of-the-art algorithms. Additionally, an essential advantage of the USS strategy is its higher dynamic range than that of the RS strategy. Finally, from the application perspective, the USS strategy is a good choice to implement a complete video SCI system on chip due to its fixed exposure time.
☆ Lightweight Deep Unfolding Networks with Enhanced Robustness for Infrared Small Target Detection
Infrared small target detection (ISTD) is one of the key techniques in image processing. Although deep unfolding networks (DUNs) have demonstrated promising performance in ISTD due to their model interpretability and data adaptability, existing methods still face significant challenges in parameter lightweightness and noise robustness. In this regard, we propose a highly lightweight framework based on robust principal component analysis (RPCA) called L-RPCANet. Technically, a hierarchical bottleneck structure is constructed to reduce and increase the channel dimension in the single-channel input infrared image to achieve channel-wise feature refinement, with bottleneck layers designed in each module to extract features. This reduces the number of channels in feature extraction and improves the lightweightness of network parameters. Furthermore, a noise reduction module is embedded to enhance the robustness against complex noise. In addition, squeeze-and-excitation networks (SENets) are leveraged as a channel attention mechanism to focus on the varying importance of different features across channels, thereby achieving excellent performance while maintaining both lightweightness and robustness. Extensive experiments on the ISTD datasets validate the superiority of our proposed method compared with state-of-the-art methods covering RPCANet, DRPCANet, and RPCANet++. The code will be available at https://github.com/xianchaoxiu/L-RPCANet.
☆ Computational Imaging for Enhanced Computer Vision
This paper presents a comprehensive survey of computational imaging (CI) techniques and their transformative impact on computer vision (CV) applications. Conventional imaging methods often fail to deliver high-fidelity visual data in challenging conditions, such as low light, motion blur, or high dynamic range scenes, thereby limiting the performance of state-of-the-art CV systems. Computational imaging techniques, including light field imaging, high dynamic range (HDR) imaging, deblurring, high-speed imaging, and glare mitigation, address these limitations by enhancing image acquisition and reconstruction processes. This survey systematically explores the synergies between CI techniques and core CV tasks, including object detection, depth estimation, optical flow, face recognition, and keypoint detection. By analyzing the relationships between CI methods and their practical contributions to CV applications, this work highlights emerging opportunities, challenges, and future research directions. We emphasize the potential for task-specific, adaptive imaging pipelines that improve robustness, accuracy, and efficiency in real-world scenarios, such as autonomous navigation, surveillance, augmented reality, and robotics.
comment: International Journal of Engineering Research & Technology, 2025
☆ Integrating Anatomical Priors into a Causal Diffusion Model
3D brain MRI studies often examine subtle morphometric differences between cohorts that are hard to detect visually. Given the high cost of MRI acquisition, these studies could greatly benefit from image syntheses, particularly counterfactual image generation, as seen in other domains, such as computer vision. However, counterfactual models struggle to produce anatomically plausible MRIs due to the lack of explicit inductive biases to preserve fine-grained anatomical details. This shortcoming arises from the training of the models aiming to optimize for the overall appearance of the images (e.g., via cross-entropy) rather than preserving subtle, yet medically relevant, local variations across subjects. To preserve subtle variations, we propose to explicitly integrate anatomical constraints on a voxel-level as prior into a generative diffusion framework. Called Probabilistic Causal Graph Model (PCGM), the approach captures anatomical constraints via a probabilistic graph module and translates those constraints into spatial binary masks of regions where subtle variations occur. The masks (encoded by a 3D extension of ControlNet) constrain a novel counterfactual denoising UNet, whose encodings are then transferred into high-quality brain MRIs via our 3D diffusion decoder. Extensive experiments on multiple datasets demonstrate that PCGM generates structural brain MRIs of higher quality than several baseline approaches. Furthermore, we show for the first time that brain measurements extracted from counterfactuals (generated by PCGM) replicate the subtle effects of a disease on cortical brain regions previously reported in the neuroscience literature. This achievement is an important milestone in the use of synthetic MRIs in studies investigating subtle morphological differences.
comment: 15 pages, 4 figures
☆ VoxelFormer: Parameter-Efficient Multi-Subject Visual Decoding from fMRI
Recent advances in fMRI-based visual decoding have enabled compelling reconstructions of perceived images. However, most approaches rely on subject-specific training, limiting scalability and practical deployment. We introduce \textbf{VoxelFormer}, a lightweight transformer architecture that enables multi-subject training for visual decoding from fMRI. VoxelFormer integrates a Token Merging Transformer (ToMer) for efficient voxel compression and a query-driven Q-Former that produces fixed-size neural representations aligned with the CLIP image embedding space. Evaluated on the 7T Natural Scenes Dataset, VoxelFormer achieves competitive retrieval performance on subjects included during training with significantly fewer parameters than existing methods. These results highlight token merging and query-based transformers as promising strategies for parameter-efficient neural decoding.
☆ COCO-Urdu: A Large-Scale Urdu Image-Caption Dataset with Multimodal Quality Estimation
Urdu, spoken by over 250 million people, remains critically under-served in multimodal and vision-language research. The absence of large-scale, high-quality datasets has limited the development of Urdu-capable systems and reinforced biases in multilingual vision-language models trained primarily on high-resource languages. To address this gap, we present COCO-Urdu, a large-scale image-caption dataset derived from MS COCO, containing 59,000 images and 319,000 Urdu captions selected through stratified sampling to preserve the original distribution. Captions were translated using SeamlessM4T v2 and validated with a hybrid multimodal quality estimation framework that integrates COMET-Kiwi for translation quality, CLIP-based similarity for visual grounding, and BERTScore with back-translation for semantic consistency; low-scoring captions were iteratively refined using open-source large language models. We further benchmark COCO-Urdu on BLEU, SacreBLEU, and chrF, reporting consistently strong results. To the best of our knowledge, COCO-Urdu is the largest publicly available Urdu captioning dataset. By releasing both the dataset and the quality estimation pipeline, we aim to reduce language bias in multimodal research and establish a foundation for inclusive vision-language systems.
comment: 17 pages, 3 figures, 3 tables. Dataset available at https://huggingface.co/datasets/umairhassan02/urdu-translated-coco-captions-subset. Scripts and notebooks to reproduce results available at https://github.com/umair-hassan2/COCO-Urdu
☆ Can Vision-Language Models Solve Visual Math Equations? EMNLP2025
Despite strong performance in visual understanding and language-based reasoning, Vision-Language Models (VLMs) struggle with tasks requiring integrated perception and symbolic computation. We study this limitation through visual equation solving, where mathematical equations are embedded in images, variables are represented by object icons, and coefficients must be inferred by counting. While VLMs perform well on textual equations, they fail on visually grounded counterparts. To understand this gap, we decompose the task into coefficient counting and variable recognition, and find that counting is the primary bottleneck, even when recognition is accurate. We also observe that composing recognition and reasoning introduces additional errors, highlighting challenges in multi-step visual reasoning. Finally, as equation complexity increases, symbolic reasoning itself becomes a limiting factor. These findings reveal key weaknesses in current VLMs and point toward future improvements in visually grounded mathematical reasoning.
comment: Monjoy Narayan Choudhury and Junling Wang contributed equally to this work. Accepted at EMNLP2025 main. Code and datasets are open-sourced with links in the paper
☆ E-MLNet: Enhanced Mutual Learning for Universal Domain Adaptation with Sample-Specific Weighting
Universal Domain Adaptation (UniDA) seeks to transfer knowledge from a labeled source to an unlabeled target domain without assuming any relationship between their label sets, requiring models to classify known samples while rejecting unknown ones. Advanced methods like Mutual Learning Network (MLNet) use a bank of one-vs-all classifiers adapted via Open-set Entropy Minimization (OEM). However, this strategy treats all classifiers equally, diluting the learning signal. We propose the Enhanced Mutual Learning Network (E-MLNet), which integrates a dynamic weighting strategy to OEM. By leveraging the closed-set classifier's predictions, E-MLNet focuses adaptation on the most relevant class boundaries for each target sample, sharpening the distinction between known and unknown classes. We conduct extensive experiments on four challenging benchmarks: Office-31, Office-Home, VisDA-2017, and ImageCLEF. The results demonstrate that E-MLNet achieves the highest average H-scores on VisDA and ImageCLEF and exhibits superior robustness over its predecessor. E-MLNet outperforms the strong MLNet baseline in the majority of individual adaptation tasks -- 22 out of 31 in the challenging Open-Partial DA setting and 19 out of 31 in the Open-Set DA setting -- confirming the benefits of our focused adaptation strategy.
☆ Implicit Neural Representations of Intramyocardial Motion and Strain MICCAI
Automatic quantification of intramyocardial motion and strain from tagging MRI remains an important but challenging task. We propose a method using implicit neural representations (INRs), conditioned on learned latent codes, to predict continuous left ventricular (LV) displacement -- without requiring inference-time optimisation. Evaluated on 452 UK Biobank test cases, our method achieved the best tracking accuracy (2.14 mm RMSE) and the lowest combined error in global circumferential (2.86%) and radial (6.42%) strain compared to three deep learning baselines. In addition, our method is $\sim$380$\times$ faster than the most accurate baseline. These results highlight the suitability of INR-based models for accurate and scalable analysis of myocardial strain in large CMR datasets.
comment: STACOM 2025 @ MICCAI
☆ UltrON: Ultrasound Occupancy Networks MICCAI 2025
In free-hand ultrasound imaging, sonographers rely on expertise to mentally integrate partial 2D views into 3D anatomical shapes. Shape reconstruction can assist clinicians in this process. Central to this task is the choice of shape representation, as it determines how accurately and efficiently the structure can be visualized, analyzed, and interpreted. Implicit representations, such as SDF and occupancy function, offer a powerful alternative to traditional voxel- or mesh-based methods by modeling continuous, smooth surfaces with compact storage, avoiding explicit discretization. Recent studies demonstrate that SDF can be effectively optimized using annotations derived from segmented B-mode ultrasound images. Yet, these approaches hinge on precise annotations, overlooking the rich acoustic information embedded in B-mode intensity. Moreover, implicit representation approaches struggle with the ultrasound's view-dependent nature and acoustic shadowing artifacts, which impair reconstruction. To address the problems resulting from occlusions and annotation dependency, we propose an occupancy-based representation and introduce \gls{UltrON} that leverages acoustic features to improve geometric consistency in weakly-supervised optimization regime. We show that these features can be obtained from B-mode images without additional annotation cost. Moreover, we propose a novel loss function that compensates for view-dependency in the B-mode images and facilitates occupancy optimization from multiview ultrasound. By incorporating acoustic properties, \gls{UltrON} generalizes to shapes of the same anatomy. We show that \gls{UltrON} mitigates the limitations of occlusions and sparse labeling and paves the way for more accurate 3D reconstruction. Code and dataset will be available at https://github.com/magdalena-wysocki/ultron.
comment: MICCAI 2025
☆ iMatcher: Improve matching in point cloud registration via local-to-global geometric consistency learning
This paper presents iMatcher, a fully differentiable framework for feature matching in point cloud registration. The proposed method leverages learned features to predict a geometrically consistent confidence matrix, incorporating both local and global consistency. First, a local graph embedding module leads to an initialization of the score matrix. A subsequent repositioning step refines this matrix by considering bilateral source-to-target and target-to-source matching via nearest neighbor search in 3D space. The paired point features are then stacked together to be refined through global geometric consistency learning to predict a point-wise matching probability. Extensive experiments on real-world outdoor (KITTI, KITTI-360) and indoor (3DMatch) datasets, as well as on 6-DoF pose estimation (TUD-L) and partial-to-partial matching (MVP-RG), demonstrate that iMatcher significantly improves rigid registration performance. The method achieves state-of-the-art inlier ratios, scoring 95% - 97% on KITTI, 94% - 97% on KITTI-360, and up to 81.1% on 3DMatch, highlighting its robustness across diverse settings.
☆ Ultrafast Deep Learning-Based Scatter Estimation in Cone-Beam Computed Tomography
Purpose: Scatter artifacts drastically degrade the image quality of cone-beam computed tomography (CBCT) scans. Although deep learning-based methods show promise in estimating scatter from CBCT measurements, their deployment in mobile CBCT systems or edge devices is still limited due to the large memory footprint of the networks. This study addresses the issue by applying networks at varying resolutions and suggesting an optimal one, based on speed and accuracy. Methods: First, the reconstruction error in down-up sampling of CBCT scatter signal was examined at six resolutions by comparing four interpolation methods. Next, a recent state-of-the-art method was trained across five image resolutions and evaluated for the reductions in floating-point operations (FLOPs), inference times, and GPU memory requirements. Results: Reducing the input size and network parameters achieved a 78-fold reduction in FLOPs compared to the baseline method, while maintaining comarable performance in terms of mean-absolute-percentage-error (MAPE) and mean-square-error (MSE). Specifically, the MAPE decreased to 3.85% compared to 4.42%, and the MSE decreased to 1.34 \times 10^{-2} compared to 2.01 \times 10^{-2}. Inference time and GPU memory usage were reduced by factors of 16 and 12, respectively. Further experiments comparing scatter-corrected reconstructions on a large, simulated dataset and real CBCT scans from water and Sedentex CT phantoms clearly demonstrated the robustness of our method. Conclusion: This study highlights the underappreciated role of downsampling in deep learning-based scatter estimation. The substantial reduction in FLOPs and GPU memory requirements achieved by our method enables scatter correction in resource-constrained environments, such as mobile CBCT and edge devices.
☆ Value bounds and Convergence Analysis for Averages of LRP attributions
We analyze numerical properties of Layer-wise relevance propagation (LRP)-type attribution methods by representing them as a product of modified gradient matrices. This representation creates an analogy to matrix multiplications of Jacobi-matrices which arise from the chain rule of differentiation. In order to shed light on the distribution of attribution values, we derive upper bounds for singular values. Furthermore we derive component-wise bounds for attribution map values. As a main result, we apply these component-wise bounds to obtain multiplicative constants. These constants govern the convergence of empirical means of attributions to expectations of attribution maps. This finding has important implications for scenarios where multiple non-geometric data augmentations are applied to individual test samples, as well as for Smoothgrad-type attribution methods. In particular, our analysis reveals that the constants for LRP-beta remain independent of weight norms, a significant distinction from both gradient-based methods and LRP-epsilon.
comment: 37 pages
☆ CoSwin: Convolution Enhanced Hierarchical Shifted Window Attention For Small-Scale Vision
Vision Transformers (ViTs) have achieved impressive results in computer vision by leveraging self-attention to model long-range dependencies. However, their emphasis on global context often comes at the expense of local feature extraction in small datasets, particularly due to the lack of key inductive biases such as locality and translation equivariance. To mitigate this, we propose CoSwin, a novel feature-fusion architecture that augments the hierarchical shifted window attention with localized convolutional feature learning. Specifically, CoSwin integrates a learnable local feature enhancement module into each attention block, enabling the model to simultaneously capture fine-grained spatial details and global semantic structure. We evaluate CoSwin on multiple image classification benchmarks including CIFAR-10, CIFAR-100, MNIST, SVHN, and Tiny ImageNet. Our experimental results show consistent performance gains over state-of-the-art convolutional and transformer-based models. Notably, CoSwin achieves improvements of 2.17% on CIFAR-10, 4.92% on CIFAR-100, 0.10% on MNIST, 0.26% on SVHN, and 4.47% on Tiny ImageNet over the baseline Swin Transformer. These improvements underscore the effectiveness of local-global feature fusion in enhancing the generalization and robustness of transformers for small-scale vision. Code and pretrained weights available at https://github.com/puskal-khadka/coswin
☆ An U-Net-Based Deep Neural Network for Cloud Shadow and Sun-Glint Correction of Unmanned Aerial System (UAS) Imagery
The use of unmanned aerial systems (UASs) has increased tremendously in the current decade. They have significantly advanced remote sensing with the capability to deploy and image the terrain as per required spatial, spectral, temporal, and radiometric resolutions for various remote sensing applications. One of the major advantages of UAS imagery is that images can be acquired in cloudy conditions by flying the UAS under the clouds. The limitation to the technology is that the imagery is often sullied by cloud shadows. Images taken over water are additionally affected by sun glint. These are two pose serious issues for estimating water quality parameters from the UAS images. This study proposes a novel machine learning approach first to identify and extract regions with cloud shadows and sun glint and separate such regions from non-obstructed clear sky regions and sun-glint unaffected regions. The data was extracted from the images at pixel level to train an U-Net based deep learning model and best settings for model training was identified based on the various evaluation metrics from test cases. Using this evaluation, a high-quality image correction model was determined, which was used to recover the cloud shadow and sun glint areas in the images.
☆ CameraVDP: Perceptual Display Assessment with Uncertainty Estimation via Camera and Visual Difference Prediction SIGGRAPH
Accurate measurement of images produced by electronic displays is critical for the evaluation of both traditional and computational displays. Traditional display measurement methods based on sparse radiometric sampling and fitting a model are inadequate for capturing spatially varying display artifacts, as they fail to capture high-frequency and pixel-level distortions. While cameras offer sufficient spatial resolution, they introduce optical, sampling, and photometric distortions. Furthermore, the physical measurement must be combined with a model of a visual system to assess whether the distortions are going to be visible. To enable perceptual assessment of displays, we propose a combination of a camera-based reconstruction pipeline with a visual difference predictor, which account for both the inaccuracy of camera measurements and visual difference prediction. The reconstruction pipeline combines HDR image stacking, MTF inversion, vignetting correction, geometric undistortion, homography transformation, and color correction, enabling cameras to function as precise display measurement instruments. By incorporating a Visual Difference Predictor (VDP), our system models the visibility of various stimuli under different viewing conditions for the human visual system. We validate the proposed CameraVDP framework through three applications: defective pixel detection, color fringing awareness, and display non-uniformity evaluation. Our uncertainty analysis framework enables the estimation of the theoretical upper bound for defect pixel detection performance and provides confidence intervals for VDP quality scores.
comment: Accepted by SIGGRAPH Asia 2025
☆ Discovering Divergent Representations between Text-to-Image Models ICCV 2025
In this paper, we investigate when and how visual representations learned by two different generative models diverge. Given two text-to-image models, our goal is to discover visual attributes that appear in images generated by one model but not the other, along with the types of prompts that trigger these attribute differences. For example, "flames" might appear in one model's outputs when given prompts expressing strong emotions, while the other model does not produce this attribute given the same prompts. We introduce CompCon (Comparing Concepts), an evolutionary search algorithm that discovers visual attributes more prevalent in one model's output than the other, and uncovers the prompt concepts linked to these visual differences. To evaluate CompCon's ability to find diverging representations, we create an automated data generation pipeline to produce ID2, a dataset of 60 input-dependent differences, and compare our approach to several LLM- and VLM-powered baselines. Finally, we use CompCon to compare popular text-to-image models, finding divergent representations such as how PixArt depicts prompts mentioning loneliness with wet streets and Stable Diffusion 3.5 depicts African American people in media professions. Code at: https://github.com/adobe-research/CompCon
comment: Accepted to ICCV 2025. Code available at https://github.com/adobe-research/CompCon
☆ Live(r) Die: Predicting Survival in Colorectal Liver Metastasis
Colorectal cancer frequently metastasizes to the liver, significantly reducing long-term survival. While surgical resection is the only potentially curative treatment for colorectal liver metastasis (CRLM), patient outcomes vary widely depending on tumor characteristics along with clinical and genomic factors. Current prognostic models, often based on limited clinical or molecular features, lack sufficient predictive power, especially in multifocal CRLM cases. We present a fully automated framework for surgical outcome prediction from pre- and post-contrast MRI acquired before surgery. Our framework consists of a segmentation pipeline and a radiomics pipeline. The segmentation pipeline learns to segment the liver, tumors, and spleen from partially annotated data by leveraging promptable foundation models to complete missing labels. Also, we propose SAMONAI, a novel zero-shot 3D prompt propagation algorithm that leverages the Segment Anything Model to segment 3D regions of interest from a single point prompt, significantly improving our segmentation pipeline's accuracy and efficiency. The predicted pre- and post-contrast segmentations are then fed into our radiomics pipeline, which extracts features from each tumor and predicts survival using SurvAMINN, a novel autoencoder-based multiple instance neural network for survival analysis. SurvAMINN jointly learns dimensionality reduction and hazard prediction from right-censored survival data, focusing on the most aggressive tumors. Extensive evaluation on an institutional dataset comprising 227 patients demonstrates that our framework surpasses existing clinical and genomic biomarkers, delivering a C-index improvement exceeding 10%. Our results demonstrate the potential of integrating automated segmentation algorithms and radiomics-based survival analysis to deliver accurate, annotation-efficient, and interpretable outcome prediction in CRLM.
comment: Thesis at Erasmus Mundus Joint Master's Degree in Medical Imaging and Applications
☆ SFD-Mamba2Net: Strcture-Guided Frequency-Enhanced Dual-Stream Mamba2 Network for Coronary Artery Segmentation
Background: Coronary Artery Disease (CAD) is one of the leading causes of death worldwide. Invasive Coronary Angiography (ICA), regarded as the gold standard for CAD diagnosis, necessitates precise vessel segmentation and stenosis detection. However, ICA images are typically characterized by low contrast, high noise levels, and complex, fine-grained vascular structures, which pose significant challenges to the clinical adoption of existing segmentation and detection methods. Objective: This study aims to improve the accuracy of coronary artery segmentation and stenosis detection in ICA images by integrating multi-scale structural priors, state-space-based long-range dependency modeling, and frequency-domain detail enhancement strategies. Methods: We propose SFD-Mamba2Net, an end-to-end framework tailored for ICA-based vascular segmentation and stenosis detection. In the encoder, a Curvature-Aware Structural Enhancement (CASE) module is embedded to leverage multi-scale responses for highlighting slender tubular vascular structures, suppressing background interference, and directing attention toward vascular regions. In the decoder, we introduce a Progressive High-Frequency Perception (PHFP) module that employs multi-level wavelet decomposition to progressively refine high-frequency details while integrating low-frequency global structures. Results and Conclusions: SFD-Mamba2Net consistently outperformed state-of-the-art methods across eight segmentation metrics, and achieved the highest true positive rate and positive predictive value in stenosis detection.
☆ Similarity-based Outlier Detection for Noisy Object Re-Identification Using Beta Mixtures
Object re-identification (Re-ID) methods are highly sensitive to label noise, which typically leads to significant performance degradation. We address this challenge by reframing Re-ID as a supervised image similarity task and adopting a Siamese network architecture trained to capture discriminative pairwise relationships. Central to our approach is a novel statistical outlier detection (OD) framework, termed Beta-SOD (Beta mixture Similarity-based Outlier Detection), which models the distribution of cosine similarities between embedding pairs using a two-component Beta distribution mixture model. We establish a novel identifiability result for mixtures of two Beta distributions, ensuring that our learning task is well-posed.The proposed OD step complements the Re-ID architecture combining binary cross-entropy, contrastive, and cosine embedding losses that jointly optimize feature-level similarity learning.We demonstrate the effectiveness of Beta-SOD in de-noising and Re-ID tasks for person Re-ID, on CUHK03 and Market-1501 datasets, and vehicle Re-ID, on VeRi-776 dataset. Our method shows superior performance compared to the state-of-the-art methods across various noise levels (10-30\%), demonstrating both robustness and broad applicability in noisy Re-ID scenarios. The implementation of Beta-SOD is available at: https://github.com/waqar3411/Beta-SOD
PromptGuard: An Orchestrated Prompting Framework for Principled Synthetic Text Generation for Vulnerable Populations using LLMs with Enhanced Safety, Fairness, and Controllability
The proliferation of Large Language Models (LLMs) in real-world applications poses unprecedented risks of generating harmful, biased, or misleading information to vulnerable populations including LGBTQ+ individuals, single parents, and marginalized communities. While existing safety approaches rely on post-hoc filtering or generic alignment techniques, they fail to proactively prevent harmful outputs at the generation source. This paper introduces PromptGuard, a novel modular prompting framework with our breakthrough contribution: VulnGuard Prompt, a hybrid technique that prevents harmful information generation using real-world data-driven contrastive learning. VulnGuard integrates few-shot examples from curated GitHub repositories, ethical chain-of-thought reasoning, and adaptive role-prompting to create population-specific protective barriers. Our framework employs theoretical multi-objective optimization with formal proofs demonstrating 25-30% analytical harm reduction through entropy bounds and Pareto optimality. PromptGuard orchestrates six core modules: Input Classification, VulnGuard Prompting, Ethical Principles Integration, External Tool Interaction, Output Validation, and User-System Interaction, creating an intelligent expert system for real-time harm prevention. We provide comprehensive mathematical formalization including convergence proofs, vulnerability analysis using information theory, and theoretical validation framework using GitHub-sourced datasets, establishing mathematical foundations for systematic empirical research.
☆ Diffusion-Based Action Recognition Generalizes to Untrained Domains
Humans can recognize the same actions despite large context and viewpoint variations, such as differences between species (walking in spiders vs. horses), viewpoints (egocentric vs. third-person), and contexts (real life vs movies). Current deep learning models struggle with such generalization. We propose using features generated by a Vision Diffusion Model (VDM), aggregated via a transformer, to achieve human-like action recognition across these challenging conditions. We find that generalization is enhanced by the use of a model conditioned on earlier timesteps of the diffusion process to highlight semantic information over pixel level details in the extracted features. We experimentally explore the generalization properties of our approach in classifying actions across animal species, across different viewing angles, and different recording contexts. Our model sets a new state-of-the-art across all three generalization benchmarks, bringing machine action recognition closer to human-like robustness. Project page: $\href{https://www.vision.caltech.edu/actiondiff/}{\texttt{vision.caltech.edu/actiondiff}}$ Code: $\href{https://github.com/frankyaoxiao/ActionDiff}{\texttt{github.com/frankyaoxiao/ActionDiff}}$
☆ Recurrence Meets Transformers for Universal Multimodal Retrieval
With the rapid advancement of multimodal retrieval and its application in LLMs and multimodal LLMs, increasingly complex retrieval tasks have emerged. Existing methods predominantly rely on task-specific fine-tuning of vision-language models and are limited to single-modality queries or documents. In this paper, we propose ReT-2, a unified retrieval model that supports multimodal queries, composed of both images and text, and searches across multimodal document collections where text and images coexist. ReT-2 leverages multi-layer representations and a recurrent Transformer architecture with LSTM-inspired gating mechanisms to dynamically integrate information across layers and modalities, capturing fine-grained visual and textual details. We evaluate ReT-2 on the challenging M2KR and M-BEIR benchmarks across different retrieval configurations. Results demonstrate that ReT-2 consistently achieves state-of-the-art performance across diverse settings, while offering faster inference and reduced memory usage compared to prior approaches. When integrated into retrieval-augmented generation pipelines, ReT-2 also improves downstream performance on Encyclopedic-VQA and InfoSeek datasets. Our source code and trained models are publicly available at: https://github.com/aimagelab/ReT-2
♻ ☆ CamC2V: Context-aware Controllable Video Generation
Recently, image-to-video (I2V) diffusion models have demonstrated impressive scene understanding and generative quality, incorporating image conditions to guide generation. However, these models primarily animate static images without extending beyond their provided context. Introducing additional constraints, such as camera trajectories, can enhance diversity but often degrade visual quality, limiting their applicability for tasks requiring faithful scene representation. We propose CamC2V, a context-to-video (C2V) model that integrates multiple image conditions as context with 3D constraints alongside camera control to enrich both global semantics and fine-grained visual details. This enables more coherent and context-aware video generation. Moreover, we motivate the necessity of temporal awareness for an effective context representation. Our comprehensive study on the RealEstate10K dataset demonstrates improvements in visual quality and camera controllability. We will publish our code upon acceptance.
♻ ☆ Reangle-A-Video: 4D Video Generation as Video-to-Video Translation ICCV 2025
We introduce Reangle-A-Video, a unified framework for generating synchronized multi-view videos from a single input video. Unlike mainstream approaches that train multi-view video diffusion models on large-scale 4D datasets, our method reframes the multi-view video generation task as video-to-videos translation, leveraging publicly available image and video diffusion priors. In essence, Reangle-A-Video operates in two stages. (1) Multi-View Motion Learning: An image-to-video diffusion transformer is synchronously fine-tuned in a self-supervised manner to distill view-invariant motion from a set of warped videos. (2) Multi-View Consistent Image-to-Images Translation: The first frame of the input video is warped and inpainted into various camera perspectives under an inference-time cross-view consistency guidance using DUSt3R, generating multi-view consistent starting images. Extensive experiments on static view transport and dynamic camera control show that Reangle-A-Video surpasses existing methods, establishing a new solution for multi-view video generation. We will publicly release our code and data. Project page: https://hyeonho99.github.io/reangle-a-video/
comment: ICCV 2025, Project page: https://hyeonho99.github.io/reangle-a-video/
♻ ☆ GenFlow: Interactive Modular System for Image Generation
Generative art unlocks boundless creative possibilities, yet its full potential remains untapped due to the technical expertise required for advanced architectural concepts and computational workflows. To bridge this gap, we present GenFlow, a novel modular framework that empowers users of all skill levels to generate images with precision and ease. Featuring a node-based editor for seamless customization and an intelligent assistant powered by natural language processing, GenFlow transforms the complexity of workflow creation into an intuitive and accessible experience. By automating deployment processes and minimizing technical barriers, our framework makes cutting-edge generative art tools available to everyone. A user study demonstrated GenFlow's ability to optimize workflows, reduce task completion times, and enhance user understanding through its intuitive interface and adaptive features. These results position GenFlow as a groundbreaking solution that redefines accessibility and efficiency in the realm of generative art.
comment: CBMI 2025
♻ ☆ LED: LLM Enhanced Open-Vocabulary Object Detection without Human Curated Data Generation
Large foundation models trained on large-scale vision-language data can boost Open-Vocabulary Object Detection (OVD) via synthetic training data, yet the hand-crafted pipelines often introduce bias and overfit to specific prompts. We sidestep this issue by directly fusing hidden states from Large Language Models (LLMs) into detectors-an avenue surprisingly under-explored. This paper presents a systematic method to enhance visual grounding by utilizing decoder layers of the LLM of an MLLM. We introduce a zero-initialized cross-attention adapter to enable efficient knowledge fusion from LLMs to object detectors, a new approach called LED (LLM Enhanced Open-Vocabulary Object Detection). We find that intermediate LLM layers already encode rich spatial semantics; adapting only the early layers yields most of the gain. With Swin-T as the vision encoder, Qwen2-0.5B + LED lifts GroundingDINO by 3.82 % on OmniLabel at just 8.7 % extra GFLOPs, and a larger vision backbone pushes the improvement to 6.22 %. Extensive ablations on adapter variants, LLM scales and fusion depths further corroborate our design.
♻ ☆ Physics-Driven Local-Whole Elastic Deformation Modeling for Point Cloud Representation Learning
Existing point cloud representation learning methods primarily rely on data-driven strategies to extract geometric information from large amounts of scattered data. However, most methods focus solely on the spatial distribution features of point clouds while overlooking the relationship between local information and the whole structure, which limits the accuracy of point cloud representation. Local information reflect the fine-grained variations of an object, while the whole structure is determined by the interaction and combination of these local features, collectively defining the object's shape. In real-world, objects undergo deformation under external forces, and this deformation gradually affects the whole structure through the propagation of forces from local regions, thereby altering the object's geometric features. Therefore, the appropriate introduction of physics-driven mechanism can effectively compensate for the limitations of data-driven methods in structural modeling and significantly enhance the generalization and interpretability of point cloud representations in downstream tasks such as understanding and recognition. Inspired by this, we incorporate a physics-driven mechanism into the data-driven method to learn fine-grained features in point clouds and model the structural relationship between local regions and the whole shape. Specifically, we design a dual-task encoder-decoder framework that combines the geometric modeling capability of data-driven implicit fields with physics-driven elastic deformation. Through the integration of physics-based loss functions, the framework is guided to predict localized deformation and explicitly capture the correspondence between local structural changes and whole shape variations. Experimental results show that our method outperforms existing approaches in object classification and segmentation, demonstrating its effectiveness.
♻ ☆ LLaDA-VLA: Vision Language Diffusion Action Models
The rapid progress of auto-regressive vision-language models (VLMs) has inspired growing interest in vision-language-action models (VLA) for robotic manipulation. Recently, masked diffusion models, a paradigm distinct from autoregressive models, have begun to demonstrate competitive performance in text generation and multimodal applications, leading to the development of a series of diffusion-based VLMs (d-VLMs). However, leveraging such models for robot policy learning remains largely unexplored. In this work, we present LLaDA-VLA, the first Vision-Language-Diffusion-Action model built upon pretrained d-VLMs for robotic manipulation. To effectively adapt d-VLMs to robotic domain, we introduce two key designs: (1) a localized special-token classification strategy that replaces full-vocabulary classification with special action token classification, reducing adaptation difficulty; (2) a hierarchical action-structured decoding strategy that decodes action sequences hierarchically considering the dependencies within and across actions. Extensive experiments demonstrate that LLaDA-VLA significantly outperforms state-of-the-art VLAs on both simulation and real-world robots.
♻ ☆ Have Large Vision-Language Models Mastered Art History?
The emergence of large Vision-Language Models (VLMs) has established new baselines in image classification across multiple domains. We examine whether their multimodal reasoning can also address a challenge mastered by human experts. Specifically, we test whether VLMs can classify the style, author and creation date of paintings, a domain traditionally mastered by art historians. Artworks pose a unique challenge compared to natural images due to their inherently complex and diverse structures, characterized by variable compositions and styles. This requires a contextual and stylistic interpretation rather than straightforward object recognition. Art historians have long studied the unique aspects of artworks, with style prediction being a crucial component of their discipline. This paper investigates whether large VLMs, which integrate visual and textual data, can effectively reason about the historical and stylistic attributes of paintings. We present the first study of its kind, conducting an in-depth analysis of three VLMs, namely CLIP, LLaVA, and GPT-4o, evaluating their zero-shot classification of art style, author and time period. Using two image benchmarks of artworks, we assess the models' ability to interpret style, evaluate their sensitivity to prompts, and examine failure cases. Additionally, we focus on how these models compare to human art historical expertise by analyzing misclassifications, providing insights into their reasoning and classification patterns.
♻ ☆ Towards properties of adversarial image perturbations
Using stochastic gradient approach we study the properties of adversarial perturbations resulting in noticeable growth of VMAF image quality metric. The structure of the perturbations is investigated depending on the acceptable PSNR values and based on the Fourier power spectrum computations for the perturbations. It is demonstrated that moderate variation of image brightness ($\sim 10$ pixel units in a restricted region of an image can result in VMAF growth by $\sim 60\%$). Unlike some other methods demonstrating similar VMAF growth, the subjective quality of an image remains almost unchanged. It is also shown that the adversarial perturbations may demonstrate approximately linear dependence of perturbation amplitudes on the image brightness. The perturbations are studied based on the direct VMAF optimization in PyTorch. The significant discrepancies between the metric values and subjective judgements are also demonstrated when image restoration from noise is carried out using the same direct VMAF optimization.
comment: 13 pages, 40 figures
♻ ☆ P3-SAM: Native 3D Part Segmentation
Segmenting 3D assets into their constituent parts is crucial for enhancing 3D understanding, facilitating model reuse, and supporting various applications such as part generation. However, current methods face limitations such as poor robustness when dealing with complex objects and cannot fully automate the process. In this paper, we propose a native 3D point-promptable part segmentation model termed P3-SAM, designed to fully automate the segmentation of any 3D objects into components. Inspired by SAM, P3-SAM consists of a feature extractor, multiple segmentation heads, and an IoU predictor, enabling interactive segmentation for users. We also propose an algorithm to automatically select and merge masks predicted by our model for part instance segmentation. Our model is trained on a newly built dataset containing nearly 3.7 million models with reasonable segmentation labels. Comparisons show that our method achieves precise segmentation results and strong robustness on any complex objects, attaining state-of-the-art performance. Our code will be released soon.
comment: Tech Report
♻ ☆ A Survey of World Models for Autonomous Driving
Recent breakthroughs in autonomous driving have been propelled by advances in robust world modeling, fundamentally transforming how vehicles interpret dynamic scenes and execute safe decision-making. World models have emerged as a linchpin technology, offering high-fidelity representations of the driving environment that integrate multi-sensor data, semantic cues, and temporal dynamics. This paper systematically reviews recent advances in world models for autonomous driving, proposing a three-tiered taxonomy: (i) Generation of Future Physical World, covering Image-, BEV-, OG-, and PC-based generation methods that enhance scene evolution modeling through diffusion models and 4D occupancy forecasting; (ii) Behavior Planning for Intelligent Agents, combining rule-driven and learning-based paradigms with cost map optimization and reinforcement learning for trajectory generation in complex traffic conditions; (ii) Interaction between Prediction and Planning, achieving multi-agent collaborative decision-making through latent space diffusion and memory-augmented architectures. The study further analyzes training paradigms, including self-supervised learning, multimodal pretraining, and generative data augmentation, while evaluating world models' performance in scene understanding and motion prediction tasks. Future research must address key challenges in self-supervised representation learning, multimodal fusion, and advanced simulation to advance the practical deployment of world models in complex urban environments. Overall, the comprehensive analysis provides a technical roadmap for harnessing the transformative potential of world models in advancing safe and reliable autonomous driving solutions.
comment: Ongoing project. Paper list: https://github.com/FengZicai/AwesomeWMAD Benchmark: https://github.com/FengZicai/WMAD-Benchmarks
♻ ☆ F-Bench: Rethinking Human Preference Evaluation Metrics for Benchmarking Face Generation, Customization, and Restoration
Artificial intelligence generative models exhibit remarkable capabilities in content creation, particularly in face image generation, customization, and restoration. However, current AI-generated faces (AIGFs) often fall short of human preferences due to unique distortions, unrealistic details, and unexpected identity shifts, underscoring the need for a comprehensive quality evaluation framework for AIGFs. To address this need, we introduce FaceQ, a large-scale, comprehensive database of AI-generated Face images with fine-grained Quality annotations reflecting human preferences. The FaceQ database comprises 12,255 images generated by 29 models across three tasks: (1) face generation, (2) face customization, and (3) face restoration. It includes 32,742 mean opinion scores (MOSs) from 180 annotators, assessed across multiple dimensions: quality, authenticity, identity (ID) fidelity, and text-image correspondence. Using the FaceQ database, we establish F-Bench, a benchmark for comparing and evaluating face generation, customization, and restoration models, highlighting strengths and weaknesses across various prompts and evaluation dimensions. Additionally, we assess the performance of existing image quality assessment (IQA), face quality assessment (FQA), AI-generated content image quality assessment (AIGCIQA), and preference evaluation metrics, manifesting that these standard metrics are relatively ineffective in evaluating authenticity, ID fidelity, and text-image correspondence. The FaceQ database will be publicly available upon publication.
♻ ☆ BranchGRPO: Stable and Efficient GRPO with Structured Branching in Diffusion Models
Recent advancements in aligning image and video generative models via GRPO have achieved remarkable gains in enhancing human preference alignment. However, these methods still face high computational costs from on-policy rollouts and excessive SDE sampling steps, as well as training instability due to sparse rewards. In this paper, we propose BranchGRPO, a novel method that introduces a branch sampling policy updating the SDE sampling process. By sharing computation across common prefixes and pruning low-reward paths and redundant depths, BranchGRPO substantially lowers the per-update compute cost while maintaining or improving exploration diversity. This work makes three main contributions: (1) a branch sampling scheme that reduces rollout and training cost; (2) a tree-based advantage estimator incorporating dense process-level rewards; and (3) pruning strategies exploiting path and depth redundancy to accelerate convergence and boost performance. Experiments on image and video preference alignment show that BranchGRPO improves alignment scores by 16% over strong baselines, while cutting training time by 50%.
comment: 12 pages, 6 figures
♻ ☆ LYT-NET: Lightweight YUV Transformer-based Network for Low-light Image Enhancement
This letter introduces LYT-Net, a novel lightweight transformer-based model for low-light image enhancement (LLIE). LYT-Net consists of several layers and detachable blocks, including our novel blocks--Channel-Wise Denoiser (CWD) and Multi-Stage Squeeze & Excite Fusion (MSEF)--along with the traditional Transformer block, Multi-Headed Self-Attention (MHSA). In our method we adopt a dual-path approach, treating chrominance channels U and V and luminance channel Y as separate entities to help the model better handle illumination adjustment and corruption restoration. Our comprehensive evaluation on established LLIE datasets demonstrates that, despite its low complexity, our model outperforms recent LLIE methods. The source code and pre-trained models are available at https://github.com/albrateanu/LYT-Net
comment: 5 pages
♻ ☆ TerraMind: Large-Scale Generative Multimodality for Earth Observation ICCV'25
We present TerraMind, the first any-to-any generative, multimodal foundation model for Earth observation (EO). Unlike other multimodal models, TerraMind is pretrained on dual-scale representations combining both token-level and pixel-level data across modalities. On a token level, TerraMind encodes high-level contextual information to learn cross-modal relationships, while on a pixel level, TerraMind leverages fine-grained representations to capture critical spatial nuances. We pretrained TerraMind on nine geospatial modalities of a global, large-scale dataset. In this paper, we demonstrate that (i) TerraMind's dual-scale early fusion approach unlocks a range of zero-shot and few-shot applications for Earth observation, (ii) TerraMind introduces "Thinking-in-Modalities" (TiM) -- the capability of generating additional artificial data during finetuning and inference to improve the model output -- and (iii) TerraMind achieves beyond state-of-the-art performance in community-standard benchmarks for EO like PANGAEA. The pretraining dataset, the model weights, and our code are open-sourced under a permissive license.
comment: Accepted at ICCV'25
♻ ☆ MSNav: Zero-Shot Vision-and-Language Navigation with Dynamic Memory and LLM Spatial Reasoning
Vision-and-Language Navigation (VLN) requires an agent to interpret natural language instructions and navigate complex environments. Current approaches often adopt a "black-box" paradigm, where a single Large Language Model (LLM) makes end-to-end decisions. However, it is plagued by critical vulnerabilities, including poor spatial reasoning, weak cross-modal grounding, and memory overload in long-horizon tasks. To systematically address these issues, we propose Memory Spatial Navigation(MSNav), a framework that fuses three modules into a synergistic architecture, which transforms fragile inference into a robust, integrated intelligence. MSNav integrates three modules: Memory Module, a dynamic map memory module that tackles memory overload through selective node pruning, enhancing long-range exploration; Spatial Module, a module for spatial reasoning and object relationship inference that improves endpoint recognition; and Decision Module, a module using LLM-based path planning to execute robust actions. Powering Spatial Module, we also introduce an Instruction-Object-Space (I-O-S) dataset and fine-tune the Qwen3-4B model into Qwen-Spatial (Qwen-Sp), which outperforms leading commercial LLMs in object list extraction, achieving higher F1 and NDCG scores on the I-O-S test set. Extensive experiments on the Room-to-Room (R2R) and REVERIE datasets demonstrate MSNav's state-of-the-art performance with significant improvements in Success Rate (SR) and Success weighted by Path Length (SPL).
comment: 9 pages, 4 figures
♻ ☆ PromptEnhancer: A Simple Approach to Enhance Text-to-Image Models via Chain-of-Thought Prompt Rewriting
Recent advancements in text-to-image (T2I) diffusion models have demonstrated remarkable capabilities in generating high-fidelity images. However, these models often struggle to faithfully render complex user prompts, particularly in aspects like attribute binding, negation, and compositional relationships. This leads to a significant mismatch between user intent and the generated output. To address this challenge, we introduce PromptEnhancer, a novel and universal prompt rewriting framework that enhances any pretrained T2I model without requiring modifications to its weights. Unlike prior methods that rely on model-specific fine-tuning or implicit reward signals like image-reward scores, our framework decouples the rewriter from the generator. We achieve this by training a Chain-of-Thought (CoT) rewriter through reinforcement learning, guided by a dedicated reward model we term the AlignEvaluator. The AlignEvaluator is trained to provide explicit and fine-grained feedback based on a systematic taxonomy of 24 key points, which are derived from a comprehensive analysis of common T2I failure modes. By optimizing the CoT rewriter to maximize the reward from our AlignEvaluator, our framework learns to generate prompts that are more precisely interpreted by T2I models. Extensive experiments on the HunyuanImage 2.1 model demonstrate that PromptEnhancer significantly improves image-text alignment across a wide range of semantic and compositional challenges. Furthermore, we introduce a new, high-quality human preference benchmark to facilitate future research in this direction.
comment: technical report
♻ ☆ Hybrid Swin Attention Networks for Simultaneously Low-Dose PET and CT Denoising
Low-dose computed tomography (LDCT) and positron emission tomography (PET) have emerged as safer alternatives to conventional imaging modalities by significantly reducing radiation exposure. However, this reduction often results in increased noise and artifacts, which can compromise diagnostic accuracy. Consequently, denoising for LDCT/PET has become a vital area of research aimed at enhancing image quality while maintaining radiation safety. In this study, we introduce a novel Hybrid Swin Attention Network (HSANet), which incorporates Efficient Global Attention (EGA) modules and a hybrid upsampling module. The EGA modules enhance both spatial and channel-wise interaction, improving the network's capacity to capture relevant features, while the hybrid upsampling module mitigates the risk of overfitting to noise. We validate the proposed approach using a publicly available LDCT/PET dataset. Experimental results demonstrate that HSANet achieves superior denoising performance compared to existing methods, while maintaining a lightweight model size suitable for deployment on GPUs with standard memory configurations. This makes our approach highly practical for real-world clinical applications.
♻ ☆ Alternating Minimization Schemes for Computing Rate-Distortion-Perception Functions with $f$-Divergence Perception Constraints
We study the computation of the rate-distortion-perception function (RDPF) for discrete memoryless sources subject to a single-letter average distortion constraint and a perception constraint belonging to the family of $f$-divergences. In this setting, the RDPF forms a convex programming problem for which we characterize optimal parametric solutions. We employ the developed solutions in an alternating minimization scheme, namely Optimal Alternating Minimization (OAM), for which we provide convergence guarantees. Nevertheless, the OAM scheme does not lead to a direct implementation of a generalized Blahut-Arimoto (BA) type of algorithm due to implicit equations in the iteration's structure. To overcome this difficulty, we propose two alternative minimization approaches whose applicability depends on the smoothness of the used perception metric: a Newton-based Alternating Minimization (NAM) scheme, relying on Newton's root-finding method for the approximation of the optimal solution of the iteration, and a Relaxed Alternating Minimization (RAM) scheme, based on relaxing the OAM iterates. We show, by deriving necessary and sufficient conditions, that both schemes guarantee convergence to a globally optimal solution. We also provide sufficient conditions on the distortion and perception constraints, which guarantee that the proposed algorithms converge exponentially fast in the number of iteration steps. We corroborate our theoretical results with numerical simulations and establish connections with existing results.
comment: This work has been submitted for possible publication
♻ ☆ From Channel Bias to Feature Redundancy: Uncovering the "Less is More" Principle in Few-Shot Learning
Deep neural networks often fail to adapt representations to novel tasks under distribution shifts, especially when only a few examples are available. This paper identifies a core obstacle behind this failure: channel bias, where networks develop a rigid emphasis on feature dimensions that were discriminative for the source task, but this emphasis is misaligned and fails to adapt to the distinct needs of a novel task. This bias leads to a striking and detrimental consequence: feature redundancy. We demonstrate that for few-shot tasks, classification accuracy is significantly improved by using as few as 1-5% of the most discriminative feature dimensions, revealing that the vast majority are actively harmful. Our theoretical analysis confirms that this redundancy originates from confounding feature dimensions-those with high intra-class variance but low inter-class separability-which are especially problematic in low-data regimes. This "less is more" phenomenon is a defining characteristic of the few-shot setting, diminishing as more samples become available. To address this, we propose a simple yet effective soft-masking method, Augmented Feature Importance Adjustment (AFIA), which estimates feature importance from augmented data to mitigate the issue. By establishing the cohesive link from channel bias to its consequence of extreme feature redundancy, this work provides a foundational principle for few-shot representation transfer and a practical method for developing more robust few-shot learning algorithms.
comment: arXiv admin note: substantial text overlap with arXiv:2206.08126
♻ ☆ PrediTree: A Multi-Temporal Sub-meter Dataset of Multi-Spectral Imagery Aligned With Canopy Height Maps
We present PrediTree, the first comprehensive open-source dataset designed for training and evaluating tree height prediction models at sub-meter resolution. This dataset combines very high-resolution (0.5m) LiDAR-derived canopy height maps, spatially aligned with multi-temporal and multi-spectral imagery, across diverse forest ecosystems in France, totaling 3,141,568 images. PrediTree addresses a critical gap in forest monitoring capabilities by enabling the training of deep learning methods that can predict tree growth based on multiple past observations. To make use of this PrediTree dataset, we propose an encoder-decoder framework that requires the multi-temporal multi-spectral imagery and the relative time differences in years between the canopy height map timestamp (target) and each image acquisition date for which this framework predicts the canopy height. The conducted experiments demonstrate that a U-Net architecture trained on the PrediTree dataset provides the highest masked mean squared error of $11.78\%$, outperforming the next-best architecture, ResNet-50, by around $12\%$, and cutting the error of the same experiments but on fewer bands (red, green, blue only), by around $30\%$. This dataset is publicly available on https://huggingface.co/datasets/hiyam-d/PrediTree, and both processing and training codebases are available on {GitHub}.
comment: Accepted at GAIA 2025. Dataset available at https://huggingface.co/datasets/hiyam-d/PrediTree
♻ ☆ TextlessRAG: End-to-End Visual Document RAG by Speech Without Text
Document images encapsulate a wealth of knowledge, while the portability of spoken queries enables broader and flexible application scenarios. Yet, no prior work has explored knowledge base question answering over visual document images with queries provided directly in speech. We propose TextlessRAG, the first end-to-end framework for speech-based question answering over large-scale document images. Unlike prior methods, TextlessRAG eliminates ASR, TTS and OCR, directly interpreting speech, retrieving relevant visual knowledge, and generating answers in a fully textless pipeline. To further boost performance, we integrate a layout-aware reranking mechanism to refine retrieval. Experiments demonstrate substantial improvements in both efficiency and accuracy. To advance research in this direction, we also release the first bilingual speech--document RAG dataset, featuring Chinese and English voice queries paired with multimodal document content. Both the dataset and our pipeline will be made available at repository:https://github.com/xiepeijinhit-hue/textlessrag
comment: 5 pages, 4 figures,
♻ ☆ Moment- and Power-Spectrum-Based Gaussianity Regularization for Text-to-Image Models
We propose a novel regularization loss that enforces standard Gaussianity, encouraging samples to align with a standard Gaussian distribution. This facilitates a range of downstream tasks involving optimization in the latent space of text-to-image models. We treat elements of a high-dimensional sample as one-dimensional standard Gaussian variables and define a composite loss that combines moment-based regularization in the spatial domain with power spectrum-based regularization in the spectral domain. Since the expected values of moments and power spectrum distributions are analytically known, the loss promotes conformity to these properties. To ensure permutation invariance, the losses are applied to randomly permuted inputs. Notably, existing Gaussianity-based regularizations fall within our unified framework: some correspond to moment losses of specific orders, while the previous covariance-matching loss is equivalent to our spectral loss but incurs higher time complexity due to its spatial-domain computation. We showcase the application of our regularization in generative modeling for test-time reward alignment with a text-to-image model, specifically to enhance aesthetics and text alignment. Our regularization outperforms previous Gaussianity regularization, effectively prevents reward hacking and accelerates convergence.
♻ ☆ ALOcc: Adaptive Lifting-Based 3D Semantic Occupancy and Cost Volume-Based Flow Predictions ICCV 2025
3D semantic occupancy and flow prediction are fundamental to spatiotemporal scene understanding. This paper proposes a vision-based framework with three targeted improvements. First, we introduce an occlusion-aware adaptive lifting mechanism incorporating depth denoising. This enhances the robustness of 2D-to-3D feature transformation while mitigating reliance on depth priors. Second, we enforce 3D-2D semantic consistency via jointly optimized prototypes, using confidence- and category-aware sampling to address the long-tail classes problem. Third, to streamline joint prediction, we devise a BEV-centric cost volume to explicitly correlate semantic and flow features, supervised by a hybrid classification-regression scheme that handles diverse motion scales. Our purely convolutional architecture establishes new SOTA performance on multiple benchmarks for both semantic occupancy and joint occupancy semantic-flow prediction. We also present a family of models offering a spectrum of efficiency-performance trade-offs. Our real-time version exceeds all existing real-time methods in speed and accuracy, ensuring its practical viability.
comment: ICCV 2025
♻ ☆ Nearest Neighbor Projection Removal Adversarial Training
Deep neural networks have exhibited impressive performance in image classification tasks but remain vulnerable to adversarial examples. Standard adversarial training enhances robustness but typically fails to explicitly address inter-class feature overlap, a significant contributor to adversarial susceptibility. In this work, we introduce a novel adversarial training framework that actively mitigates inter-class proximity by projecting out inter-class dependencies from adversarial and clean samples in the feature space. Specifically, our approach first identifies the nearest inter-class neighbors for each adversarial sample and subsequently removes projections onto these neighbors to enforce stronger feature separability. Theoretically, we demonstrate that our proposed logits correction reduces the Lipschitz constant of neural networks, thereby lowering the Rademacher complexity, which directly contributes to improved generalization and robustness. Extensive experiments across standard benchmarks including CIFAR-10, CIFAR-100, and SVHN show that our method demonstrates strong performance that is competitive with leading adversarial training techniques, highlighting significant achievements in both robust and clean accuracy. Our findings reveal the importance of addressing inter-class feature proximity explicitly to bolster adversarial robustness in DNNs.
♻ ☆ Rethinking Random Masking in Self-Distillation on ViT
Vision Transformers (ViTs) have demonstrated remarkable performance across a wide range of vision tasks. In particular, self-distillation frameworks such as DINO have contributed significantly to these advances. Within such frameworks, random masking is often utilized to improve training efficiency and introduce regularization. However, recent studies have raised concerns that indiscriminate random masking may inadvertently eliminate critical semantic information, motivating the development of more informed masking strategies. In this study, we explore the role of random masking in the self-distillation setting, focusing on the DINO framework. Specifically, we apply random masking exclusively to the student's global view, while preserving the student's local views and the teacher's global view in their original, unmasked forms. This design leverages DINO's multi-view augmentation scheme to retain clean supervision while inducing robustness through masked inputs. We evaluate our approach using DINO-Tiny on the mini-ImageNet dataset and show that random masking under this asymmetric setup yields more robust and fine-grained attention maps, ultimately enhancing downstream performance.
comment: 4 pages
♻ ☆ TextSSR: Diffusion-based Data Synthesis for Scene Text Recognition ICCV 2025
Scene text recognition (STR) suffers from challenges of either less realistic synthetic training data or the difficulty of collecting sufficient high-quality real-world data, limiting the effectiveness of trained models. Meanwhile, despite producing holistically appealing text images, diffusion-based visual text generation methods struggle to synthesize accurate and realistic instance-level text at scale. To tackle this, we introduce TextSSR: a novel pipeline for Synthesizing Scene Text Recognition training data. TextSSR targets three key synthesizing characteristics: accuracy, realism, and scalability. It achieves accuracy through a proposed region-centric text generation with position-glyph enhancement, ensuring proper character placement. It maintains realism by guiding style and appearance generation using contextual hints from surrounding text or background. This character-aware diffusion architecture enjoys precise character-level control and semantic coherence preservation, without relying on natural language prompts. Therefore, TextSSR supports large-scale generation through combinatorial text permutations. Based on these, we present TextSSR-F, a dataset of 3.55 million quality-screened text instances. Extensive experiments show that STR models trained on TextSSR-F outperform those trained on existing synthetic datasets by clear margins on common benchmarks, and further improvements are observed when mixed with real-world training data. Code is available at https://github.com/YesianRohn/TextSSR.
comment: Accepted by ICCV 2025
♻ ☆ Event Camera Meets Resource-Aware Mobile Computing: Abstraction, Algorithm, Acceleration, Application
With the increasing complexity of mobile device applications, these devices are evolving toward high agility. This shift imposes new demands on mobile sensing, particularly in achieving high-accuracy and low-latency. Event-based vision has emerged as a disruptive paradigm, offering high temporal resolution and low latency, making it well-suited for high-accuracy and low-latency sensing tasks on high-agility platforms. However, the presence of substantial noisy events, lack of stable, persistent semantic information, and large data volume pose challenges for event-based data processing on resource-constrained mobile devices. This paper surveys the literature from 2014 to 2025 and presents a comprehensive overview of event-based mobile sensing, encompassing its fundamental principles, event \textit{abstraction} methods, \textit{algorithm} advancements, and both hardware and software \textit{acceleration} strategies. We discuss key \textit{applications} of event cameras in mobile sensing, including visual odometry, object tracking, optical flow, and 3D reconstruction, while highlighting challenges associated with event data processing, sensor fusion, and real-time deployment. Furthermore, we outline future research directions, such as improving the event camera with advanced optics, leveraging neuromorphic computing for efficient processing, and integrating bio-inspired algorithms. To support ongoing research, we provide an open-source \textit{Online Sheet} with recent developments. We hope this survey serves as a reference, facilitating the adoption of event-based vision across diverse applications.
comment: 35 pages
♻ ☆ Sigma: Siamese Mamba Network for Multi-Modal Semantic Segmentation WACV 2025
Multi-modal semantic segmentation significantly enhances AI agents' perception and scene understanding, especially under adverse conditions like low-light or overexposed environments. Leveraging additional modalities (X-modality) like thermal and depth alongside traditional RGB provides complementary information, enabling more robust and reliable prediction. In this work, we introduce Sigma, a Siamese Mamba network for multi-modal semantic segmentation utilizing the advanced Mamba. Unlike conventional methods that rely on CNNs, with their limited local receptive fields, or Vision Transformers (ViTs), which offer global receptive fields at the cost of quadratic complexity, our model achieves global receptive fields with linear complexity. By employing a Siamese encoder and innovating a Mamba-based fusion mechanism, we effectively select essential information from different modalities. A decoder is then developed to enhance the channel-wise modeling ability of the model. Our proposed method is rigorously evaluated on both RGB-Thermal and RGB-Depth semantic segmentation tasks, demonstrating its superiority and marking the first successful application of State Space Models (SSMs) in multi-modal perception tasks. Code is available at https://github.com/zifuwan/Sigma.
comment: Accepted by WACV 2025. Project page: https://zifuwan.github.io/Sigma/
♻ ☆ Bidirectional Sparse Attention for Faster Video Diffusion Training
Video diffusion Transformer (DiT) models excel in generative quality but hit major computational bottlenecks when producing high-resolution, long-duration videos. The quadratic complexity of full attention leads to prohibitively high training and inference costs. Full attention inefficiency stems from two key challenges: excessive computation due to the inherent sparsity of Queries and Key-Value pairs, and redundant computation as fixed sparse patterns fail to leverage DiT's dynamic attention. To overcome this limitation, we propose a Bidirectional Sparse Attention (BSA) framework for faster video DiT training, the first to dynamically sparsify both Queries and Key-Value pairs within 3D full attention, thereby substantially improving training and inference efficiency. BSA addresses these issues through two key components. Query sparsity is optimized by selecting the most informative query tokens via semantic similarity and with a dynamic spatial-time training strategy, while KV sparsity is achieved by computing a statistical dynamic threshold to retain only the most salient KV blocks for computation. Extensive experiments demonstrate that BSA significantly accelerates DiT training across long sequences, reducing FLOPs by up to 20x and achieving 17.79x faster attention training, while preserving or even surpassing the generative quality of full attention.
♻ ☆ Vision Transformer with Sparse Scan Prior
In recent years, Transformers have achieved remarkable progress in computer vision tasks. However, their global modeling often comes with substantial computational overhead, in stark contrast to the human eye's efficient information processing. Inspired by the human eye's sparse scanning mechanism, we propose a \textbf{S}parse \textbf{S}can \textbf{S}elf-\textbf{A}ttention mechanism ($\rm{S}^3\rm{A}$). This mechanism predefines a series of Anchors of Interest for each token and employs local attention to efficiently model the spatial information around these anchors, avoiding redundant global modeling and excessive focus on local information. This approach mirrors the human eye's functionality and significantly reduces the computational load of vision models. Building on $\rm{S}^3\rm{A}$, we introduce the \textbf{S}parse \textbf{S}can \textbf{Vi}sion \textbf{T}ransformer (SSViT). Extensive experiments demonstrate the outstanding performance of SSViT across a variety of tasks. Specifically, on ImageNet classification, without additional supervision or training data, SSViT achieves top-1 accuracies of \textbf{84.4\%/85.7\%} with \textbf{4.4G/18.2G} FLOPs. SSViT also excels in downstream tasks such as object detection, instance segmentation, and semantic segmentation. Its robustness is further validated across diverse datasets.
♻ ☆ UAR-NVC: A Unified AutoRegressive Framework for Memory-Efficient Neural Video Compression
Implicit Neural Representations (INRs) have demonstrated significant potential in video compression by representing videos as neural networks. However, as the number of frames increases, the memory consumption for training and inference increases substantially, posing challenges in resource-constrained scenarios. Inspired by the success of traditional video compression frameworks, which process video frame by frame and can efficiently compress long videos, we adopt this modeling strategy for INRs to decrease memory consumption, while aiming to unify the frameworks from the perspective of timeline-based autoregressive modeling. In this work, we present a novel understanding of INR models from an autoregressive (AR) perspective and introduce a Unified AutoRegressive Framework for memory-efficient Neural Video Compression (UAR-NVC). UAR-NVC integrates timeline-based and INR-based neural video compression under a unified autoregressive paradigm. It partitions videos into several clips and processes each clip using a different INR model instance, leveraging the advantages of both compression frameworks while allowing seamless adaptation to either in form. To further reduce temporal redundancy between clips, we design two modules to optimize the initialization, training, and compression of these model parameters. UAR-NVC supports adjustable latencies by varying the clip length. Extensive experimental results demonstrate that UAR-NVC, with its flexible video clip setting, can adapt to resource-constrained environments and significantly improve performance compared to different baseline models. The project page: "https://wj-inf.github.io/UAR-NVC-page/".
comment: Accepted to TCSVT2025
♻ ☆ SGDFuse: SAM-Guided Diffusion for High-Fidelity Infrared and Visible Image Fusion
Infrared and visible image fusion (IVIF) aims to combine the thermal radiation information from infrared images with the rich texture details from visible images to enhance perceptual capabilities for downstream visual tasks. However, existing methods often fail to preserve key targets due to a lack of deep semantic understanding of the scene, while the fusion process itself can also introduce artifacts and detail loss, severely compromising both image quality and task performance. To address these issues, this paper proposes SGDFuse, a conditional diffusion model guided by the Segment Anything Model (SAM), to achieve high-fidelity and semantically-aware image fusion. The core of our method is to utilize high-quality semantic masks generated by SAM as explicit priors to guide the optimization of the fusion process via a conditional diffusion model. Specifically, the framework operates in a two-stage process: it first performs a preliminary fusion of multi-modal features, and then utilizes the semantic masks from SAM jointly with the preliminary fused image as a condition to drive the diffusion model's coarse-to-fine denoising generation. This ensures the fusion process not only has explicit semantic directionality but also guarantees the high fidelity of the final result. Extensive experiments demonstrate that SGDFuse achieves state-of-the-art performance in both subjective and objective evaluations, as well as in its adaptability to downstream tasks, providing a powerful solution to the core challenges in image fusion. The code of SGDFuse is available at https://github.com/boshizhang123/SGDFuse.
comment: Submitted to Information Fusion
♻ ☆ Learning Robust Representations via Bidirectional Transition for Visual Reinforcement Learning
Visual reinforcement learning has proven effective in solving control tasks with high-dimensional observations. However, extracting reliable and generalizable representations from vision-based observations remains a central challenge. Inspired by the human thought process, when the representation extracted from the observation can predict the future and trace history, the representation is reliable and accurate in comprehending the environment. Based on this concept, we introduce a Bidirectional Transition (BiT) model, which leverages the ability to bidirectionally predict environmental transitions both forward and backward to extract reliable representations. Our model demonstrates competitive generalization performance and sample efficiency on two settings of the DeepMind Control suite. Additionally, we utilize robotic manipulation and CARLA simulators to demonstrate the wide applicability of our method.
♻ ☆ GNF: Gaussian Neural Fields for Multidimensional Signal Representation and Reconstruction
Neural fields have emerged as a powerful framework for representing continuous multidimensional signals such as images and videos, 3D and 4D objects and scenes, and radiance fields. While efficient, achieving high-quality representation requires the use of wide and deep neural networks. These, however, are slow to train and evaluate. Although several acceleration techniques have been proposed, they either trade memory for faster training and/or inference, rely on thousands of fitted primitives with considerable optimization time, or compromise the smooth, continuous nature of neural fields. In this paper, we introduce Gaussian Neural Fields (GNF), a novel compact neural decoder that maps learned feature grids into continuous non-linear signals, such as RGB images, Signed Distance Functions (SDFs), and radiance fields, using a single compact layer of Gaussian kernels defined in a high-dimensional feature space. Our key observation is that neurons in traditional MLPs perform simple computations, usually a dot product followed by an activation function, necessitating wide and deep MLPs or high-resolution feature grids to model complex functions. In this paper, we show that replacing MLP-based decoders with Gaussian kernels whose centers are learned features yields highly accurate representations of 2D (RGB), 3D (geometry), and 5D (radiance fields) signals with just a single layer of such kernels. This representation is highly parallelizable, operates on low-resolution grids, and trains in under $15$ seconds for 3D geometry and under $11$ minutes for view synthesis. GNF matches the accuracy of deep MLP-based decoders with far fewer parameters and significantly higher inference throughput.
comment: The source code is publicly available at \url{https://grbfnet.github.io/}
♻ ☆ A Chinese Continuous Sign Language Dataset Based on Complex Environments
The current bottleneck in continuous sign language recognition (CSLR) research lies in the fact that most publicly available datasets are limited to laboratory environments or television program recordings, resulting in a single background environment with uniform lighting, which significantly deviates from the diversity and complexity found in real-life scenarios. To address this challenge, we have constructed a new, large-scale dataset for Chinese continuous sign language (CSL) based on complex environments, termed the complex environment - chinese sign language dataset (CE-CSL). This dataset encompasses 5,988 continuous CSL video clips collected from daily life scenes, featuring more than 70 different complex backgrounds to ensure representativeness and generalization capability. To tackle the impact of complex backgrounds on CSLR performance, we propose a time-frequency network (TFNet) model for continuous sign language recognition. This model extracts frame-level features and then utilizes both temporal and spectral information to separately derive sequence features before fusion, aiming to achieve efficient and accurate CSLR. Experimental results demonstrate that our approach achieves significant performance improvements on the CE-CSL, validating its effectiveness under complex background conditions. Additionally, our proposed method has also yielded highly competitive results when applied to three publicly available CSL datasets.
comment: 11 pages, 3 figures
♻ ☆ RetinaGuard: Obfuscating Retinal Age in Fundus Images for Biometric Privacy Preserving
The integration of AI with medical images enables the extraction of implicit image-derived biomarkers for a precise health assessment. Recently, retinal age, a biomarker predicted from fundus images, is a proven predictor of systemic disease risks, behavioral patterns, aging trajectory and even mortality. However, the capability to infer such sensitive biometric data raises significant privacy risks, where unauthorized use of fundus images could lead to bioinformation leakage, breaching individual privacy. In response, we formulate a new research problem of biometric privacy associated with medical images and propose RetinaGuard, a novel privacy-enhancing framework that employs a feature-level generative adversarial masking mechanism to obscure retinal age while preserving image visual quality and disease diagnostic utility. The framework further utilizes a novel multiple-to-one knowledge distillation strategy incorporating a retinal foundation model and diverse surrogate age encoders to enable a universal defense against black-box age prediction models. Comprehensive evaluations confirm that RetinaGuard successfully obfuscates retinal age prediction with minimal impact on image quality and pathological feature representation. RetinaGuard is also flexible for extension to other medical image derived biomarkers. RetinaGuard is also flexible for extension to other medical image biomarkers.
♻ ☆ RSCC: A Large-Scale Remote Sensing Change Caption Dataset for Disaster Events
Remote sensing is critical for disaster monitoring, yet existing datasets lack temporal image pairs and detailed textual annotations. While single-snapshot imagery dominates current resources, it fails to capture dynamic disaster impacts over time. To address this gap, we introduce the Remote Sensing Change Caption (RSCC) dataset, a large-scale benchmark comprising 62,315 pre-/post-disaster image pairs (spanning earthquakes, floods, wildfires, and more) paired with rich, human-like change captions. By bridging the temporal and semantic divide in remote sensing data, RSCC enables robust training and evaluation of vision-language models for disaster-aware bi-temporal understanding. Our results highlight RSCC's ability to facilitate detailed disaster-related analysis, paving the way for more accurate, interpretable, and scalable vision-language applications in remote sensing. Code and dataset are available at https://github.com/Bili-Sakura/RSCC.
comment: under review
♻ ☆ VIM-GS: Visual-Inertial Monocular Gaussian Splatting via Object-level Guidance in Large Scenes
VIM-GS is a Gaussian Splatting (GS) framework using monocular images for novel-view synthesis (NVS) in large scenes. GS typically requires accurate depth to initiate Gaussian ellipsoids using RGB-D/stereo cameras. Their limited depth sensing range makes it difficult for GS to work in large scenes. Monocular images, however, lack depth to guide the learning and lead to inferior NVS results. Although large foundation models (LFMs) for monocular depth estimation are available, they suffer from cross-frame inconsistency, inaccuracy for distant scenes, and ambiguity in deceptive texture cues. This paper aims to generate dense, accurate depth images from monocular RGB inputs for high-definite GS rendering. The key idea is to leverage the accurate but sparse depth from visual-inertial Structure-from-Motion (SfM) to refine the dense but coarse depth from LFMs. To bridge the sparse input and dense output, we propose an object-segmented depth propagation algorithm that renders the depth of pixels of structured objects. Then we develop a dynamic depth refinement module to handle the crippled SfM depth of dynamic objects and refine the coarse LFM depth. Experiments using public and customized datasets demonstrate the superior rendering quality of VIM-GS in large scenes.
comment: Withdrawn due to an error in the author list & incomplete experimental results
♻ ☆ TransitReID: Transit OD Data Collection with Occlusion-Resistant Dynamic Passenger Re-Identification
Transit Origin-Destination (OD) data are fundamental for optimizing public transit services, yet current collection methods, such as manual surveys, Bluetooth and WiFi tracking, or Automated Passenger Counters, are either costly, device-dependent, or incapable of individual-level matching. Meanwhile, onboard surveillance cameras already deployed on most transit vehicles provide an underutilized opportunity for automated OD data collection. Leveraging this, we present TransitReID, a novel framework for individual-level and occlusion-resistant passenger re-identification tailored to transit environments. Our approach introduces three key innovations: (1) an occlusion-robust ReID algorithm that integrates a variational autoencoder-guided region-attention mechanism and selective quality feature averaging to dynamically emphasize visible and discriminative body regions under severe occlusions and viewpoint variations; (2) a Hierarchical Storage and Dynamic Matching HSDM mechanism that transforms static gallery matching into a dynamic process for robustness, accuracy, and speed in real-world bus operations; and (3) a multi-threaded edge implementation that enables near real-time OD estimation while ensuring privacy by processing all data locally. To support research in this domain, we also construct a new TransitReID dataset with over 17,000 images captured from bus front and rear cameras under diverse occlusion and viewpoint conditions. Experimental results demonstrate that TransitReID achieves state-of-the-art performance, with R-1 accuracy of 88.3 percent and mAP of 92.5 percent, and further sustains 90 percent OD estimation accuracy in bus route simulations on NVIDIA Jetson edge devices. This work advances both the algorithmic and system-level foundations of automated transit OD collection, paving the way for scalable, privacy-preserving deployment in intelligent transportation systems.
♻ ☆ Missing Fine Details in Images: Last Seen in High Frequencies
Latent generative models have shown remarkable progress in high-fidelity image synthesis, typically using a two-stage training process that involves compressing images into latent embeddings via learned tokenizers in the first stage. The quality of generation strongly depends on how expressive and well-optimized these latent embeddings are. While various methods have been proposed to learn effective latent representations, generated images often lack realism, particularly in textured regions with sharp transitions, due to loss of fine details governed by high frequencies. We conduct a detailed frequency decomposition of existing state-of-the-art (SOTA) latent tokenizers and show that conventional objectives inherently prioritize low-frequency reconstruction, often at the expense of high-frequency fidelity. Our analysis reveals these latent tokenizers exhibit a bias toward low-frequency information during optimization, leading to over-smoothed outputs and visual artifacts that diminish perceptual quality. To address this, we propose a wavelet-based, frequency-aware variational autoencoder (FA-VAE) framework that explicitly decouples the optimization of low- and high-frequency components. This decoupling enables improved reconstruction of fine textures while preserving global structure. Moreover, we integrate our frequency-preserving latent embeddings into a SOTA latent diffusion model, resulting in sharper and more realistic image generation. Our approach bridges the fidelity gap in current latent tokenizers and emphasizes the importance of frequency-aware optimization for realistic image synthesis, with broader implications for applications in content creation, neural rendering, and medical imaging.
♻ ☆ An Improved U-Net Model for Offline handwriting signature denoising
Handwriting signatures, as an important means of identity recognition, are widely used in multiple fields such as financial transactions, commercial contracts and personal affairs due to their legal effect and uniqueness. In forensic science appraisals, the analysis of offline handwriting signatures requires the appraiser to provide a certain number of signature samples, which are usually derived from various historical contracts or archival materials. However, the provided handwriting samples are often mixed with a large amount of interfering information, which brings severe challenges to handwriting identification work. This study proposes a signature handwriting denoising model based on the improved U-net structure, aiming to enhance the robustness of the signature recognition system. By introducing discrete wavelet transform and PCA transform, the model's ability to suppress noise has been enhanced. The experimental results show that this modelis significantly superior to the traditional methods in denoising effect, can effectively improve the clarity and readability of the signed images, and provide more reliable technical support for signature analysis and recognition.
♻ ☆ ReceiptSense: Beyond Traditional OCR -- A Dataset for Receipt Understanding
Multilingual OCR and information extraction from receipts remains challenging, particularly for complex scripts like Arabic. We introduce \dataset, a comprehensive dataset designed for Arabic-English receipt understanding comprising 20,000 annotated receipts from diverse retail settings, 30,000 OCR-annotated images, and 10,000 item-level annotations, and a new Receipt QA subset with 1265 receipt images paired with 40 question-answer pairs each to support LLM evaluation for receipt understanding. The dataset captures merchant names, item descriptions, prices, receipt numbers, and dates to support object detection, OCR, and information extraction tasks. We establish baseline performance using traditional methods (Tesseract OCR) and advanced neural networks, demonstrating the dataset's effectiveness for processing complex, noisy real-world receipt layouts. Our publicly accessible dataset advances automated multilingual document processing research (see https://github.com/Update-For-Integrated-Business-AI/CORU ).
♻ ☆ SiLVR: Scalable Lidar-Visual Radiance Field Reconstruction with Uncertainty Quantification
We present a neural radiance field (NeRF) based large-scale reconstruction system that fuses lidar and vision data to generate high-quality reconstructions that are geometrically accurate and capture photorealistic texture. Our system adopts the state-of-the-art NeRF representation to incorporate lidar. Adding lidar data adds strong geometric constraints on the depth and surface normals, which is particularly useful when modelling uniform texture surfaces which contain ambiguous visual reconstruction cues. A key contribution of this work is a novel method to quantify the epistemic uncertainty of the lidar-visual NeRF reconstruction by estimating the spatial variance of each point location in the radiance field given the sensor observations from the cameras and lidar. This provides a principled approach to evaluate the contribution of each sensor modality to the final reconstruction. In this way, reconstructions that are uncertain (due to e.g. uniform visual texture, limited observation viewpoints, or little lidar coverage) can be identified and removed. Our system is integrated with a real-time lidar SLAM system which is used to bootstrap a Structure-from-Motion (SfM) reconstruction procedure. It also helps to properly constrain the overall metric scale which is essential for the lidar depth loss. The refined SLAM trajectory can then be divided into submaps using Spectral Clustering to group sets of co-visible images together. This submapping approach is more suitable for visual reconstruction than distance-based partitioning. Our uncertainty estimation is particularly effective when merging submaps as their boundaries often contain artefacts due to limited observations. We demonstrate the reconstruction system using a multi-camera, lidar sensor suite in experiments involving both robot-mounted and handheld scanning. Our test datasets cover a total area of more than 20,000 square metres.
comment: Accepted by T-RO. Webpage: https://dynamic.robots.ox.ac.uk/projects/silvr/
♻ ☆ Semantic Augmentation in Images using Language
Deep Learning models are incredibly data-hungry and require very large labeled datasets for supervised learning. As a consequence, these models often suffer from overfitting, limiting their ability to generalize to real-world examples. Recent advancements in diffusion models have enabled the generation of photorealistic images based on textual inputs. Leveraging the substantial datasets used to train these diffusion models, we propose a technique to utilize generated images to augment existing datasets. This paper explores various strategies for effective data augmentation to improve the out-of-domain generalization capabilities of deep learning models.
♻ ☆ Spec2VolCAMU-Net: A Spectrogram-to-Volume Model for EEG-to-fMRI Reconstruction based on Multi-directional Time-Frequency Convolutional Attention Encoder and Vision-Mamba U-Net
High-resolution functional magnetic resonance imaging (fMRI) is essential for mapping human brain activity; however, it remains costly and logistically challenging. If comparable volumes could be generated directly from widely available scalp electroencephalography (EEG), advanced neuroimaging would become significantly more accessible. Existing EEG-to-fMRI generators rely on plain Convolutional Neural Networks (CNNs) that fail to capture cross-channel time-frequency cues or on heavy transformer/Generative Adversarial Network (GAN) decoders that strain memory and stability. To address these limitations, we propose Spec2VolCAMU-Net, a lightweight architecture featuring a Multi-directional Time-Frequency Convolutional Attention Encoder for rich feature extraction and a Vision-Mamba U-Net decoder that uses linear-time state-space blocks for efficient long-range spatial modelling. We frame the goal of this work as establishing a new state of the art in the spatial fidelity of single-volume reconstruction, a foundational prerequisite for the ultimate aim of generating temporally coherent fMRI time series. Trained end-to-end with a hybrid SSI-MSE loss, Spec2VolCAMU-Net achieves state-of-the-art fidelity on three public benchmarks, recording Structural Similarity Index (SSIM) of 0.693 on NODDI, 0.725 on Oddball and 0.788 on CN-EPFL, representing improvements of 14.5%, 14.9%, and 16.9% respectively over previous best SSIM scores. Furthermore, it achieves competitive Signal-to-Noise Ratio (PSNR) scores, particularly excelling on the CN-EPFL dataset with a 4.6% improvement over the previous best PSNR, thus striking a better balance in reconstruction quality. The proposed model is lightweight and efficient, making it suitable for real-time applications in clinical and research settings. The code is available at https://github.com/hdy6438/Spec2VolCAMU-Net.
♻ ☆ The Oxford Spires Dataset: Benchmarking Large-Scale LiDAR-Visual Localisation, Reconstruction and Radiance Field Methods
This paper introduces a large-scale multi-modal dataset captured in and around well-known landmarks in Oxford using a custom-built multi-sensor perception unit as well as a millimetre-accurate map from a Terrestrial LiDAR Scanner (TLS). The perception unit includes three synchronised global shutter colour cameras, an automotive 3D LiDAR scanner, and an inertial sensor - all precisely calibrated. We also establish benchmarks for tasks involving localisation, reconstruction, and novel-view synthesis, which enable the evaluation of Simultaneous Localisation and Mapping (SLAM) methods, Structure-from-Motion (SfM) and Multi-view Stereo (MVS) methods as well as radiance field methods such as Neural Radiance Fields (NeRF) and 3D Gaussian Splatting. To evaluate 3D reconstruction the TLS 3D models are used as ground truth. Localisation ground truth is computed by registering the mobile LiDAR scans to the TLS 3D models. Radiance field methods are evaluated not only with poses sampled from the input trajectory, but also from viewpoints that are from trajectories which are distant from the training poses. Our evaluation demonstrates a key limitation of state-of-the-art radiance field methods: we show that they tend to overfit to the training poses/images and do not generalise well to out-of-sequence poses. They also underperform in 3D reconstruction compared to MVS systems using the same visual inputs. Our dataset and benchmarks are intended to facilitate better integration of radiance field methods and SLAM systems. The raw and processed data, along with software for parsing and evaluation, can be accessed at https://dynamic.robots.ox.ac.uk/datasets/oxford-spires/.
comment: Accepted by IJRR. Website: https://dynamic.robots.ox.ac.uk/datasets/oxford-spires/
Machine Learning 143
☆ A Survey of Reinforcement Learning for Large Reasoning Models
In this paper, we survey recent advances in Reinforcement Learning (RL) for reasoning with Large Language Models (LLMs). RL has achieved remarkable success in advancing the frontier of LLM capabilities, particularly in addressing complex logical tasks such as mathematics and coding. As a result, RL has emerged as a foundational methodology for transforming LLMs into LRMs. With the rapid progress of the field, further scaling of RL for LRMs now faces foundational challenges not only in computational resources but also in algorithm design, training data, and infrastructure. To this end, it is timely to revisit the development of this domain, reassess its trajectory, and explore strategies to enhance the scalability of RL toward Artificial SuperIntelligence (ASI). In particular, we examine research applying RL to LLMs and LRMs for reasoning abilities, especially since the release of DeepSeek-R1, including foundational components, core problems, training resources, and downstream applications, to identify future opportunities and directions for this rapidly evolving area. We hope this review will promote future research on RL for broader reasoning models. Github: https://github.com/TsinghuaC3I/Awesome-RL-for-LRMs
☆ Large Language Model Hacking: Quantifying the Hidden Risks of Using LLMs for Text Annotation
Large language models (LLMs) are rapidly transforming social science research by enabling the automation of labor-intensive tasks like data annotation and text analysis. However, LLM outputs vary significantly depending on the implementation choices made by researchers (e.g., model selection, prompting strategy, or temperature settings). Such variation can introduce systematic biases and random errors, which propagate to downstream analyses and cause Type I, Type II, Type S, or Type M errors. We call this LLM hacking. We quantify the risk of LLM hacking by replicating 37 data annotation tasks from 21 published social science research studies with 18 different models. Analyzing 13 million LLM labels, we test 2,361 realistic hypotheses to measure how plausible researcher choices affect statistical conclusions. We find incorrect conclusions based on LLM-annotated data in approximately one in three hypotheses for state-of-the-art models, and in half the hypotheses for small language models. While our findings show that higher task performance and better general model capabilities reduce LLM hacking risk, even highly accurate models do not completely eliminate it. The risk of LLM hacking decreases as effect sizes increase, indicating the need for more rigorous verification of findings near significance thresholds. Our extensive analysis of LLM hacking mitigation techniques emphasizes the importance of human annotations in reducing false positive findings and improving model selection. Surprisingly, common regression estimator correction techniques are largely ineffective in reducing LLM hacking risk, as they heavily trade off Type I vs. Type II errors. Beyond accidental errors, we find that intentional LLM hacking is unacceptably simple. With few LLMs and just a handful of prompt paraphrases, anything can be presented as statistically significant.
☆ A Survey of TinyML Applications in Beekeeping for Hive Monitoring and Management
Honey bee colonies are essential for global food security and ecosystem stability, yet they face escalating threats from pests, diseases, and environmental stressors. Traditional hive inspections are labor-intensive and disruptive, while cloud-based monitoring solutions remain impractical for remote or resource-limited apiaries. Recent advances in Internet of Things (IoT) and Tiny Machine Learning (TinyML) enable low-power, real-time monitoring directly on edge devices, offering scalable and non-invasive alternatives. This survey synthesizes current innovations at the intersection of TinyML and apiculture, organized around four key functional areas: monitoring hive conditions, recognizing bee behaviors, detecting pests and diseases, and forecasting swarming events. We further examine supporting resources, including publicly available datasets, lightweight model architectures optimized for embedded deployment, and benchmarking strategies tailored to field constraints. Critical limitations such as data scarcity, generalization challenges, and deployment barriers in off-grid environments are highlighted, alongside emerging opportunities in ultra-efficient inference pipelines, adaptive edge learning, and dataset standardization. By consolidating research and engineering practices, this work provides a foundation for scalable, AI-driven, and ecologically informed monitoring systems to support sustainable pollinator management.
comment: 30 pages, 8 figures, 3 tables. Survey of TinyML and IoT applications in beekeeping (datasets, benchmarking, deployment). Submitted to ACM Computing Surveys (under review)
☆ QCardEst/QCardCorr: Quantum Cardinality Estimation and Correction
Cardinality estimation is an important part of query optimization in DBMS. We develop a Quantum Cardinality Estimation (QCardEst) approach using Quantum Machine Learning with a Hybrid Quantum-Classical Network. We define a compact encoding for turning SQL queries into a quantum state, which requires only qubits equal to the number of tables in the query. This allows the processing of a complete query with a single variational quantum circuit (VQC) on current hardware. In addition, we compare multiple classical post-processing layers to turn the probability vector output of VQC into a cardinality value. We introduce Quantum Cardinality Correction QCardCorr, which improves classical cardinality estimators by multiplying the output with a factor generated by a VQC to improve the cardinality estimation. With QCardCorr, we have an improvement over the standard PostgreSQL optimizer of 6.37 times for JOB-light and 8.66 times for STATS. For JOB-light we even outperform MSCN by a factor of 3.47.
comment: 7 pages
☆ Merge-of-Thought Distillation
Efficient reasoning distillation for long chain-of-thought (CoT) models is increasingly constrained by the assumption of a single oracle teacher, despite practical availability of multiple candidate teachers and growing CoT corpora. We revisit teacher selection and observe that different students have different "best teachers," and even for the same student the best teacher can vary across datasets. Therefore, to unify multiple teachers' reasoning abilities into student with overcoming conflicts among various teachers' supervision, we propose Merge-of-Thought Distillation (MoT), a lightweight framework that alternates between teacher-specific supervised fine-tuning branches and weight-space merging of the resulting student variants. On competition math benchmarks, using only about 200 high-quality CoT samples, applying MoT to a Qwen3-14B student surpasses strong models including DEEPSEEK-R1, QWEN3-30B-A3B, QWEN3-32B, and OPENAI-O1, demonstrating substantial gains. Besides, MoT consistently outperforms the best single-teacher distillation and the naive multi-teacher union, raises the performance ceiling while mitigating overfitting, and shows robustness to distribution-shifted and peer-level teachers. Moreover, MoT reduces catastrophic forgetting, improves general reasoning beyond mathematics and even cultivates a better teacher, indicating that consensus-filtered reasoning features transfer broadly. These results position MoT as a simple, scalable route to efficiently distilling long CoT capabilities from diverse teachers into compact students.
☆ ADHDeepNet From Raw EEG to Diagnosis: Improving ADHD Diagnosis through Temporal-Spatial Processing, Adaptive Attention Mechanisms, and Explainability in Raw EEG Signals
Attention Deficit Hyperactivity Disorder (ADHD) is a common brain disorder in children that can persist into adulthood, affecting social, academic, and career life. Early diagnosis is crucial for managing these impacts on patients and the healthcare system but is often labor-intensive and time-consuming. This paper presents a novel method to improve ADHD diagnosis precision and timeliness by leveraging Deep Learning (DL) approaches and electroencephalogram (EEG) signals. We introduce ADHDeepNet, a DL model that utilizes comprehensive temporal-spatial characterization, attention modules, and explainability techniques optimized for EEG signals. ADHDeepNet integrates feature extraction and refinement processes to enhance ADHD diagnosis. The model was trained and validated on a dataset of 121 participants (61 ADHD, 60 Healthy Controls), employing nested cross-validation for robust performance. The proposed two-stage methodology uses a 10-fold cross-subject validation strategy. Initially, each iteration optimizes the model's hyper-parameters with inner 2-fold cross-validation. Then, Additive Gaussian Noise (AGN) with various standard deviations and magnification levels is applied for data augmentation. ADHDeepNet achieved 100% sensitivity and 99.17% accuracy in classifying ADHD/HC subjects. To clarify model explainability and identify key brain regions and frequency bands for ADHD diagnosis, we analyzed the learned weights and activation patterns of the model's primary layers. Additionally, t-distributed Stochastic Neighbor Embedding (t-SNE) visualized high-dimensional data, aiding in interpreting the model's decisions. This study highlights the potential of DL and EEG in enhancing ADHD diagnosis accuracy and efficiency.
comment: 29 pages, 7 figures. Preprint. Correspondence: alijanpour@ucf.edu
☆ PCGBandit: One-shot acceleration of transient PDE solvers via online-learned preconditioners
Data-driven acceleration of scientific computing workflows has been a high-profile aim of machine learning (ML) for science, with numerical simulation of transient partial differential equations (PDEs) being one of the main applications. The focus thus far has been on methods that require classical simulations to train, which when combined with the data-hungriness and optimization challenges of neural networks has caused difficulties in demonstrating a convincing advantage against strong classical baselines. We consider an alternative paradigm in which the learner uses a classical solver's own data to accelerate it, enabling a one-shot speedup of the simulation. Concretely, since transient PDEs often require solving a sequence of related linear systems, the feedback from repeated calls to a linear solver such as preconditioned conjugate gradient (PCG) can be used by a bandit algorithm to online-learn an adaptive sequence of solver configurations (e.g. preconditioners). The method we develop, PCGBandit, is implemented directly on top of the popular open source software OpenFOAM, which we use to show its effectiveness on a set of fluid and magnetohydrodynamics (MHD) problems.
comment: 25 pages, 11 figures
☆ Fourier Learning Machines: Nonharmonic Fourier-Based Neural Networks for Scientific Machine Learning
We introduce the Fourier Learning Machine (FLM), a neural network (NN) architecture designed to represent a multidimensional nonharmonic Fourier series. The FLM uses a simple feedforward structure with cosine activation functions to learn the frequencies, amplitudes, and phase shifts of the series as trainable parameters. This design allows the model to create a problem-specific spectral basis adaptable to both periodic and nonperiodic functions. Unlike previous Fourier-inspired NN models, the FLM is the first architecture able to represent a complete, separable Fourier basis in multiple dimensions using a standard Multilayer Perceptron-like architecture. A one-to-one correspondence between the Fourier coefficients and amplitudes and phase-shifts is demonstrated, allowing for the translation between a full, separable basis form and the cosine phase--shifted one. Additionally, we evaluate the performance of FLMs on several scientific computing problems, including benchmark Partial Differential Equations (PDEs) and a family of Optimal Control Problems (OCPs). Computational experiments show that the performance of FLMs is comparable, and often superior, to that of established architectures like SIREN and vanilla feedforward NNs.
☆ Using AI to Optimize Patient Transfer and Resource Utilization During Mass-Casualty Incidents: A Simulation Platform
Mass casualty incidents (MCIs) overwhelm healthcare systems and demand rapid, accurate patient-hospital allocation decisions under extreme pressure. Here, we developed and validated a deep reinforcement learning-based decision-support AI agent to optimize patient transfer decisions during simulated MCIs by balancing patient acuity levels, specialized care requirements, hospital capacities, and transport logistics. To integrate this AI agent, we developed MasTER, a web-accessible command dashboard for MCI management simulations. Through a controlled user study with 30 participants (6 trauma experts and 24 non-experts), we evaluated three interaction approaches with the AI agent (human-only, human-AI collaboration, and AI-only) across 20- and 60-patient MCI scenarios in the Greater Toronto Area. Results demonstrate that increasing AI involvement significantly improves decision quality and consistency. The AI agent outperforms trauma surgeons (p < 0.001) and enables non-experts to achieve expert-level performance when assisted, contrasting sharply with their significantly inferior unassisted performance (p < 0.001). These findings establish the potential for our AI-driven decision support to enhance both MCI preparedness training and real-world emergency response management.
☆ AgentGym-RL: Training LLM Agents for Long-Horizon Decision Making through Multi-Turn Reinforcement Learning
Developing autonomous LLM agents capable of making a series of intelligent decisions to solve complex, real-world tasks is a fast-evolving frontier. Like human cognitive development, agents are expected to acquire knowledge and skills through exploration and interaction with the environment. Despite advances, the community still lacks a unified, interactive reinforcement learning (RL) framework that can effectively train such agents from scratch -- without relying on supervised fine-tuning (SFT) -- across diverse and realistic environments. To bridge this gap, we introduce AgentGym-RL, a new framework to train LLM agents for multi-turn interactive decision-making through RL. The framework features a modular and decoupled architecture, ensuring high flexibility and extensibility. It encompasses a wide variety of real-world scenarios, and supports mainstream RL algorithms. Furthermore, we propose ScalingInter-RL, a training approach designed for exploration-exploitation balance and stable RL optimization. In early stages, it emphasizes exploitation by restricting the number of interactions, and gradually shifts towards exploration with larger horizons to encourage diverse problem-solving strategies. In this way, the agent develops more diverse behaviors and is less prone to collapse under long horizons. We perform extensive experiments to validate the stability and effectiveness of both the AgentGym-RL framework and the ScalingInter-RL approach. Our agents match or surpass commercial models on 27 tasks across diverse environments. We offer key insights and will open-source the complete AgentGym-RL framework -- including code and datasets -- to empower the research community in developing the next generation of intelligent agents.
comment: preprint, 39 pages, 16 figures. Project: https://AgentGym-RL.github.io/. Framework and Code: https://github.com/woooodyy/AgentGym, https://github.com/woooodyy/AgentGym-RL
☆ Learning Turbulent Flows with Generative Models: Super-resolution, Forecasting, and Sparse Flow Reconstruction
Neural operators are promising surrogates for dynamical systems but when trained with standard L2 losses they tend to oversmooth fine-scale turbulent structures. Here, we show that combining operator learning with generative modeling overcomes this limitation. We consider three practical turbulent-flow challenges where conventional neural operators fail: spatio-temporal super-resolution, forecasting, and sparse flow reconstruction. For Schlieren jet super-resolution, an adversarially trained neural operator (adv-NO) reduces the energy-spectrum error by 15x while preserving sharp gradients at neural operator-like inference cost. For 3D homogeneous isotropic turbulence, adv-NO trained on only 160 timesteps from a single trajectory forecasts accurately for five eddy-turnover times and offers 114x wall-clock speed-up at inference than the baseline diffusion-based forecasters, enabling near-real-time rollouts. For reconstructing cylinder wake flows from highly sparse Particle Tracking Velocimetry-like inputs, a conditional generative model infers full 3D velocity and pressure fields with correct phase alignment and statistics. These advances enable accurate reconstruction and forecasting at low compute cost, bringing near-real-time analysis and control within reach in experimental and computational fluid mechanics. See our project page: https://vivekoommen.github.io/Gen4Turb/
☆ Bregman Douglas-Rachford Splitting Method
In this paper, we propose the Bregman Douglas-Rachford splitting (BDRS) method and its variant Bregman Peaceman-Rachford splitting method for solving maximal monotone inclusion problem. We show that BDRS is equivalent to a Bregman alternating direction method of multipliers (ADMM) when applied to the dual of the problem. A special case of the Bregman ADMM is an alternating direction version of the exponential multiplier method. To the best of our knowledge, algorithms proposed in this paper are new to the literature. We also discuss how to use our algorithms to solve the discrete optimal transport (OT) problem. We prove the convergence of the algorithms under certain assumptions, though we point out that one assumption does not apply to the OT problem.
☆ ChemBOMAS: Accelerated BO in Chemistry with LLM-Enhanced Multi-Agent System
The efficiency of Bayesian optimization (BO) in chemistry is often hindered by sparse experimental data and complex reaction mechanisms. To overcome these limitations, we introduce ChemBOMAS, a new framework named LLM-Enhanced Multi-Agent System for accelerating BO in chemistry. ChemBOMAS's optimization process is enhanced by LLMs and synergistically employs two strategies: knowledge-driven coarse-grained optimization and data-driven fine-grained optimization. First, in the knowledge-driven coarse-grained optimization stage, LLMs intelligently decompose the vast search space by reasoning over existing chemical knowledge to identify promising candidate regions. Subsequently, in the data-driven fine-grained optimization stage, LLMs enhance the BO process within these candidate regions by generating pseudo-data points, thereby improving data utilization efficiency and accelerating convergence. Benchmark evaluations** further confirm that ChemBOMAS significantly enhances optimization effectiveness and efficiency compared to various BO algorithms. Importantly, the practical utility of ChemBOMAS was validated through wet-lab experiments conducted under pharmaceutical industry protocols, targeting conditional optimization for a previously unreported and challenging chemical reaction. In the wet experiment, ChemBOMAS achieved an optimal objective value of 96%. This was substantially higher than the 15% achieved by domain experts. This real-world success, together with strong performance on benchmark evaluations, highlights ChemBOMAS as a powerful tool to accelerate chemical discovery.
☆ DEQuify your force field: More efficient simulations using deep equilibrium models ICLR-2025
Machine learning force fields show great promise in enabling more accurate molecular dynamics simulations compared to manually derived ones. Much of the progress in recent years was driven by exploiting prior knowledge about physical systems, in particular symmetries under rotation, translation, and reflections. In this paper, we argue that there is another important piece of prior information that, thus fa,r hasn't been explored: Simulating a molecular system is necessarily continuous, and successive states are therefore extremely similar. Our contribution is to show that we can exploit this information by recasting a state-of-the-art equivariant base model as a deep equilibrium model. This allows us to recycle intermediate neural network features from previous time steps, enabling us to improve both accuracy and speed by $10\%-20\%$ on the MD17, MD22, and OC20 200k datasets, compared to the non-DEQ base model. The training is also much more memory efficient, allowing us to train more expressive models on larger systems.
comment: AI4MAT-ICLR-2025 Spotlight https://openreview.net/forum?id=XACVRYePQQ
☆ Data-driven generative simulation of SDEs using diffusion models
This paper introduces a new approach to generating sample paths of unknown stochastic differential equations (SDEs) using diffusion models, a class of generative AI models commonly employed in image and video applications. Unlike the traditional Monte Carlo methods for simulating SDEs, which require explicit specifications of the drift and diffusion coefficients, our method takes a model-free, data-driven approach. Given a finite set of sample paths from an SDE, we utilize conditional diffusion models to generate new, synthetic paths of the same SDE. To demonstrate the effectiveness of our approach, we conduct a simulation experiment to compare our method with alternative benchmark ones including neural SDEs. Furthermore, in an empirical study we leverage these synthetically generated sample paths to enhance the performance of reinforcement learning algorithms for continuous-time mean-variance portfolio selection, hinting promising applications of diffusion models in financial analysis and decision-making.
☆ Decentralized Stochastic Nonconvex Optimization under the Relaxed Smoothness
This paper studies decentralized optimization problem $f(\mathbf{x})=\frac{1}{m}\sum_{i=1}^m f_i(\mathbf{x})$, where each local function has the form of $f_i(\mathbf{x}) = {\mathbb E}\left[F(\mathbf{x};{\xi}_i)\right]$ which is $(L_0,L_1)$-smooth but possibly nonconvex and the random variable ${\xi}_i$ follows distribution ${\mathcal D}_i$. We propose a novel algorithm called decentralized normalized stochastic gradient descent (DNSGD), which can achieve the $\epsilon$-stationary point on each local agent. We present a new framework for analyzing decentralized first-order methods in the relaxed smooth setting, based on the Lyapunov function related to the product of the gradient norm and the consensus error. The analysis shows upper bounds on sample complexity of ${\mathcal O}(m^{-1}(L_f\sigma^2\Delta_f\epsilon^{-4} + \sigma^2\epsilon^{-2} + L_f^{-2}L_1^3\sigma^2\Delta_f\epsilon^{-1} + L_f^{-2}L_1^2\sigma^2))$ per agent and communication complexity of $\tilde{\mathcal O}((L_f\epsilon^{-2} + L_1\epsilon^{-1})\gamma^{-1/2}\Delta_f)$, where $L_f=L_0 +L_1\zeta$, $\sigma^2$ is the variance of the stochastic gradient, $\Delta_f$ is the initial optimal function value gap, $\gamma$ is the spectral gap of the network, and $\zeta$ is the degree of the gradient dissimilarity. In the special case of $L_1=0$, the above results (nearly) match the lower bounds on decentralized nonconvex optimization in the standard smooth setting. We also conduct numerical experiments to show the empirical superiority of our method.
☆ Sharing is Caring: Efficient LM Post-Training with Collective RL Experience Sharing
Post-training language models (LMs) with reinforcement learning (RL) can enhance their complex reasoning capabilities without supervised fine-tuning, as demonstrated by DeepSeek-R1-Zero. However, effectively utilizing RL for LMs requires significant parallelization to scale-up inference, which introduces non-trivial technical challenges (e.g. latency, memory, and reliability) alongside ever-growing financial costs. We present Swarm sAmpling Policy Optimization (SAPO), a fully decentralized and asynchronous RL post-training algorithm. SAPO is designed for decentralized networks of heterogenous compute nodes, where each node manages its own policy model(s) while "sharing" rollouts with others in the network; no explicit assumptions about latency, model homogeneity, or hardware are required and nodes can operate in silo if desired. As a result, the algorithm avoids common bottlenecks in scaling RL post-training while also allowing (and even encouraging) new possibilities. By sampling rollouts "shared" across the network, it enables "Aha moments" to propagate, thereby bootstrapping the learning process. In this paper we show SAPO achieved cumulative reward gains of up to 94% in controlled experiments. We also share insights from tests on a network with thousands of nodes contributed by Gensyn community members running the algorithm on diverse hardware and models during an open-source demo.
comment: 14 pages, 6 figures
☆ Explainability of CNN Based Classification Models for Acoustic Signal ICTAI 2025
Explainable Artificial Intelligence (XAI) has emerged as a critical tool for interpreting the predictions of complex deep learning models. While XAI has been increasingly applied in various domains within acoustics, its use in bioacoustics, which involves analyzing audio signals from living organisms, remains relatively underexplored. In this paper, we investigate the vocalizations of a bird species with strong geographic variation throughout its range in North America. Audio recordings were converted into spectrogram images and used to train a deep Convolutional Neural Network (CNN) for classification, achieving an accuracy of 94.8\%. To interpret the model's predictions, we applied both model-agnostic (LIME, SHAP) and model-specific (DeepLIFT, Grad-CAM) XAI techniques. These techniques produced different but complementary explanations, and when their explanations were considered together, they provided more complete and interpretable insights into the model's decision-making. This work highlights the importance of using a combination of XAI techniques to improve trust and interoperability, not only in broader acoustics signal analysis but also argues for broader applicability in different domain specific tasks.
comment: Accepted in IEEE ICTAI 2025
☆ Compressing CNN models for resource-constrained systems by channel and layer pruning
Convolutional Neural Networks (CNNs) have achieved significant breakthroughs in various fields. However, these advancements have led to a substantial increase in the complexity and size of these networks. This poses a challenge when deploying large and complex networks on edge devices. Consequently, model compression has emerged as a research field aimed at reducing the size and complexity of CNNs. One prominent technique in model compression is model pruning. This paper will present a new technique of pruning that combines both channel and layer pruning in what is called a "hybrid pruning framework". Inspired by EfficientNet, a renowned CNN architecture known for scaling up networks from both channel and layer perspectives, this hybrid approach applies the same principles but in reverse, where it scales down the network through pruning. Experiments on the hybrid approach demonstrated a notable decrease in the overall complexity of the model, with only a minimal reduction in accuracy compared to the baseline model. This complexity reduction translates into reduced latency when deploying the pruned models on an NVIDIA JETSON TX2 embedded AI device.
comment: 16 pages, 4 figures, the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases
☆ Securing Private Federated Learning in a Malicious Setting: A Scalable TEE-Based Approach with Client Auditing
In cross-device private federated learning, differentially private follow-the-regularized-leader (DP-FTRL) has emerged as a promising privacy-preserving method. However, existing approaches assume a semi-honest server and have not addressed the challenge of securely removing this assumption. This is due to its statefulness, which becomes particularly problematic in practical settings where clients can drop out or be corrupted. While trusted execution environments (TEEs) might seem like an obvious solution, a straightforward implementation can introduce forking attacks or availability issues due to state management. To address this problem, our paper introduces a novel server extension that acts as a trusted computing base (TCB) to realize maliciously secure DP-FTRL. The TCB is implemented with an ephemeral TEE module on the server side to produce verifiable proofs of server actions. Some clients, upon being selected, participate in auditing these proofs with small additional communication and computational demands. This extension solution reduces the size of the TCB while maintaining the system's scalability and liveness. We provide formal proofs based on interactive differential privacy, demonstrating privacy guarantee in malicious settings. Finally, we experimentally show that our framework adds small constant overhead to clients in several realistic settings.
comment: Accepted at PoPETs 2026
☆ Tokenizing Loops of Antibodies
The complementarity-determining regions of antibodies are loop structures that are key to their interactions with antigens, and of high importance to the design of novel biologics. Since the 1980s, categorizing the diversity of CDR structures into canonical clusters has enabled the identification of key structural motifs of antibodies. However, existing approaches have limited coverage and cannot be readily incorporated into protein foundation models. Here we introduce ImmunoGlobulin LOOp Tokenizer, Igloo, a multimodal antibody loop tokenizer that encodes backbone dihedral angles and sequence. Igloo is trained using a contrastive learning objective to map loops with similar backbone dihedral angles closer together in latent space. Igloo can efficiently retrieve the closest matching loop structures from a structural antibody database, outperforming existing methods on identifying similar H3 loops by 5.9\%. Igloo assigns tokens to all loops, addressing the limited coverage issue of canonical clusters, while retaining the ability to recover canonical loop conformations. To demonstrate the versatility of Igloo tokens, we show that they can be incorporated into protein language models with IglooLM and IglooALM. On predicting binding affinity of heavy chain variants, IglooLM outperforms the base protein language model on 8 out of 10 antibody-antigen targets. Additionally, it is on par with existing state-of-the-art sequence-based and multimodal protein language models, performing comparably to models with $7\times$ more parameters. IglooALM samples antibody loops which are diverse in sequence and more consistent in structure than state-of-the-art antibody inverse folding models. Igloo demonstrates the benefit of introducing multimodal tokens for antibody loops for encoding the diverse landscape of antibody loops, improving protein foundation models, and for antibody CDR design.
comment: 21 pages, 7 figures, 10 tables, code available at https://github.com/prescient-design/igloo
☆ Machine Learning-Based Prediction of Speech Arrest During Direct Cortical Stimulation Mapping
Identifying cortical regions critical for speech is essential for safe brain surgery in or near language areas. While Electrical Stimulation Mapping (ESM) remains the clinical gold standard, it is invasive and time-consuming. To address this, we analyzed intracranial electrocorticographic (ECoG) data from 16 participants performing speech tasks and developed machine learning models to directly predict if the brain region underneath each ECoG electrode is critical. Ground truth labels indicating speech arrest were derived independently from Electrical Stimulation Mapping (ESM) and used to train classification models. Our framework integrates neural activity signals, anatomical region labels, and functional connectivity features to capture both local activity and network-level dynamics. We found that models combining region and connectivity features matched the performance of the full feature set, and outperformed models using either type alone. To classify each electrode, trial-level predictions were aggregated using an MLP applied to histogram-encoded scores. Our best-performing model, a trial-level RBF-kernel Support Vector Machine together with MLP-based aggregation, achieved strong accuracy on held-out participants (ROC-AUC: 0.87, PR-AUC: 0.57). These findings highlight the value of combining spatial and network information with non-linear modeling to improve functional mapping in presurgical evaluation.
comment: Accepted at IEEE International Conference on Neural Engineering (NER), 2025. This is the author's accepted manuscript
☆ TANGO: Traversability-Aware Navigation with Local Metric Control for Topological Goals ICRA 2025
Visual navigation in robotics traditionally relies on globally-consistent 3D maps or learned controllers, which can be computationally expensive and difficult to generalize across diverse environments. In this work, we present a novel RGB-only, object-level topometric navigation pipeline that enables zero-shot, long-horizon robot navigation without requiring 3D maps or pre-trained controllers. Our approach integrates global topological path planning with local metric trajectory control, allowing the robot to navigate towards object-level sub-goals while avoiding obstacles. We address key limitations of previous methods by continuously predicting local trajectory using monocular depth and traversability estimation, and incorporating an auto-switching mechanism that falls back to a baseline controller when necessary. The system operates using foundational models, ensuring open-set applicability without the need for domain-specific fine-tuning. We demonstrate the effectiveness of our method in both simulated environments and real-world tests, highlighting its robustness and deployability. Our approach outperforms existing state-of-the-art methods, offering a more adaptable and effective solution for visual navigation in open-set environments. The source code is made publicly available: https://github.com/podgorki/TANGO.
comment: 9 pages, 5 figures, ICRA 2025
☆ Deep Unrolling of Sparsity-Induced RDO for 3D Point Cloud Attribute Coding
Given encoded 3D point cloud geometry available at the decoder, we study the problem of lossy attribute compression in a multi-resolution B-spline projection framework. A target continuous 3D attribute function is first projected onto a sequence of nested subspaces $\mathcal{F}^{(p)}_{l_0} \subseteq \cdots \subseteq \mathcal{F}^{(p)}_{L}$, where $\mathcal{F}^{(p)}_{l}$ is a family of functions spanned by a B-spline basis function of order $p$ at a chosen scale and its integer shifts. The projected low-pass coefficients $F_l^*$ are computed by variable-complexity unrolling of a rate-distortion (RD) optimization algorithm into a feed-forward network, where the rate term is the sparsity-promoting $\ell_1$-norm. Thus, the projection operation is end-to-end differentiable. For a chosen coarse-to-fine predictor, the coefficients are then adjusted to account for the prediction from a lower-resolution to a higher-resolution, which is also optimized in a data-driven manner.
☆ Perfectly-Private Analog Secure Aggregation in Federated Learning
In federated learning, multiple parties train models locally and share their parameters with a central server, which aggregates them to update a global model. To address the risk of exposing sensitive data through local models, secure aggregation via secure multiparty computation has been proposed to enhance privacy. At the same time, perfect privacy can only be achieved by a uniform distribution of the masked local models to be aggregated. This raises a problem when working with real valued data, as there is no measure on the reals that is invariant under the masking operation, and hence information leakage is bound to occur. Shifting the data to a finite field circumvents this problem, but as a downside runs into an inherent accuracy complexity tradeoff issue due to fixed point modular arithmetic as opposed to floating point numbers that can simultaneously handle numbers of varying magnitudes. In this paper, a novel secure parameter aggregation method is proposed that employs the torus rather than a finite field. This approach guarantees perfect privacy for each party's data by utilizing the uniform distribution on the torus, while avoiding accuracy losses. Experimental results show that the new protocol performs similarly to the model without secure aggregation while maintaining perfect privacy. Compared to the finite field secure aggregation, the torus-based protocol can in some cases significantly outperform it in terms of model accuracy and cosine similarity, hence making it a safer choice.
comment: Comments welcome
☆ Signal Fidelity Index-Aware Calibration for Dementia Predictions Across Heterogeneous Real-World Data
\textbf{Background:} Machine learning models trained on electronic health records (EHRs) often degrade across healthcare systems due to distributional shift. A fundamental but underexplored factor is diagnostic signal decay: variability in diagnostic quality and consistency across institutions, which affects the reliability of codes used for training and prediction. \textbf{Objective:} To develop a Signal Fidelity Index (SFI) quantifying diagnostic data quality at the patient level in dementia, and to test SFI-aware calibration for improving model performance across heterogeneous datasets without outcome labels. \textbf{Methods:} We built a simulation framework generating 2,500 synthetic datasets, each with 1,000 patients and realistic demographics, encounters, and coding patterns based on dementia risk factors. The SFI was derived from six interpretable components: diagnostic specificity, temporal consistency, entropy, contextual concordance, medication alignment, and trajectory stability. SFI-aware calibration applied a multiplicative adjustment, optimized across 50 simulation batches. \textbf{Results:} At the optimal parameter ($\alpha$ = 2.0), SFI-aware calibration significantly improved all metrics (p $<$ 0.001). Gains ranged from 10.3\% for Balanced Accuracy to 32.5\% for Recall, with notable increases in Precision (31.9\%) and F1-score (26.1\%). Performance approached reference standards, with F1-score and Recall within 1\% and Balanced Accuracy and Detection Rate improved by 52.3\% and 41.1\%, respectively. \textbf{Conclusions:} Diagnostic signal decay is a tractable barrier to model generalization. SFI-aware calibration provides a practical, label-free strategy to enhance prediction across healthcare contexts, particularly for large-scale administrative datasets lacking outcome labels.
☆ Replicable Reinforcement Learning with Linear Function Approximation
Replication of experimental results has been a challenge faced by many scientific disciplines, including the field of machine learning. Recent work on the theory of machine learning has formalized replicability as the demand that an algorithm produce identical outcomes when executed twice on different samples from the same distribution. Provably replicable algorithms are especially interesting for reinforcement learning (RL), where algorithms are known to be unstable in practice. While replicable algorithms exist for tabular RL settings, extending these guarantees to more practical function approximation settings has remained an open problem. In this work, we make progress by developing replicable methods for linear function approximation in RL. We first introduce two efficient algorithms for replicable random design regression and uncentered covariance estimation, each of independent interest. We then leverage these tools to provide the first provably efficient replicable RL algorithms for linear Markov decision processes in both the generative model and episodic settings. Finally, we evaluate our algorithms experimentally and show how they can inspire more consistent neural policies.
☆ Robust Belief-State Policy Learning for Quantum Network Routing Under Decoherence and Time-Varying Conditions
This paper presents a feature-based Partially Observable Markov Decision Process (POMDP) framework for quantum network routing, combining belief-state planning with Graph Neural Networks (GNNs) to address partial observability, decoherence, and scalability challenges in dynamic quantum systems. Our approach encodes complex quantum network dynamics, including entanglement degradation and time-varying channel noise, into a low-dimensional feature space, enabling efficient belief updates and scalable policy learning. The core of our framework is a hybrid GNN-POMDP architecture that processes graph-structured representations of entangled links to learn routing policies, coupled with a noise-adaptive mechanism that fuses POMDP belief updates with GNN outputs for robust decision making. We provide a theoretical analysis establishing guarantees for belief convergence, policy improvement, and robustness to noise. Experiments on simulated quantum networks with up to 100 nodes demonstrate significant improvements in routing fidelity and entanglement delivery rates compared to state-of-the-art baselines, particularly under high decoherence and nonstationary conditions.
☆ Generative Data Refinement: Just Ask for Better Data
For a fixed parameter size, the capabilities of large models are primarily determined by the quality and quantity of its training data. Consequently, training datasets now grow faster than the rate at which new data is indexed on the web, leading to projected data exhaustion over the next decade. Much more data exists as user-generated content that is not publicly indexed, but incorporating such data comes with considerable risks, such as leaking private information and other undesirable content. We introduce a framework, Generative Data Refinement (GDR), for using pretrained generative models to transform a dataset with undesirable content into a refined dataset that is more suitable for training. Our experiments show that GDR can outperform industry-grade solutions for dataset anonymization, as well as enable direct detoxification of highly unsafe datasets. Moreover, we show that by generating synthetic data that is conditioned on each example in the real dataset, GDR's refined outputs naturally match the diversity of web scale datasets, and thereby avoid the often challenging task of generating diverse synthetic data via model prompting. The simplicity and effectiveness of GDR make it a powerful tool for scaling up the total stock of training data for frontier models.
☆ An upper bound of the silhouette validation metric for clustering
The silhouette coefficient summarizes, per observation, cohesion versus separation in [-1, 1]; the average silhouette width (ASW) is a common internal measure of clustering quality where higher values indicate more coveted results. However, the dataset-specific maximum of ASW is typically unknown, and the standard upper limit 1 is often unattainable. In this work, we derive for each data point in a given dataset a sharp upper bound on its silhouette width. By aggregating these individual bounds, we present a canonical data-dependent upper bound on ASW that often assumes values well below 1. The presented bounds can indicate whether individual data points can ever be well placed, enable early stopping of silhouette-based optimization loops, and help answer a key question: How close is my clustering result to the best possible outcome on this specific data? Across synthetic and real datasets, the bounds are provably near-tight in many cases and offer significant enrichment of cluster quality evaluation.
☆ A hierarchical entropy method for the delocalization of bias in high-dimensional Langevin Monte Carlo
The unadjusted Langevin algorithm is widely used for sampling from complex high-dimensional distributions. It is well known to be biased, with the bias typically scaling linearly with the dimension when measured in squared Wasserstein distance. However, the recent paper of Chen et al. (2024) identifies an intriguing new delocalization effect: For a class of distributions with sparse interactions, the bias between low-dimensional marginals scales only with the lower dimension, not the full dimension. In this work, we strengthen the results of Chen et al. (2024) in the sparse interaction regime by removing a logarithmic factor, measuring distance in relative entropy (a.k.a. KL-divergence), and relaxing the strong log-concavity assumption. In addition, we expand the scope of the delocalization phenomenon by showing that it holds for a class of distributions with weak interactions. Our proofs are based on a hierarchical analysis of the marginal relative entropies, inspired by the authors' recent work on propagation of chaos.
☆ Towards Interpretable Deep Neural Networks for Tabular Data
Tabular data is the foundation of many applications in fields such as finance and healthcare. Although DNNs tailored for tabular data achieve competitive predictive performance, they are blackboxes with little interpretability. We introduce XNNTab, a neural architecture that uses a sparse autoencoder (SAE) to learn a dictionary of monosemantic features within the latent space used for prediction. Using an automated method, we assign human-interpretable semantics to these features. This allows us to represent predictions as linear combinations of semantically meaningful components. Empirical evaluations demonstrate that XNNTab attains performance on par with or exceeding that of state-of-the-art, black-box neural models and classical machine learning approaches while being fully interpretable.
☆ MasconCube: Fast and Accurate Gravity Modeling with an Explicit Representation
The geodesy of irregularly shaped small bodies presents fundamental challenges for gravitational field modeling, particularly as deep space exploration missions increasingly target asteroids and comets. Traditional approaches suffer from critical limitations: spherical harmonics diverge within the Brillouin sphere where spacecraft typically operate, polyhedral models assume unrealistic homogeneous density distributions, and existing machine learning methods like GeodesyNets and Physics-Informed Neural Networks (PINN-GM) require extensive computational resources and training time. This work introduces MasconCubes, a novel self-supervised learning approach that formulates gravity inversion as a direct optimization problem over a regular 3D grid of point masses (mascons). Unlike implicit neural representations, MasconCubes explicitly model mass distributions while leveraging known asteroid shape information to constrain the solution space. Comprehensive evaluation on diverse asteroid models including Bennu, Eros, Itokawa, and synthetic planetesimals demonstrates that MasconCubes achieve superior performance across multiple metrics. Most notably, MasconCubes demonstrate computational efficiency advantages with training times approximately 40 times faster than GeodesyNets while maintaining physical interpretability through explicit mass distributions. These results establish MasconCubes as a promising approach for mission-critical gravitational modeling applications requiring high accuracy, computational efficiency, and physical insight into internal mass distributions of irregular celestial bodies.
☆ Classification of 24-hour movement behaviors from wrist-worn accelerometer data: from handcrafted features to deep learning techniques
Purpose: We compared the performance of deep learning (DL) and classical machine learning (ML) algorithms for the classification of 24-hour movement behavior into sleep, sedentary, light intensity physical activity (LPA), and moderate-to-vigorous intensity physical activity (MVPA). Methods: Open-access data from 151 adults wearing a wrist-worn accelerometer (Axivity-AX3) was used. Participants were randomly divided into training, validation, and test sets (121, 15, and 15 participants each). Raw acceleration signals were segmented into non-overlapping 10-second windows, and then a total of 104 handcrafted features were extracted. Four DL algorithms-Long Short-Term Memory (LSTM), Bidirectional Long Short-Term Memory (BiLSTM), Gated Recurrent Units (GRU), and One-Dimensional Convolutional Neural Network (1D-CNN)-were trained using raw acceleration signals and with handcrafted features extracted from these signals to predict 24-hour movement behavior categories. The handcrafted features were also used to train classical ML algorithms, namely Random Forest (RF), Support Vector Machine (SVM), Extreme Gradient Boosting (XGBoost), Logistic Regression (LR), Artificial Neural Network (ANN), and Decision Tree (DT) for classifying 24-hour movement behavior intensities. Results: LSTM, BiLSTM, and GRU showed an overall accuracy of approximately 85% when trained with raw acceleration signals, and 1D-CNN an overall accuracy of approximately 80%. When trained on handcrafted features, the overall accuracy for both DL and classical ML algorithms ranged from 70% to 81%. Overall, there was a higher confusion in classification of MVPA and LPA, compared to sleep and sedentary categories. Conclusion: DL methods with raw acceleration signals had only slightly better performance in predicting 24-hour movement behavior intensities, compared to when DL and classical ML were trained with handcrafted features.
☆ Interpretability as Alignment: Making Internal Understanding a Design Principle
Large neural models are increasingly deployed in high-stakes settings, raising concerns about whether their behavior reliably aligns with human values. Interpretability provides a route to internal transparency by revealing the computations that drive outputs. We argue that interpretability especially mechanistic approaches should be treated as a design principle for alignment, not an auxiliary diagnostic tool. Post-hoc methods such as LIME or SHAP offer intuitive but correlational explanations, while mechanistic techniques like circuit tracing or activation patching yield causal insight into internal failures, including deceptive or misaligned reasoning that behavioral methods like RLHF, red teaming, or Constitutional AI may overlook. Despite these advantages, interpretability faces challenges of scalability, epistemic uncertainty, and mismatches between learned representations and human concepts. Our position is that progress on safe and trustworthy AI will depend on making interpretability a first-class objective of AI research and development, ensuring that systems are not only effective but also auditable, transparent, and aligned with human intent.
comment: Pre-Print
☆ Implicit Shape-Prior for Few-Shot Assisted 3D Segmentation
The objective of this paper is to significantly reduce the manual workload required from medical professionals in complex 3D segmentation tasks that cannot be yet fully automated. For instance, in radiotherapy planning, organs at risk must be accurately identified in computed tomography (CT) or magnetic resonance imaging (MRI) scans to ensure they are spared from harmful radiation. Similarly, diagnosing age-related degenerative diseases such as sarcopenia, which involve progressive muscle volume loss and strength, is commonly based on muscular mass measurements often obtained from manual segmentation of medical volumes. To alleviate the manual-segmentation burden, this paper introduces an implicit shape prior to segment volumes from sparse slice manual annotations generalized to the multi-organ case, along with a simple framework for automatically selecting the most informative slices to guide and minimize the next interactions. The experimental validation shows the method's effectiveness on two medical use cases: assisted segmentation in the context of at risks organs for brain cancer patients, and acceleration of the creation of a new database with unseen muscle shapes for patients with sarcopenia.
comment: Both first Authors contributed equally to this work, lastnames in alphabetical order. This preprint has not undergone peer review or any post-submission improvements or corrections. The Version of Record of this contribution will be published in a Springer Nature Computer Science book series (CCIS, LNAI, LNBI, LNBIP, LNCS) and the doi will soon be released
☆ MAESTRO: Multi-modal Adaptive Ensemble for Spectro-Temporal Robust Optimization
Timely and robust influenza incidence forecasting is critical for public health decision-making. To address this, we present MAESTRO, a Multi-modal Adaptive Ensemble for Spectro-Temporal Robust Optimization. MAESTRO achieves robustness by adaptively fusing multi-modal inputs-including surveillance, web search trends, and meteorological data-and leveraging a comprehensive spectro-temporal architecture. The model first decomposes time series into seasonal and trend components. These are then processed through a hybrid feature enhancement pipeline combining Transformer-based encoders, a Mamba state-space model for long-range dependencies, multi-scale temporal convolutions, and a frequency-domain analysis module. A cross-channel attention mechanism further integrates information across the different data modalities. Finally, a temporal projection head performs sequence-to-sequence forecasting, with an optional estimator to quantify prediction uncertainty. Evaluated on over 11 years of Hong Kong influenza data (excluding the COVID-19 period), MAESTRO shows strong competitive performance, demonstrating a superior model fit and relative accuracy, achieving a state-of-the-art R-square of 0.956. Extensive ablations confirm the significant contributions of both multi-modal fusion and the spectro-temporal components. Our modular and reproducible pipeline is made publicly available to facilitate deployment and extension to other regions and pathogens.Our publicly available pipeline presents a powerful, unified framework, demonstrating the critical synergy of advanced spectro-temporal modeling and multi-modal data fusion for robust epidemiological forecasting.
☆ PEHRT: A Common Pipeline for Harmonizing Electronic Health Record data for Translational Research
Integrative analysis of multi-institutional Electronic Health Record (EHR) data enhances the reliability and generalizability of translational research by leveraging larger, more diverse patient cohorts and incorporating multiple data modalities. However, harmonizing EHR data across institutions poses major challenges due to data heterogeneity, semantic differences, and privacy concerns. To address these challenges, we introduce $\textit{PEHRT}$, a standardized pipeline for efficient EHR data harmonization consisting of two core modules: (1) data pre-processing and (2) representation learning. PEHRT maps EHR data to standard coding systems and uses advanced machine learning to generate research-ready datasets without requiring individual-level data sharing. Our pipeline is also data model agnostic and designed for streamlined execution across institutions based on our extensive real-world experience. We provide a complete suite of open source software, accompanied by a user-friendly tutorial, and demonstrate the utility of PEHRT in a variety of tasks using data from diverse healthcare systems.
☆ Motion-Based User Identification across XR and Metaverse Applications by Deep Classification and Similarity Learning
This paper examines the generalization capacity of two state-of-the-art classification and similarity learning models in reliably identifying users based on their motions in various Extended Reality (XR) applications. We developed a novel dataset containing a wide range of motion data from 49 users in five different XR applications: four XR games with distinct tasks and action patterns, and an additional social XR application with no predefined task sets. The dataset is used to evaluate the performance and, in particular, the generalization capacity of the two models across applications. Our results indicate that while the models can accurately identify individuals within the same application, their ability to identify users across different XR applications remains limited. Overall, our results provide insight into current models generalization capabilities and suitability as biometric methods for user verification and identification. The results also serve as a much-needed risk assessment of hazardous and unwanted user identification in XR and Metaverse applications. Our cross-application XR motion dataset and code are made available to the public to encourage similar research on the generalization of motion-based user identification in typical Metaverse application use cases.
☆ Agents of Discovery
The substantial data volumes encountered in modern particle physics and other domains of fundamental physics research allow (and require) the use of increasingly complex data analysis tools and workflows. While the use of machine learning (ML) tools for data analysis has recently proliferated, these tools are typically special-purpose algorithms that rely, for example, on encoded physics knowledge to reach optimal performance. In this work, we investigate a new and orthogonal direction: Using recent progress in large language models (LLMs) to create a team of agents -- instances of LLMs with specific subtasks -- that jointly solve data analysis-based research problems in a way similar to how a human researcher might: by creating code to operate standard tools and libraries (including ML systems) and by building on results of previous iterations. If successful, such agent-based systems could be deployed to automate routine analysis components to counteract the increasing complexity of modern tool chains. To investigate the capabilities of current-generation commercial LLMs, we consider the task of anomaly detection via the publicly available and highly-studied LHC Olympics dataset. Several current models by OpenAI (GPT-4o, o4-mini, GPT-4.1, and GPT-5) are investigated and their stability tested. Overall, we observe the capacity of the agent-based system to solve this data analysis problem. The best agent-created solutions mirror the performance of human state-of-the-art results.
☆ Data Skeleton Learning: Scalable Active Clustering with Sparse Graph Structures
In this work, we focus on the efficiency and scalability of pairwise constraint-based active clustering, crucial for processing large-scale data in applications such as data mining, knowledge annotation, and AI model pre-training. Our goals are threefold: (1) to reduce computational costs for iterative clustering updates; (2) to enhance the impact of user-provided constraints to minimize annotation requirements for precise clustering; and (3) to cut down memory usage in practical deployments. To achieve these aims, we propose a graph-based active clustering algorithm that utilizes two sparse graphs: one for representing relationships between data (our proposed data skeleton) and another for updating this data skeleton. These two graphs work in concert, enabling the refinement of connected subgraphs within the data skeleton to create nested clusters. Our empirical analysis confirms that the proposed algorithm consistently facilitates more accurate clustering with dramatically less input of user-provided constraints, and outperforms its counterparts in terms of computational performance and scalability, while maintaining robustness across various distance metrics.
☆ Variational Rank Reduction Autoencoders for Generative
Generative thermal design for complex geometries is fundamental in many areas of engineering, yet it faces two main challenges: the high computational cost of high-fidelity simulations and the limitations of conventional generative models. Approaches such as autoencoders (AEs) and variational autoencoders (VAEs) often produce unstructured latent spaces with discontinuities, which restricts their capacity to explore designs and generate physically consistent solutions. To address these limitations, we propose a hybrid framework that combines Variational Rank-Reduction Autoencoders (VRRAEs) with Deep Operator Networks (DeepONets). The VRRAE introduces a truncated SVD within the latent space, leading to continuous, interpretable, and well-structured representations that mitigate posterior collapse and improve geometric reconstruction. The DeepONet then exploits this compact latent encoding in its branch network, together with spatial coordinates in the trunk network, to predict temperature gradients efficiently and accurately. This hybrid approach not only enhances the quality of generated geometries and the accuracy of gradient prediction, but also provides a substantial advantage in inference efficiency compared to traditional numerical solvers. Overall, the study underscores the importance of structured latent representations for operator learning and highlights the potential of combining generative models and operator networks in thermal design and broader engineering applications.
☆ Heart Disease Prediction: A Comparative Study of Optimisers Performance in Deep Neural Networks
Optimization has been an important factor and topic of interest in training deep learning models, yet less attention has been given to how we select the optimizers we use to train these models. Hence, there is a need to dive deeper into how we select the optimizers we use for training and the metrics that determine this selection. In this work, we compare the performance of 10 different optimizers in training a simple Multi-layer Perceptron model using a heart disease dataset from Kaggle. We set up a consistent training paradigm and evaluate the optimizers based on metrics such as convergence speed and stability. We also include some other Machine Learning Evaluation metrics such as AUC, Precision, and Recall, which are central metrics to classification problems. Our results show that there are trade-offs between convergence speed and stability, as optimizers like Adagrad and Adadelta, which are more stable, took longer time to converge. Across all our metrics, we chose RMSProp to be the most effective optimizer for this heart disease prediction task because it offered a balanced performance across key metrics. It achieved a precision of 0.765, a recall of 0.827, and an AUC of 0.841, along with faster training time. However, it was not the most stable. We recommend that, in less compute-constrained environments, this method of choosing optimizers through a thorough evaluation should be adopted to increase the scientific nature and performance in training deep learning models.
comment: 11 pages, 4 figures
☆ HumanAgencyBench: Scalable Evaluation of Human Agency Support in AI Assistants
As humans delegate more tasks and decisions to artificial intelligence (AI), we risk losing control of our individual and collective futures. Relatively simple algorithmic systems already steer human decision-making, such as social media feed algorithms that lead people to unintentionally and absent-mindedly scroll through engagement-optimized content. In this paper, we develop the idea of human agency by integrating philosophical and scientific theories of agency with AI-assisted evaluation methods: using large language models (LLMs) to simulate and validate user queries and to evaluate AI responses. We develop HumanAgencyBench (HAB), a scalable and adaptive benchmark with six dimensions of human agency based on typical AI use cases. HAB measures the tendency of an AI assistant or agent to Ask Clarifying Questions, Avoid Value Manipulation, Correct Misinformation, Defer Important Decisions, Encourage Learning, and Maintain Social Boundaries. We find low-to-moderate agency support in contemporary LLM-based assistants and substantial variation across system developers and dimensions. For example, while Anthropic LLMs most support human agency overall, they are the least supportive LLMs in terms of Avoid Value Manipulation. Agency support does not appear to consistently result from increasing LLM capabilities or instruction-following behavior (e.g., RLHF), and we encourage a shift towards more robust safety and alignment targets.
☆ Modified Loss of Momentum Gradient Descent: Fine-Grained Analysis
We analyze gradient descent with Polyak heavy-ball momentum (HB) whose fixed momentum parameter $\beta \in (0, 1)$ provides exponential decay of memory. Building on Kovachki and Stuart (2021), we prove that on an exponentially attractive invariant manifold the algorithm is exactly plain gradient descent with a modified loss, provided that the step size $h$ is small enough. Although the modified loss does not admit a closed-form expression, we describe it with arbitrary precision and prove global (finite "time" horizon) approximation bounds $O(h^{R})$ for any finite order $R \geq 2$. We then conduct a fine-grained analysis of the combinatorics underlying the memoryless approximations of HB, in particular, finding a rich family of polynomials in $\beta$ hidden inside which contains Eulerian and Narayana polynomials. We derive continuous modified equations of arbitrary approximation order (with rigorous bounds) and the principal flow that approximates the HB dynamics, generalizing Rosca et al. (2023). Approximation theorems cover both full-batch and mini-batch HB. Our theoretical results shed new light on the main features of gradient descent with heavy-ball momentum, and outline a road-map for similar analysis of other optimization algorithms.
☆ SHAining on Process Mining: Explaining Event Log Characteristics Impact on Algorithms
Process mining aims to extract and analyze insights from event logs, yet algorithm metric results vary widely depending on structural event log characteristics. Existing work often evaluates algorithms on a fixed set of real-world event logs but lacks a systematic analysis of how event log characteristics impact algorithms individually. Moreover, since event logs are generated from processes, where characteristics co-occur, we focus on associational rather than causal effects to assess how strong the overlapping individual characteristic affects evaluation metrics without assuming isolated causal effects, a factor often neglected by prior work. We introduce SHAining, the first approach to quantify the marginal contribution of varying event log characteristics to process mining algorithms' metrics. Using process discovery as a downstream task, we analyze over 22,000 event logs covering a wide span of characteristics to uncover which affect algorithms across metrics (e.g., fitness, precision, complexity) the most. Furthermore, we offer novel insights about how the value of event log characteristics correlates with their contributed impact, assessing the algorithm's robustness.
☆ An Interpretable Deep Learning Model for General Insurance Pricing
This paper introduces the Actuarial Neural Additive Model, an inherently interpretable deep learning model for general insurance pricing that offers fully transparent and interpretable results while retaining the strong predictive power of neural networks. This model assigns a dedicated neural network (or subnetwork) to each individual covariate and pairwise interaction term to independently learn its impact on the modeled output while implementing various architectural constraints to allow for essential interpretability (e.g. sparsity) and practical requirements (e.g. smoothness, monotonicity) in insurance applications. The development of our model is grounded in a solid foundation, where we establish a concrete definition of interpretability within the insurance context, complemented by a rigorous mathematical framework. Comparisons in terms of prediction accuracy are made with traditional actuarial and state-of-the-art machine learning methods using both synthetic and real insurance datasets. The results show that the proposed model outperforms other methods in most cases while offering complete transparency in its internal logic, underscoring the strong interpretability and predictive capability.
☆ Adapting Vision-Language Models for Neutrino Event Classification in High-Energy Physics
Recent advances in Large Language Models (LLMs) have demonstrated their remarkable capacity to process and reason over structured and unstructured data modalities beyond natural language. In this work, we explore the applications of Vision Language Models (VLMs), specifically a fine-tuned variant of LLaMa 3.2, to the task of identifying neutrino interactions in pixelated detector data from high-energy physics (HEP) experiments. We benchmark this model against a state-of-the-art convolutional neural network (CNN) architecture, similar to those used in the NOvA and DUNE experiments, which have achieved high efficiency and purity in classifying electron and muon neutrino events. Our evaluation considers both the classification performance and interpretability of the model predictions. We find that VLMs can outperform CNNs, while also providing greater flexibility in integrating auxiliary textual or semantic information and offering more interpretable, reasoning-based predictions. This work highlights the potential of VLMs as a general-purpose backbone for physics event classification, due to their high performance, interpretability, and generalizability, which opens new avenues for integrating multimodal reasoning in experimental neutrino physics.
☆ Gaussian Process Regression -- Neural Network Hybrid with Optimized Redundant Coordinates
Recently, a Gaussian Process Regression - neural network (GPRNN) hybrid machine learning method was proposed, which is based on additive-kernel GPR in redundant coordinates constructed by rules [J. Phys. Chem. A 127 (2023) 7823]. The method combined the expressive power of an NN with the robustness of linear regression, in particular, with respect to overfitting when the number of neurons is increased beyond optimal. We introduce opt-GPRNN, in which the redundant coordinates of GPRNN are optimized with a Monte Carlo algorithm and show that when combined with optimization of redundant coordinates, GPRNN attains the lowest test set error with much fewer terms / neurons and retains the advantage of avoiding overfitting when the number of neurons is increased beyond optimal value. The method, opt-GPRNN possesses an expressive power closer to that of a multilayer NN and could obviate the need for deep NNs in some applications. With optimized redundant coordinates, a dimensionality reduction regime is also possible. Examples of application to machine learning an interatomic potential and materials informatics are given.
☆ Behind the Scenes: Mechanistic Interpretability of LoRA-adapted Whisper for Speech Emotion Recognition
Large pre-trained speech models such as Whisper offer strong generalization but pose significant challenges for resource-efficient adaptation. Low-Rank Adaptation (LoRA) has become a popular parameter-efficient fine-tuning method, yet its underlying mechanisms in speech tasks remain poorly understood. In this work, we conduct the first systematic mechanistic interpretability study of LoRA within the Whisper encoder for speech emotion recognition (SER). Using a suite of analytical tools, including layer contribution probing, logit-lens inspection, and representational similarity via singular value decomposition (SVD) and centered kernel alignment (CKA), we reveal two key mechanisms: a delayed specialization process that preserves general features in early layers before consolidating task-specific information, and a forward alignment, backward differentiation dynamic between LoRA's matrices. Our findings clarify how LoRA reshapes encoder hierarchies, providing both empirical insights and a deeper mechanistic understanding for designing efficient and interpretable adaptation strategies in large speech models.
comment: Work in process
☆ Spherical Brownian Bridge Diffusion Models for Conditional Cortical Thickness Forecasting
Accurate forecasting of individualized, high-resolution cortical thickness (CTh) trajectories is essential for detecting subtle cortical changes, providing invaluable insights into neurodegenerative processes and facilitating earlier and more precise intervention strategies. However, CTh forecasting is a challenging task due to the intricate non-Euclidean geometry of the cerebral cortex and the need to integrate multi-modal data for subject-specific predictions. To address these challenges, we introduce the Spherical Brownian Bridge Diffusion Model (SBDM). Specifically, we propose a bidirectional conditional Brownian bridge diffusion process to forecast CTh trajectories at the vertex level of registered cortical surfaces. Our technical contribution includes a new denoising model, the conditional spherical U-Net (CoS-UNet), which combines spherical convolutions and dense cross-attention to integrate cortical surfaces and tabular conditions seamlessly. Compared to previous approaches, SBDM achieves significantly reduced prediction errors, as demonstrated by our experiments based on longitudinal datasets from the ADNI and OASIS. Additionally, we demonstrate SBDM's ability to generate individual factual and counterfactual CTh trajectories, offering a novel framework for exploring hypothetical scenarios of cortical development.
☆ LD-ViCE: Latent Diffusion Model for Video Counterfactual Explanations
Video-based AI systems are increasingly adopted in safety-critical domains such as autonomous driving and healthcare. However, interpreting their decisions remains challenging due to the inherent spatiotemporal complexity of video data and the opacity of deep learning models. Existing explanation techniques often suffer from limited temporal coherence, insufficient robustness, and a lack of actionable causal insights. Current counterfactual explanation methods typically do not incorporate guidance from the target model, reducing semantic fidelity and practical utility. We introduce Latent Diffusion for Video Counterfactual Explanations (LD-ViCE), a novel framework designed to explain the behavior of video-based AI models. Compared to previous approaches, LD-ViCE reduces the computational costs of generating explanations by operating in latent space using a state-of-the-art diffusion model, while producing realistic and interpretable counterfactuals through an additional refinement step. Our experiments demonstrate the effectiveness of LD-ViCE across three diverse video datasets, including EchoNet-Dynamic (cardiac ultrasound), FERV39k (facial expression), and Something-Something V2 (action recognition). LD-ViCE outperforms a recent state-of-the-art method, achieving an increase in R2 score of up to 68% while reducing inference time by half. Qualitative analysis confirms that LD-ViCE generates semantically meaningful and temporally coherent explanations, offering valuable insights into the target model behavior. LD-ViCE represents a valuable step toward the trustworthy deployment of AI in safety-critical domains.
comment: 30 pages
☆ Facet: highly efficient E(3)-equivariant networks for interatomic potentials
Computational materials discovery is limited by the high cost of first-principles calculations. Machine learning (ML) potentials that predict energies from crystal structures are promising, but existing methods face computational bottlenecks. Steerable graph neural networks (GNNs) encode geometry with spherical harmonics, respecting atomic symmetries -- permutation, rotation, and translation -- for physically realistic predictions. Yet maintaining equivariance is difficult: activation functions must be modified, and each layer must handle multiple data types for different harmonic orders. We present Facet, a GNN architecture for efficient ML potentials, developed through systematic analysis of steerable GNNs. Our innovations include replacing expensive multi-layer perceptrons (MLPs) for interatomic distances with splines, which match performance while cutting computational and memory demands. We also introduce a general-purpose equivariant layer that mixes node information via spherical grid projection followed by standard MLPs -- faster than tensor products and more expressive than linear or gate layers. On the MPTrj dataset, Facet matches leading models with far fewer parameters and under 10% of their training compute. On a crystal relaxation task, it runs twice as fast as MACE models. We further show SevenNet-0's parameters can be reduced by over 25% with no accuracy loss. These techniques enable more than 10x faster training of large-scale foundation models for ML potentials, potentially reshaping computational materials discovery.
☆ Two Sides of the Same Optimization Coin: Model Degradation and Representation Collapse in Graph Foundation Models
Graph foundation models, inspired by the success of LLMs, are designed to learn the optimal embedding from multi-domain TAGs for the downstream cross-task generalization capability. During our investigation, graph VQ-MAE stands out among the increasingly diverse landscape of GFM architectures. This is attributed to its ability to jointly encode topology and textual attributes from multiple domains into discrete embedding spaces with clear semantic boundaries. Despite its potential, domain generalization conflicts cause imperceptible pitfalls. In this paper, we instantiate two of them, and they are just like two sides of the same GFM optimization coin - Side 1 Model Degradation: The encoder and codebook fail to capture the diversity of inputs; Side 2 Representation Collapse: The hidden embedding and codebook vector fail to preserve semantic separability due to constraints from narrow representation subspaces. These two pitfalls (sides) collectively impair the decoder and generate the low-quality reconstructed supervision, causing the GFM optimization dilemma during pre-training (coin). Through empirical investigation, we attribute the above challenges to Information Bottleneck and Regularization Deficit. To address them, we propose MoT (Mixture-of-Tinkers) - (1) Information Tinker for Two Pitfalls, which utilizes an edge-wise semantic fusion strategy and a mixture-of-codebooks with domain-aware routing to improve information capacity. (2) Regularization Tinker for Optimization Coin, which utilizes two additional regularizations to further improve gradient supervision in our proposed Information Tinker. Notably, as a flexible architecture, MoT adheres to the scaling laws of GFM, offering a controllable model scale. Compared to SOTA baselines, experiments on 22 datasets across 6 domains demonstrate that MoT achieves significant improvements in supervised, few-shot, and zero-shot scenarios.
☆ LLM-Guided Ansätze Design for Quantum Circuit Born Machines in Financial Generative Modeling
Quantum generative modeling using quantum circuit Born machines (QCBMs) shows promising potential for practical quantum advantage. However, discovering ans\"atze that are both expressive and hardware-efficient remains a key challenge, particularly on noisy intermediate-scale quantum (NISQ) devices. In this work, we introduce a prompt-based framework that leverages large language models (LLMs) to generate hardware-aware QCBM architectures. Prompts are conditioned on qubit connectivity, gate error rates, and hardware topology, while iterative feedback, including Kullback-Leibler (KL) divergence, circuit depth, and validity, is used to refine the circuits. We evaluate our method on a financial modeling task involving daily changes in Japanese government bond (JGB) interest rates. Our results show that the LLM-generated ans\"atze are significantly shallower and achieve superior generative performance compared to the standard baseline when executed on real IBM quantum hardware using 12 qubits. These findings demonstrate the practical utility of LLM-driven quantum architecture search and highlight a promising path toward robust, deployable generative models for near-term quantum devices.
comment: Work presented at the 3rd International Workshop on Quantum Machine Learning: From Research to Practice (QML@QCE'25)
☆ Efficient Decoding Methods for Language Models on Encrypted Data
Large language models (LLMs) power modern AI applications, but processing sensitive data on untrusted servers raises privacy concerns. Homomorphic encryption (HE) enables computation on encrypted data for secure inference. However, neural text generation requires decoding methods like argmax and sampling, which are non-polynomial and thus computationally expensive under encryption, creating a significant performance bottleneck. We introduce cutmax, an HE-friendly argmax algorithm that reduces ciphertext operations compared to prior methods, enabling practical greedy decoding under encryption. We also propose the first HE-compatible nucleus (top-p) sampling method, leveraging cutmax for efficient stochastic decoding with provable privacy guarantees. Both techniques are polynomial, supporting efficient inference in privacy-preserving settings. Moreover, their differentiability facilitates gradient-based sequence-level optimization as a polynomial alternative to straight-through estimators. We further provide strong theoretical guarantees for cutmax, proving it converges globally to a unique two-level fixed point, independent of the input values beyond the identity of the maximizer, which explains its rapid convergence in just a few iterations. Evaluations on realistic LLM outputs show latency reductions of 24x-35x over baselines, advancing secure text generation.
☆ Co-Investigator AI: The Rise of Agentic AI for Smarter, Trustworthy AML Compliance Narratives
Generating regulatorily compliant Suspicious Activity Report (SAR) remains a high-cost, low-scalability bottleneck in Anti-Money Laundering (AML) workflows. While large language models (LLMs) offer promising fluency, they suffer from factual hallucination, limited crime typology alignment, and poor explainability -- posing unacceptable risks in compliance-critical domains. This paper introduces Co-Investigator AI, an agentic framework optimized to produce Suspicious Activity Reports (SARs) significantly faster and with greater accuracy than traditional methods. Drawing inspiration from recent advances in autonomous agent architectures, such as the AI Co-Scientist, our approach integrates specialized agents for planning, crime type detection, external intelligence gathering, and compliance validation. The system features dynamic memory management, an AI-Privacy Guard layer for sensitive data handling, and a real-time validation agent employing the Agent-as-a-Judge paradigm to ensure continuous narrative quality assurance. Human investigators remain firmly in the loop, empowered to review and refine drafts in a collaborative workflow that blends AI efficiency with domain expertise. We demonstrate the versatility of Co-Investigator AI across a range of complex financial crime scenarios, highlighting its ability to streamline SAR drafting, align narratives with regulatory expectations, and enable compliance teams to focus on higher-order analytical work. This approach marks the beginning of a new era in compliance reporting -- bringing the transformative benefits of AI agents to the core of regulatory processes and paving the way for scalable, reliable, and transparent SAR generation.
☆ Rethinking the Backbone in Class Imbalanced Federated Source Free Domain Adaptation: The Utility of Vision Foundation Models ICIP 2025
Federated Learning (FL) offers a framework for training models collaboratively while preserving data privacy of each client. Recently, research has focused on Federated Source-Free Domain Adaptation (FFREEDA), a more realistic scenario wherein client-held target domain data remains unlabeled, and the server can access source domain data only during pre-training. We extend this framework to a more complex and realistic setting: Class Imbalanced FFREEDA (CI-FFREEDA), which takes into account class imbalances in both the source and target domains, as well as label shifts between source and target and among target clients. The replication of existing methods in our experimental setup lead us to rethink the focus from enhancing aggregation and domain adaptation methods to improving the feature extractors within the network itself. We propose replacing the FFREEDA backbone with a frozen vision foundation model (VFM), thereby improving overall accuracy without extensive parameter tuning and reducing computational and communication costs in federated learning. Our experimental results demonstrate that VFMs effectively mitigate the effects of domain gaps, class imbalances, and even non-IID-ness among target clients, suggesting that strong feature extractors, not complex adaptation or FL methods, are key to success in the real-world FL.
comment: Accepted by the IEEE ICIP 2025 Satellite Workshop 1: Edge Intelligence: Smart, Efficient, and Scalable Solutions for IoT, Wearables, and Embedded Devices (SEEDS)
☆ kNNSampler: Stochastic Imputations for Recovering Missing Value Distributions
We study a missing-value imputation method, termed kNNSampler, that imputes a given unit's missing response by randomly sampling from the observed responses of the $k$ most similar units to the given unit in terms of the observed covariates. This method can sample unknown missing values from their distributions, quantify the uncertainties of missing values, and be readily used for multiple imputation. Unlike popular kNNImputer, which estimates the conditional mean of a missing response given an observed covariate, kNNSampler is theoretically shown to estimate the conditional distribution of a missing response given an observed covariate. Experiments demonstrate its effectiveness in recovering the distribution of missing values. The code for kNNSampler is made publicly available (https://github.com/SAP/knn-sampler).
☆ Prediction Loss Guided Decision-Focused Learning
Decision-making under uncertainty is often considered in two stages: predicting the unknown parameters, and then optimizing decisions based on predictions. While traditional prediction-focused learning (PFL) treats these two stages separately, decision-focused learning (DFL) trains the predictive model by directly optimizing the decision quality in an end-to-end manner. However, despite using exact or well-approximated gradients, vanilla DFL often suffers from unstable convergence due to its flat-and-sharp loss landscapes. In contrast, PFL yields more stable optimization, but overlooks the downstream decision quality. To address this, we propose a simple yet effective approach: perturbing the decision loss gradient using the prediction loss gradient to construct an update direction. Our method requires no additional training and can be integrated with any DFL solvers. Using the sigmoid-like decaying parameter, we let the prediction loss gradient guide the decision loss gradient to train a predictive model that optimizes decision quality. Also, we provide a theoretical convergence guarantee to Pareto stationary point under mild assumptions. Empirically, we demonstrate our method across three stochastic optimization problems, showing promising results compared to other baselines. We validate that our approach achieves lower regret with more stable training, even in situations where either PFL or DFL struggles.
☆ Chordless cycle filtrations for dimensionality detection in complex networks via topological data analysis
Many complex networks, ranging from social to biological systems, exhibit structural patterns consistent with an underlying hyperbolic geometry. Revealing the dimensionality of this latent space can disentangle the structural complexity of communities, impact efficient network navigation, and fundamentally shape connectivity and system behavior. We introduce a novel topological data analysis weighting scheme for graphs, based on chordless cycles, aimed at estimating the dimensionality of networks in a data-driven way. We further show that the resulting descriptors can effectively estimate network dimensionality using a neural network architecture trained in a synthetic graph database constructed for this purpose, which does not need retraining to transfer effectively to real-world networks. Thus, by combining cycle-aware filtrations, algebraic topology, and machine learning, our approach provides a robust and effective method for uncovering the hidden geometry of complex networks and guiding accurate modeling and low-dimensional embedding.
☆ Accelerating Mixture-of-Expert Inference with Adaptive Expert Split Mechanism
Mixture-of-Experts (MoE) has emerged as a promising architecture for modern large language models (LLMs). However, massive parameters impose heavy GPU memory (i.e., VRAM) demands, hindering the widespread adoption of MoE LLMs. Offloading the expert parameters to CPU RAM offers an effective way to alleviate the VRAM requirements for MoE inference. Existing approaches typically cache a small subset of experts in VRAM and dynamically prefetch experts from RAM during inference, leading to significant degradation in inference speed due to the poor cache hit rate and substantial expert loading latency. In this work, we propose MoEpic, an efficient MoE inference system with a novel expert split mechanism. Specifically, each expert is vertically divided into two segments: top and bottom. MoEpic caches the top segment of hot experts, so that more experts will be stored under the limited VRAM budget, thereby improving the cache hit rate. During each layer's inference, MoEpic predicts and prefetches the activated experts for the next layer. Since the top segments of cached experts are exempt from fetching, the loading time is reduced, which allows efficient transfer-computation overlap. Nevertheless, the performance of MoEpic critically depends on the cache configuration (i.e., each layer's VRAM budget and expert split ratio). To this end, we propose a divide-and-conquer algorithm based on fixed-point iteration for adaptive cache configuration. Extensive experiments on popular MoE LLMs demonstrate that MoEpic can save about half of the GPU cost, while lowering the inference latency by about 37.51%-65.73% compared to the baselines.
☆ Retrieval-Augmented VLMs for Multimodal Melanoma Diagnosis MICCAI
Accurate and early diagnosis of malignant melanoma is critical for improving patient outcomes. While convolutional neural networks (CNNs) have shown promise in dermoscopic image analysis, they often neglect clinical metadata and require extensive preprocessing. Vision-language models (VLMs) offer a multimodal alternative but struggle to capture clinical specificity when trained on general-domain data. To address this, we propose a retrieval-augmented VLM framework that incorporates semantically similar patient cases into the diagnostic prompt. Our method enables informed predictions without fine-tuning and significantly improves classification accuracy and error correction over conventional baselines. These results demonstrate that retrieval-augmented prompting provides a robust strategy for clinical decision support.
comment: Medical Image Computing and Computer-Assisted Intervention (MICCAI) ISIC Skin Image Analysis Workshop (MICCAI ISIC) 2025; 10 pages
☆ Accelerating Reinforcement Learning Algorithms Convergence using Pre-trained Large Language Models as Tutors With Advice Reusing
Reinforcement Learning (RL) algorithms often require long training to become useful, especially in complex environments with sparse rewards. While techniques like reward shaping and curriculum learning exist to accelerate training, these are often extremely specific and require the developer's professionalism and dedicated expertise in the problem's domain. Tackling this challenge, in this study, we explore the effectiveness of pre-trained Large Language Models (LLMs) as tutors in a student-teacher architecture with RL algorithms, hypothesizing that LLM-generated guidance allows for faster convergence. In particular, we explore the effectiveness of reusing the LLM's advice on the RL's convergence dynamics. Through an extensive empirical examination, which included 54 configurations, varying the RL algorithm (DQN, PPO, A2C), LLM tutor (Llama, Vicuna, DeepSeek), and environment (Blackjack, Snake, Connect Four), our results demonstrate that LLM tutoring significantly accelerates RL convergence while maintaining comparable optimal performance. Furthermore, the advice reuse mechanism shows a further improvement in training duration but also results in less stable convergence dynamics. Our findings suggest that LLM tutoring generally improves convergence, and its effectiveness is sensitive to the specific task, RL algorithm, and LLM model combination.
☆ EvolKV: Evolutionary KV Cache Compression for LLM Inference
Existing key-value (KV) cache compression methods typically rely on heuristics, such as uniform cache allocation across layers or static eviction policies, however, they ignore the critical interplays among layer-specific feature patterns and task performance, which can lead to degraded generalization. In this paper, we propose EvolKV, an adaptive framework for layer-wise, task-driven KV cache compression that jointly optimizes the memory efficiency and task performance. By reformulating cache allocation as a multi-objective optimization problem, EvolKV leverages evolutionary search to dynamically configure layer budgets while directly maximizing downstream performance. Extensive experiments on 11 tasks demonstrate that our approach outperforms all baseline methods across a wide range of KV cache budgets on long-context tasks and surpasses heuristic baselines by up to 7 percentage points on GSM8K. Notably, EvolKV achieves superior performance over the full KV cache setting on code completion while utilizing only 1.5% of the original budget, suggesting the untapped potential in learned compression strategies for KV cache budget allocation.
☆ \emph{FoQuS}: A Forgetting-Quality Coreset Selection Framework for Automatic Modulation Recognition
Deep learning-based Automatic Modulation Recognition (AMR) model has made significant progress with the support of large-scale labeled data. However, when developing new models or performing hyperparameter tuning, the time and energy consumption associated with repeated training using massive amounts of data are often unbearable. To address the above challenges, we propose \emph{FoQuS}, which approximates the effect of full training by selecting a coreset from the original dataset, thereby significantly reducing training overhead. Specifically, \emph{FoQuS} records the prediction trajectory of each sample during full-dataset training and constructs three importance metrics based on training dynamics. Experiments show that \emph{FoQuS} can maintain high recognition accuracy and good cross-architecture generalization on multiple AMR datasets using only 1\%-30\% of the original data.
☆ Adaptive Rainfall Forecasting from Multiple Geographical Models Using Matrix Profile and Ensemble Learning
Rainfall forecasting in Vietnam is highly challenging due to its diverse climatic conditions and strong geographical variability across river basins, yet accurate and reliable forecasts are vital for flood management, hydropower operation, and disaster preparedness. In this work, we propose a Matrix Profile-based Weighted Ensemble (MPWE), a regime-switching framework that dynamically captures covariant dependencies among multiple geographical model forecasts while incorporating redundancy-aware weighting to balance contributions across models. We evaluate MPWE using rainfall forecasts from eight major basins in Vietnam, spanning five forecast horizons (1 hour and accumulated rainfall over 12, 24, 48, 72, and 84 hours). Experimental results show that MPWE consistently achieves lower mean and standard deviation of prediction errors compared to geographical models and ensemble baselines, demonstrating both improved accuracy and stability across basins and horizons.
☆ Interpretable Physics Reasoning and Performance Taxonomy in Vision-Language Models
As Vision-Language Models (VLMs) grow in sophistication, their ability to perform reasoning is coming under increasing supervision. While they excel at many tasks, their grasp of fundamental scientific principles, such as physics, remains an underexplored frontier. To reflect the advancements in these capabilities, we introduce a novel and accessible framework designed to rigorously evaluate VLMs on their understanding of 2D physics. Our framework features a pragmatic scenario generator that creates a diverse testbed of over 400 problems across four core domains: Projectile Motion, Collision Dynamics, Mechanics, and Fluid Dynamics. Through comprehensive evaluation of four state-of-the-art VLMs, we demonstrate a strong correlation between model scale and reasoning ability, with our top-performing model, Qwen2.5-VL-7B, achieving an overall score of 0.815. We find that while models excel at formulaic problems, they struggle significantly with domains requiring abstract spatial reasoning. By designing this framework, we aim to democratize the study of scientific reasoning in VLMs and foster deeper insights into their capabilities and limitations.
☆ Mitigating Catastrophic Forgetting in Large Language Models with Forgetting-aware Pruning
Recent advancements in large language models (LLMs) have shown impressive capabilities in various downstream tasks but typically face Catastrophic Forgetting (CF) during fine-tuning. In this paper, we propose the Forgetting-Aware Pruning Metric (FAPM), a novel pruning-based approach to balance CF and downstream task performance. Our investigation reveals that the degree to which task vectors (i.e., the subtraction of pre-trained weights from the weights fine-tuned on downstream tasks) overlap with pre-trained model parameters is a critical factor for CF. Based on this finding, FAPM employs the ratio of the task vector to pre-trained model parameters as a metric to quantify CF, integrating this measure into the pruning criteria. Importantly, FAPM does not necessitate modifications to the training process or model architecture, nor does it require any auxiliary data. We conducted extensive experiments across eight datasets, covering natural language inference, General Q&A, Medical Q&A, Math Q&A, reading comprehension, and cloze tests. The results demonstrate that FAPM limits CF to just 0.25\% while maintaining 99.67\% accuracy on downstream tasks. We provide the code to reproduce our results.
comment: Accepted by emnlp2025
☆ The CRITICAL Records Integrated Standardization Pipeline (CRISP): End-to-End Processing of Large-scale Multi-institutional OMOP CDM Data
While existing critical care EHR datasets such as MIMIC and eICU have enabled significant advances in clinical AI research, the CRITICAL dataset opens new frontiers by providing extensive scale and diversity -- containing 1.95 billion records from 371,365 patients across four geographically diverse CTSA institutions. CRITICAL's unique strength lies in capturing full-spectrum patient journeys, including pre-ICU, ICU, and post-ICU encounters across both inpatient and outpatient settings. This multi-institutional, longitudinal perspective creates transformative opportunities for developing generalizable predictive models and advancing health equity research. However, the richness of this multi-site resource introduces substantial complexity in data harmonization, with heterogeneous collection practices and diverse vocabulary usage patterns requiring sophisticated preprocessing approaches. We present CRISP to unlock the full potential of this valuable resource. CRISP systematically transforms raw Observational Medical Outcomes Partnership Common Data Model data into ML-ready datasets through: (1) transparent data quality management with comprehensive audit trails, (2) cross-vocabulary mapping of heterogeneous medical terminologies to unified SNOMED-CT standards, with deduplication and unit standardization, (3) modular architecture with parallel optimization enabling complete dataset processing in $<$1 day even on standard computing hardware, and (4) comprehensive baseline model benchmarks spanning multiple clinical prediction tasks to establish reproducible performance standards. By providing processing pipeline, baseline implementations, and detailed transformation documentation, CRISP saves researchers months of preprocessing effort and democratizes access to large-scale multi-institutional critical care data, enabling them to focus on advancing clinical AI.
comment: 15 pages, 9 figures
☆ RepViT-CXR: A Channel Replication Strategy for Vision Transformers in Chest X-ray Tuberculosis and Pneumonia Classification
Chest X-ray (CXR) imaging remains one of the most widely used diagnostic tools for detecting pulmonary diseases such as tuberculosis (TB) and pneumonia. Recent advances in deep learning, particularly Vision Transformers (ViTs), have shown strong potential for automated medical image analysis. However, most ViT architectures are pretrained on natural images and require three-channel inputs, while CXR scans are inherently grayscale. To address this gap, we propose RepViT-CXR, a channel replication strategy that adapts single-channel CXR images into a ViT-compatible format without introducing additional information loss. We evaluate RepViT-CXR on three benchmark datasets. On the TB-CXR dataset,our method achieved an accuracy of 99.9% and an AUC of 99.9%, surpassing prior state-of-the-art methods such as Topo-CXR (99.3% accuracy, 99.8% AUC). For the Pediatric Pneumonia dataset, RepViT-CXR obtained 99.0% accuracy, with 99.2% recall, 99.3% precision, and an AUC of 99.0%, outperforming strong baselines including DCNN and VGG16. On the Shenzhen TB dataset, our approach achieved 91.1% accuracy and an AUC of 91.2%, marking a performance improvement over previously reported CNN-based methods. These results demonstrate that a simple yet effective channel replication strategy allows ViTs to fully leverage their representational power on grayscale medical imaging tasks. RepViT-CXR establishes a new state of the art for TB and pneumonia detection from chest X-rays, showing strong potential for deployment in real-world clinical screening systems.
comment: 10 pages, 5 figures
☆ Strategies for Improving Communication Efficiency in Distributed and Federated Learning: Compression, Local Training, and Personalization
Distributed and federated learning are essential paradigms for training models across decentralized data sources while preserving privacy, yet communication overhead remains a major bottleneck. This dissertation explores strategies to improve communication efficiency, focusing on model compression, local training, and personalization. We establish a unified framework for biased and unbiased compression operators with convergence guarantees, then propose adaptive local training strategies that incorporate personalization to accelerate convergence and mitigate client drift. In particular, Scafflix balances global and personalized objectives, achieving superior performance under both IID and non-IID settings. We further introduce privacy-preserving pruning frameworks that optimize sparsity while minimizing communication costs, with Cohort-Squeeze leveraging hierarchical aggregation to reduce cross-device overhead. Finally, SymWanda, a symmetric post-training pruning method, enhances robustness under high sparsity and maintains accuracy without retraining. Extensive experiments on benchmarks and large-scale language models demonstrate favorable trade-offs among accuracy, convergence, and communication, offering theoretical and practical insights for scalable, efficient distributed learning.
comment: PhD Dissertation
☆ Ensemble Distribution Distillation for Self-Supervised Human Activity Recognition
Human Activity Recognition (HAR) has seen significant advancements with the adoption of deep learning techniques, yet challenges remain in terms of data requirements, reliability and robustness. This paper explores a novel application of Ensemble Distribution Distillation (EDD) within a self-supervised learning framework for HAR aimed at overcoming these challenges. By leveraging unlabeled data and a partially supervised training strategy, our approach yields an increase in predictive accuracy, robust estimates of uncertainty, and substantial increases in robustness against adversarial perturbation; thereby significantly improving reliability in real-world scenarios without increasing computational complexity at inference. We demonstrate this with an evaluation on several publicly available datasets. The contributions of this work include the development of a self-supervised EDD framework, an innovative data augmentation technique designed for HAR, and empirical validation of the proposed method's effectiveness in increasing robustness and reliability.
comment: 37 pages, 10 figures
☆ Generative Quasi-Continuum Modeling of Confined Fluids at the Nanoscale
We present a data-efficient, multiscale framework for predicting the density profiles of confined fluids at the nanoscale. While accurate density estimates require prohibitively long timescales that are inaccessible by ab initio molecular dynamics (AIMD) simulations, machine-learned molecular dynamics (MLMD) offers a scalable alternative, enabling the generation of force predictions at ab initio accuracy with reduced computational cost. However, despite their efficiency, MLMD simulations remain constrained by femtosecond timesteps, which limit their practicality for computing long-time averages needed for accurate density estimation. To address this, we propose a conditional denoising diffusion probabilistic model (DDPM) based quasi-continuum approach that predicts the long-time behavior of force profiles along the confinement direction, conditioned on noisy forces extracted from a limited AIMD dataset. The predicted smooth forces are then linked to continuum theory via the Nernst-Planck equation to reveal the underlying density behavior. We test the framework on water confined between two graphene nanoscale slits and demonstrate that density profiles for channel widths outside of the training domain can be recovered with ab initio accuracy. Compared to AIMD and MLMD simulations, our method achieves orders-of-magnitude speed-up in runtime and requires significantly less training data than prior works.
☆ Improving LLM Safety and Helpfulness using SFT and DPO: A Study on OPT-350M
This research investigates the effectiveness of alignment techniques, Supervised Fine-Tuning (SFT), Direct Preference Optimization (DPO), and a combined SFT+DPO approach on improving the safety and helpfulness of the OPT-350M language model. Utilizing the Anthropic Helpful-Harmless RLHF dataset, we train and evaluate four models: the base OPT350M, an SFT model, a DPO model, and a model trained with both SFT and DPO. We introduce three key evaluation metrics: Harmlessness Rate (HmR), Helpfulness Rate (HpR), and a Combined Alignment Score (CAS), all derived from reward model outputs. The results show that while SFT outperforms DPO, The combined SFT+DPO model outperforms all others across all metrics, demonstrating the complementary nature of these techniques. Our findings also highlight challenges posed by noisy data, limited GPU resources, and training constraints. This study offers a comprehensive view of how fine-tuning strategies affect model alignment and provides a foundation for more robust alignment pipelines in future work.
comment: 17 pages, 3 figures. Code and dataset available at https://github.com/PiyushWithPant/Improving-LLM-Safety-and-Helpfulness-using-SFT-and-DPO
☆ A Scoping Review of Machine Learning Applications in Power System Protection and Disturbance Management
The integration of renewable and distributed energy resources reshapes modern power systems, challenging conventional protection schemes. This scoping review synthesizes recent literature on machine learning (ML) applications in power system protection and disturbance management, following the PRISMA for Scoping Reviews framework. Based on over 100 publications, three key objectives are addressed: (i) assessing the scope of ML research in protection tasks; (ii) evaluating ML performance across diverse operational scenarios; and (iii) identifying methods suitable for evolving grid conditions. ML models often demonstrate high accuracy on simulated datasets; however, their performance under real-world conditions remains insufficiently validated. The existing literature is fragmented, with inconsistencies in methodological rigor, dataset quality, and evaluation metrics. This lack of standardization hampers the comparability of results and limits the generalizability of findings. To address these challenges, this review introduces a ML-oriented taxonomy for protection tasks, resolves key terminological inconsistencies, and advocates for standardized reporting practices. It further provides guidelines for comprehensive dataset documentation, methodological transparency, and consistent evaluation protocols, aiming to improve reproducibility and enhance the practical relevance of research outcomes. Critical gaps remain, including the scarcity of real-world validation, insufficient robustness testing, and limited consideration of deployment feasibility. Future research should prioritize public benchmark datasets, realistic validation methods, and advanced ML architectures. These steps are essential to move ML-based protection from theoretical promise to practical deployment in increasingly dynamic and decentralized power systems.
☆ MoWE : A Mixture of Weather Experts
Data-driven weather models have recently achieved state-of-the-art performance, yet progress has plateaued in recent years. This paper introduces a Mixture of Experts (MoWE) approach as a novel paradigm to overcome these limitations, not by creating a new forecaster, but by optimally combining the outputs of existing models. The MoWE model is trained with significantly lower computational resources than the individual experts. Our model employs a Vision Transformer-based gating network that dynamically learns to weight the contributions of multiple "expert" models at each grid point, conditioned on forecast lead time. This approach creates a synthesized deterministic forecast that is more accurate than any individual component in terms of Root Mean Squared Error (RMSE). Our results demonstrate the effectiveness of this method, achieving up to a 10% lower RMSE than the best-performing AI weather model on a 2-day forecast horizon, significantly outperforming individual experts as well as a simple average across experts. This work presents a computationally efficient and scalable strategy to push the state of the art in data-driven weather prediction by making the most out of leading high-quality forecast models.
☆ The Role of Community Detection Methods in Performance Variations of Graph Mining Tasks
In real-world scenarios, large graphs represent relationships among entities in complex systems. Mining these large graphs often containing millions of nodes and edges helps uncover structural patterns and meaningful insights. Dividing a large graph into smaller subgraphs facilitates complex system analysis by revealing local information. Community detection extracts clusters or communities of graphs based on statistical methods and machine learning models using various optimization techniques. Structure based community detection methods are more suitable for applying to graphs because they do not rely heavily on rich node or edge attribute information. The features derived from these communities can improve downstream graph mining tasks, such as link prediction and node classification. In real-world applications, we often lack ground truth community information. Additionally, there is neither a universally accepted gold standard for community detection nor a single method that is consistently optimal across diverse applications. In many cases, it is unclear how practitioners select community detection methods, and choices are often made without explicitly considering their potential impact on downstream tasks. In this study, we investigate whether the choice of community detection algorithm significantly influences the performance of downstream applications. We propose a framework capable of integrating various community detection methods to systematically evaluate their effects on downstream task outcomes. Our comparative analysis reveals that specific community detection algorithms yield superior results in certain applications, highlighting that method selection substantially affects performance.
☆ Generative quantum advantage for classical and quantum problems
Recent breakthroughs in generative machine learning, powered by massive computational resources, have demonstrated unprecedented human-like capabilities. While beyond-classical quantum experiments can generate samples from classically intractable distributions, their complexity has thwarted all efforts toward efficient learning. This challenge has hindered demonstrations of generative quantum advantage: the ability of quantum computers to learn and generate desired outputs substantially better than classical computers. We resolve this challenge by introducing families of generative quantum models that are hard to simulate classically, are efficiently trainable, exhibit no barren plateaus or proliferating local minima, and can learn to generate distributions beyond the reach of classical computers. Using a $68$-qubit superconducting quantum processor, we demonstrate these capabilities in two scenarios: learning classically intractable probability distributions and learning quantum circuits for accelerated physical simulation. Our results establish that both learning and sampling can be performed efficiently in the beyond-classical regime, opening new possibilities for quantum-enhanced generative models with provable advantage.
☆ Deep Context-Conditioned Anomaly Detection for Tabular Data WSDM 2026
Anomaly detection is critical in domains such as cybersecurity and finance, especially when working with large-scale tabular data. Yet, unsupervised anomaly detection -- where no labeled anomalies are available -- remains a significant challenge. Although various deep learning methods have been proposed to model a dataset's joint distribution, real-world tabular data often contain heterogeneous contexts (e.g., different users), making globally rare events normal under certain contexts. Consequently, relying on a single global distribution can overlook these contextual nuances, degrading detection performance. In this paper, we present a context-conditional anomaly detection framework tailored for tabular datasets. Our approach automatically identifies context features and models the conditional data distribution using a simple deep autoencoder. Extensive experiments on multiple tabular benchmark datasets demonstrate that our method outperforms state-of-the-art approaches, underscoring the importance of context in accurately distinguishing anomalous from normal instances.
comment: Submitted to WSDM 2026. 11 pages, 4 figures, 5 tables, 1 algorithm, 8 datasets, contextual anomaly detection framework for tabular data
☆ Open-sci-ref-0.01: open and reproducible reference baselines for language model and dataset comparison
We introduce open-sci-ref, a family of dense transformer models trained as research baselines across multiple model (0.13B to 1.7B parameters) and token scales (up to 1T) on 8 recent open reference datasets. Evaluating the models on various standardized benchmarks, our training runs set establishes reference points that enable researchers to assess the sanity and quality of alternative training approaches across scales and datasets. Intermediate checkpoints allow comparison and studying of the training dynamics. The established reference baselines allow training procedures to be compared through their scaling trends, aligning them on a common compute axis. Comparison of open reference datasets reveals that training on NemoTron-CC HQ consistently outperforms other reference datasets, followed by DCLM-baseline and FineWeb-Edu. In addition to intermediate training checkpoints, the release includes logs, code, and downstream evaluations to simplify reproduction, standardize comparison, and facilitate future research.
comment: Model weights and intermediate checkpoints are available at \url{https://huggingface.co/collections/open-sci/open-sci-ref-001-685905e598be658fbcebff4f}; code for reproducing training, evaluation and raw experiments data at \url{https://github.com/LAION-AI/open-sci-ref-0.01}
♻ ☆ TweakLLM: A Routing Architecture for Dynamic Tailoring of Cached Responses
Large Language Models (LLMs) process millions of queries daily, making efficient response caching a compelling optimization for reducing cost and latency. However, preserving relevance to user queries using this approach proves difficult due to the personalized nature of chatbot interactions and the limited accuracy of semantic similarity search. To address this, we present TweakLLM, a novel routing architecture that employs a lightweight LLM to dynamically adapt cached responses to incoming prompts. Through comprehensive evaluation, including user studies with side-by-side comparisons, satisfaction voting, as well as multi-agent LLM debates, we demonstrate that TweakLLM maintains response quality comparable to frontier models while significantly improving cache effectiveness. Our results across real-world datasets highlight TweakLLM as a scalable, resource-efficient caching solution for high-volume LLM deployments without compromising user experience.
comment: 13 pages, 9 figures
♻ ☆ CURE: Controlled Unlearning for Robust Embeddings - Mitigating Conceptual Shortcuts in Pre-Trained Language Models EMNLP 2025
Pre-trained language models have achieved remarkable success across diverse applications but remain susceptible to spurious, concept-driven correlations that impair robustness and fairness. In this work, we introduce CURE, a novel and lightweight framework that systematically disentangles and suppresses conceptual shortcuts while preserving essential content information. Our method first extracts concept-irrelevant representations via a dedicated content extractor reinforced by a reversal network, ensuring minimal loss of task-relevant information. A subsequent controllable debiasing module employs contrastive learning to finely adjust the influence of residual conceptual cues, enabling the model to either diminish harmful biases or harness beneficial correlations as appropriate for the target task. Evaluated on the IMDB and Yelp datasets using three pre-trained architectures, CURE achieves an absolute improvement of +10 points in F1 score on IMDB and +2 points on Yelp, while introducing minimal computational overhead. Our approach establishes a flexible, unsupervised blueprint for combating conceptual biases, paving the way for more reliable and fair language understanding systems.
comment: Accepted at the Conference on Empirical Methods in Natural Language Processing (EMNLP 2025)
♻ ☆ Reward function compression facilitates goal-dependent reinforcement learning
Reinforcement learning agents learn from rewards, but humans can uniquely assign value to novel, abstract outcomes in a goal-dependent manner. However, this flexibility is cognitively costly, making learning less efficient. Here, we propose that goal-dependent learning is initially supported by a capacity-limited working memory system. With consistent experience, learners create a "compressed" reward function (a simplified rule defining the goal) which is then transferred to long-term memory and applied automatically upon receiving feedback. This process frees up working memory resources, boosting learning efficiency. We test this theory across six experiments. Consistent with our predictions, our findings demonstrate that learning is parametrically impaired by the size of the goal space, but improves when the goal space structure allows for compression. We also find faster reward processing to correlate with better learning performance, supporting the idea that as goal valuation becomes more automatic, more resources are available for learning. We leverage computational modeling to support this interpretation. Our work suggests that efficient goal-directed learning relies on compressing complex goal information into a stable reward function, shedding light on the cognitive mechanisms of human motivation. These findings generate new insights into the neuroscience of intrinsic motivation and could help improve behavioral techniques that support people in achieving their goals.
♻ ☆ Uncertainty Quantification in Probabilistic Machine Learning Models: Theory, Methods, and Insights
Uncertainty Quantification (UQ) is essential in probabilistic machine learning models, particularly for assessing the reliability of predictions. In this paper, we present a systematic framework for estimating both epistemic and aleatoric uncertainty in probabilistic models. We focus on Gaussian Process Latent Variable Models and employ scalable Random Fourier Features-based Gaussian Processes to approximate predictive distributions efficiently. We derive a theoretical formulation for UQ, propose a Monte Carlo sampling-based estimation method, and conduct experiments to evaluate the impact of uncertainty estimation. Our results provide insights into the sources of predictive uncertainty and illustrate the effectiveness of our approach in quantifying the confidence in the predictions.
comment: Accepted to EUSIPCO 2025
♻ ☆ MPO: Boosting LLM Agents with Meta Plan Optimization EMNLP 2025
Recent advancements in large language models (LLMs) have enabled LLM-based agents to successfully tackle interactive planning tasks. However, despite their successes, existing approaches often suffer from planning hallucinations and require retraining for each new agent. To address these challenges, we propose the Meta Plan Optimization (MPO) framework, , which enhances agent planning capabilities by directly incorporating explicit guidance. Unlike previous methods that rely on complex knowledge, which either require significant human effort or lack quality assurance, MPO leverages high-level general guidance through meta plans to assist agent planning and enables continuous optimization of the meta plans based on feedback from the agent's task execution. Our experiments conducted on two representative tasks demonstrate that MPO significantly outperforms existing baselines. Moreover, our analysis indicates that MPO provides a plug-and-play solution that enhances both task completion efficiency and generalization capabilities in previous unseen scenarios.
comment: EMNLP 2025 Findings
♻ ☆ GRAM-R$^2$: Self-Training Generative Foundation Reward Models for Reward Reasoning
Significant progress in reward modeling over recent years has been driven by a paradigm shift from task-specific designs towards generalist reward models. Despite this trend, developing effective reward models remains a fundamental challenge: the heavy reliance on large-scale labeled preference data. Pre-training on abundant unlabeled data offers a promising direction, but existing approaches fall short of instilling explicit reasoning into reward models. To bridge this gap, we propose a self-training approach that leverages unlabeled data to elicit reward reasoning in reward models. Based on this approach, we develop GRAM-R$^2$, a generative reward model trained to produce not only preference labels but also accompanying reward rationales. GRAM-R$^2$ can serve as a foundation model for reward reasoning and can be applied to a wide range of tasks with minimal or no additional fine-tuning. It can support downstream applications such as response ranking and task-specific reward tuning. Experiments on response ranking, task adaptation, and reinforcement learning from human feedback demonstrate that GRAM-R$^2$ consistently delivers strong performance, outperforming several strong discriminative and generative baselines.
♻ ☆ Investigating Compositional Reasoning in Time Series Foundation Models
Large pre-trained time series foundation models (TSFMs) have demonstrated promising zero-shot performance across a wide range of domains. However, a question remains: Do TSFMs succeed by memorizing patterns in training data, or do they possess the ability to reason about such patterns? While reasoning is a topic of great interest in the study of Large Language Models (LLMs), it is undefined and largely unexplored in the context of TSFMs. In this work, inspired by language modeling literature, we formally define compositional reasoning in forecasting and distinguish it from in-distribution generalization. We evaluate the reasoning and generalization capabilities of 16 popular deep learning forecasting models on multiple synthetic and real-world datasets. Additionally, through controlled studies, we systematically examine which design choices in 7 popular open-source TSFMs contribute to improved reasoning capabilities. Our study yields key insights into the impact of TSFM architecture design on compositional reasoning and generalization. We find that patch-based Transformers have the best reasoning performance, closely followed by residualized MLP-based architectures, which are 97\% less computationally complex in terms of FLOPs and 86\% smaller in terms of the number of trainable parameters. Interestingly, in some zero-shot out-of-distribution scenarios, these models can outperform moving average and exponential smoothing statistical baselines trained on in-distribution data. Only a few design choices, such as the tokenization method, had a significant (negative) impact on Transformer model performance.
♻ ☆ RINO: Renormalization Group Invariance with No Labels
A common challenge with supervised machine learning (ML) in high energy physics (HEP) is the reliance on simulations for labeled data, which can often mismodel the underlying collision or detector response. To help mitigate this problem of domain shift, we propose RINO (Renormalization Group Invariance with No Labels), a self-supervised learning approach that can instead pretrain models directly on collision data, learning embeddings invariant to renormalization group flow scales. In this work, we pretrain a transformer-based model on jets originating from quantum chromodynamic (QCD) interactions from the JetClass dataset, emulating real QCD-dominated experimental data, and then finetune on the JetNet dataset -- emulating simulations -- for the task of identifying jets originating from top quark decays. RINO demonstrates improved generalization from the JetNet training data to JetClass data compared to supervised training on JetNet from scratch, demonstrating the potential for RINO pretraining on real collision data followed by fine-tuning on small, high-quality MC datasets, to improve the robustness of ML models in HEP.
♻ ☆ PQMass: Probabilistic Assessment of the Quality of Generative Models using Probability Mass Estimation ICLR 2025
We propose a likelihood-free method for comparing two distributions given samples from each, with the goal of assessing the quality of generative models. The proposed approach, PQMass, provides a statistically rigorous method for assessing the performance of a single generative model or the comparison of multiple competing models. PQMass divides the sample space into non-overlapping regions and applies chi-squared tests to the number of data samples that fall within each region, giving a p-value that measures the probability that the bin counts derived from two sets of samples are drawn from the same multinomial distribution. PQMass does not depend on assumptions regarding the density of the true distribution, nor does it rely on training or fitting any auxiliary models. We evaluate PQMass on data of various modalities and dimensions, demonstrating its effectiveness in assessing the quality, novelty, and diversity of generated samples. We further show that PQMass scales well to moderately high-dimensional data and thus obviates the need for feature extraction in practical applications.
comment: Published as a conference paper at ICLR 2025
♻ ☆ Dexterous Manipulation through Imitation Learning: A Survey
Dexterous manipulation, which refers to the ability of a robotic hand or multi-fingered end-effector to skillfully control, reorient, and manipulate objects through precise, coordinated finger movements and adaptive force modulation, enables complex interactions similar to human hand dexterity. With recent advances in robotics and machine learning, there is a growing demand for these systems to operate in complex and unstructured environments. Traditional model-based approaches struggle to generalize across tasks and object variations due to the high dimensionality and complex contact dynamics of dexterous manipulation. Although model-free methods such as reinforcement learning (RL) show promise, they require extensive training, large-scale interaction data, and carefully designed rewards for stability and effectiveness. Imitation learning (IL) offers an alternative by allowing robots to acquire dexterous manipulation skills directly from expert demonstrations, capturing fine-grained coordination and contact dynamics while bypassing the need for explicit modeling and large-scale trial-and-error. This survey provides an overview of dexterous manipulation methods based on imitation learning, details recent advances, and addresses key challenges in the field. Additionally, it explores potential research directions to enhance IL-driven dexterous manipulation. Our goal is to offer researchers and practitioners a comprehensive introduction to this rapidly evolving domain.
comment: 32pages, 6 figures, 9 tables
♻ ☆ Predicting the Performance of Graph Convolutional Networks with Spectral Properties of the Graph Laplacian
A common observation in the Graph Convolutional Network (GCN) literature is that stacking GCN layers may or may not result in better performance on tasks like node classification and edge prediction. We have found empirically that a graph's algebraic connectivity, which is known as the Fiedler value, is a good predictor of GCN performance. Intuitively, graphs with similar Fiedler values have analogous structural properties, suggesting that the same filters and hyperparameters may yield similar results when used with GCNs, and that transfer learning may be more effective between graphs with similar algebraic connectivity. We explore this theoretically and empirically with experiments on synthetic and real graph data, including the Cora, CiteSeer and Polblogs datasets. We explore multiple ways of aggregating the Fiedler value for connected components in the graphs to arrive at a value for the entire graph, and show that it can be used to predict GCN performance. We also present theoretical arguments as to why the Fiedler value is a good predictor.
comment: 9 pages, 3 figures
♻ ☆ Randomly Sampled Language Reasoning Problems Elucidate Limitations of In-Context Learning
While LLMs have revolutionized the field of machine learning due to their high performance on a strikingly wide range of problems, they are also known to hallucinate false answers and underperform on less canonical versions of the same tasks. There are several emerging theories of LLM performance, among them that LLMs lack world modeling ability, that they have an undesirable bias towards an autoregressive prior, and that they struggle on more novel problems. The existing literature on LLM input novelty has focused on tasks of relatively high complexity, studying perturbations of canonical but complex problems. In this paper, we attempt to minimize complexity in order to isolate novelty as a factor in LLM underperformance and investigate the power of in-context-learning. To this end, we consider an extremely simple domain: next token prediction on simple language tasks. The twist is that these language tasks are wholly unseen, as they are randomly drawn from a large, parsimoniously defined set of languages arising from simple grammar rules. This experimental setup allows us to evaluate ICL independently of models' parametric knowledge. We find that LLMs uniformly underperform n-gram models on this task, both when used as next token predictors and in chain-of-thought.
comment: 10 pages, 4 figures, 2 tables
♻ ☆ Calibrating Transformers via Sparse Gaussian Processes ICLR 2023
Transformer models have achieved profound success in prediction tasks in a wide range of applications in natural language processing, speech recognition and computer vision. Extending Transformer's success to safety-critical domains requires calibrated uncertainty estimation which remains under-explored. To address this, we propose Sparse Gaussian Process attention (SGPA), which performs Bayesian inference directly in the output space of multi-head attention blocks (MHAs) in transformer to calibrate its uncertainty. It replaces the scaled dot-product operation with a valid symmetric kernel and uses sparse Gaussian processes (SGP) techniques to approximate the posterior processes of MHA outputs. Empirically, on a suite of prediction tasks on text, images and graphs, SGPA-based Transformers achieve competitive predictive accuracy, while noticeably improving both in-distribution calibration and out-of-distribution robustness and detection.
comment: Published at The Eleventh International Conference on Learning Representations (ICLR 2023). ECE updated, typo fixed
♻ ☆ FlexFringe: Modeling Software Behavior by Learning Probabilistic Automata
We present the efficient implementations of probabilistic deterministic finite automaton learning methods available in FlexFringe. These implement well-known strategies for state-merging including several modifications to improve their performance in practice. We show experimentally that these algorithms obtain competitive results and significant improvements over a default implementation. We also demonstrate how to use FlexFringe to learn interpretable models from software logs and use these for anomaly detection. Although less interpretable, we show that learning smaller more convoluted models improves the performance of FlexFringe on anomaly detection, outperforming an existing solution based on neural nets.
♻ ☆ Murphys Laws of AI Alignment: Why the Gap Always Wins
We prove a formal impossibility result for reinforcement learning from human feedback (RLHF). In misspecified environments with bounded query budgets, any RLHF-style learner suffers an irreducible performance gap Omega(gamma) unless it has access to a calibration oracle. We give tight lower bounds via an information-theoretic proof and show that a minimal calibration oracle suffices to eliminate the gap. Small-scale empirical illustrations and a catalogue of alignment regularities (Murphy's Laws) indicate that many observed alignment failures are consistent with this structural mechanism. Our results position Murphys Gap as both a diagnostic limit of RLHF and a guide for future work on calibration and causal preference checks.
comment: 7 pages main text, 4 appendices. Provides a formal impossibility theorem (Murphys Gap) and welcomes collaboration on large-scale experiments and benchmark design
♻ ☆ Linear Convergence of the Frank-Wolfe Algorithm over Product Polytopes
We study the linear convergence of Frank-Wolfe algorithms over product polytopes. We analyze two condition numbers for the product polytope, namely the \emph{pyramidal width} and the \emph{vertex-facet distance}, based on the condition numbers of individual polytope components. As a result, for convex objectives that are $\mu$-Polyak-{\L}ojasiewicz, we show linear convergence rates quantified in terms of the resulting condition numbers. We apply our results to the problem of approximately finding a feasible point in a polytope intersection in high-dimensions, and demonstrate the practical efficiency of our algorithms through empirical results.
♻ ☆ To See a World in a Spark of Neuron: Disentangling Multi-task Interference for Training-free Model Merging EMNLP 2025
Fine-tuning pre-trained models on targeted datasets enhances task-specific performance but often comes at the expense of generalization. Model merging techniques, which integrate multiple fine-tuned models into a single multi-task model through task arithmetic, offer a promising solution. However, task interference remains a fundamental challenge, leading to performance degradation and suboptimal merged models. Existing approaches largely overlooked the fundamental roles of neurons, their connectivity, and activation, resulting in a merging process and a merged model that does not consider how neurons relay and process information. In this work, we present the first study that relies on neuronal mechanisms for model merging. Specifically, we decomposed task-specific representations into two complementary neuronal subspaces that regulate input sensitivity and task adaptability. Leveraging this decomposition, we introduced NeuroMerging, a novel merging framework developed to mitigate task interference within neuronal subspaces, enabling training-free model fusion across diverse tasks. Through extensive experiments, we demonstrated that NeuroMerging achieved superior performance compared to existing methods on multi-task benchmarks across both natural language and vision domains. Our findings highlighted the importance of aligning neuronal mechanisms in model merging, offering new insights into mitigating task interference and improving knowledge fusion. Our project is available at https://ZzzitaoFang.github.io/projects/NeuroMerging/.
comment: Accepted to EMNLP 2025 Main Conference. This is the camera-ready version. Code: https://ZzzitaoFang.github.io/projects/NeuroMerging/
♻ ☆ The Quest for the Right Mediator: Surveying Mechanistic Interpretability Through the Lens of Causal Mediation Analysis
Interpretability provides a toolset for understanding how and why language models behave in certain ways. However, there is little unity in the field: most studies employ ad-hoc evaluations and do not share theoretical foundations, making it difficult to measure progress and compare the pros and cons of different techniques. Furthermore, while mechanistic understanding is frequently discussed, the basic causal units underlying these mechanisms are often not explicitly defined. In this article, we propose a perspective on interpretability research grounded in causal mediation analysis. Specifically, we describe the history and current state of interpretability taxonomized according to the types of causal units (mediators) employed, as well as methods used to search over mediators. We discuss the pros and cons of each mediator, providing insights as to when particular kinds of mediators and search methods are most appropriate. We argue that this framing yields a more cohesive narrative of the field and helps researchers select appropriate methods based on their research objective. Our analysis yields actionable recommendations for future work, including the discovery of new mediators and the development of standardized evaluations tailored to these goals.
comment: Accepted to Computational Linguistics
♻ ☆ Second-Order Tensorial Partial Differential Equations on Graphs
Processing data on multiple interacting graphs is crucial for many applications, but existing approaches rely mostly on discrete filtering or first-order continuous models that dampen high frequencies and propagate information slowly. We introduce second-order tensorial partial differential equations on graphs (So-TPDEGs) and propose the first theoretically grounded framework for second-order continuous product graph neural networks. Our method exploits the separability of cosine kernels in Cartesian product graphs to enable efficient spectral decomposition while preserving high-frequency signals. We further provide rigorous analyses of stability under graph perturbations and over-smoothing, establishing a solid theoretical foundation for continuous graph learning.
comment: 10 pages, 1 figure
♻ ☆ Efficient and Generalized end-to-end Autonomous Driving System with Latent Deep Reinforcement Learning and Demonstrations ECML
An intelligent driving system should dynamically formulate appropriate driving strategies based on the current environment and vehicle status while ensuring system security and reliability. However, methods based on reinforcement learning and imitation learning often suffer from high sample complexity, poor generalization, and low safety. To address these challenges, this paper introduces an efficient and generalized end-to-end autonomous driving system (EGADS) for complex and varied scenarios. The RL agent in our EGADS combines variational inference with normalizing flows, which are independent of distribution assumptions. This combination allows the agent to capture historical information relevant to driving in latent space effectively, thereby significantly reducing sample complexity. Additionally, we enhance safety by formulating robust safety constraints and improve generalization and performance by integrating RL with expert demonstrations. Experimental results demonstrate that, compared to existing methods, EGADS significantly reduces sample complexity, greatly improves safety performance, and exhibits strong generalization capabilities in complex urban scenarios. Particularly, we contributed an expert dataset collected through human expert steering wheel control, specifically using the G29 steering wheel.
comment: Accepted by ECML PKDD 2025 (Research Track)
♻ ☆ BranchGRPO: Stable and Efficient GRPO with Structured Branching in Diffusion Models
Recent advancements in aligning image and video generative models via GRPO have achieved remarkable gains in enhancing human preference alignment. However, these methods still face high computational costs from on-policy rollouts and excessive SDE sampling steps, as well as training instability due to sparse rewards. In this paper, we propose BranchGRPO, a novel method that introduces a branch sampling policy updating the SDE sampling process. By sharing computation across common prefixes and pruning low-reward paths and redundant depths, BranchGRPO substantially lowers the per-update compute cost while maintaining or improving exploration diversity. This work makes three main contributions: (1) a branch sampling scheme that reduces rollout and training cost; (2) a tree-based advantage estimator incorporating dense process-level rewards; and (3) pruning strategies exploiting path and depth redundancy to accelerate convergence and boost performance. Experiments on image and video preference alignment show that BranchGRPO improves alignment scores by 16% over strong baselines, while cutting training time by 50%.
comment: 12 pages, 6 figures
♻ ☆ A Nonlinear Low-rank Representation Model with Convolutional Neural Network for Imputing Water Quality Data
The integrity of Water Quality Data (WQD) is critical in environmental monitoring for scientific decision-making and ecological protection. However, water quality monitoring systems are often challenged by large amounts of missing data due to unavoidable problems such as sensor failures and communication delays, which further lead to water quality data becoming High-Dimensional and Sparse (HDS). Traditional data imputation methods are difficult to depict the potential dynamics and fail to capture the deep data features, resulting in unsatisfactory imputation performance. To effectively address the above issues, this paper proposes a Nonlinear Low-rank Representation model (NLR) with Convolutional Neural Networks (CNN) for imputing missing WQD, which utilizes CNNs to implement two ideas: a) fusing temporal features to model the temporal dependence of data between time slots, and b) Extracting nonlinear interactions and local patterns to mine higher-order relationships features and achieve deep fusion of multidimensional information. Experimental studies on three real water quality datasets demonstrate that the proposed model significantly outperforms existing state-of-the-art data imputation models in terms of estimation accuracy. It provides an effective approach for handling water quality monitoring data in complex dynamic environments.
comment: 7 pages, 2 figures, conference
♻ ☆ CAME-AB: Cross-Modality Attention with Mixture-of-Experts for Antibody Binding Site Prediction
Antibody binding site prediction plays a pivotal role in computational immunology and therapeutic antibody design. Existing sequence or structure methods rely on single-view features and fail to identify antibody-specific binding sites on the antigens. In this paper, we propose \textbf{CAME-AB}, a novel Cross-modality Attention framework with a Mixture-of-Experts (MoE) backbone for robust antibody binding site prediction. CAME-AB integrates five biologically grounded modalities, including raw amino acid encodings, BLOSUM substitution profiles, pretrained language model embeddings, structure-aware features, and GCN-refined biochemical graphs, into a unified multimodal representation. To enhance adaptive cross-modal reasoning, we propose an \emph{adaptive modality fusion} module that learns to dynamically weight each modality based on its global relevance and input-specific contribution. A Transformer encoder combined with an MoE module further promotes feature specialization and capacity expansion. We additionally incorporate a supervised contrastive learning objective to explicitly shape the latent space geometry, encouraging intra-class compactness and inter-class separability. To improve optimization stability and generalization, we apply stochastic weight averaging during training. Extensive experiments on benchmark antibody-antigen datasets demonstrate that CAME-AB consistently outperforms strong baselines on multiple metrics, including Precision, Recall, F1-score, AUC-ROC, and MCC. Ablation studies further validate the effectiveness of each architectural component and the benefit of multimodal feature integration. The model implementation details and the codes are available on https://anonymous.4open.science/r/CAME-AB-C525
♻ ☆ How Should We Meta-Learn Reinforcement Learning Algorithms?
The process of meta-learning algorithms from data, instead of relying on manual design, is growing in popularity as a paradigm for improving the performance of machine learning systems. Meta-learning shows particular promise for reinforcement learning (RL), where algorithms are often adapted from supervised or unsupervised learning despite their suboptimality for RL. However, until now there has been a severe lack of comparison between different meta-learning algorithms, such as using evolution to optimise over black-box functions or LLMs to propose code. In this paper, we carry out this empirical comparison of the different approaches when applied to a range of meta-learned algorithms which target different parts of the RL pipeline. In addition to meta-train and meta-test performance, we also investigate factors including the interpretability, sample cost and train time for each meta-learning algorithm. Based on these findings, we propose several guidelines for meta-learning new RL algorithms which will help ensure that future learned algorithms are as performant as possible.
comment: Accepted paper at Reinforcement Learning Conference (RLC) 2025
♻ ☆ Learning Fluid-Structure Interaction Dynamics with Physics-Informed Neural Networks and Immersed Boundary Methods
Physics-informed neural networks (PINNs) have emerged as a promising approach for solving complex fluid dynamics problems, yet their application to fluid-structure interaction (FSI) problems with moving boundaries remains largely unexplored. This work addresses the critical challenge of modeling FSI systems with deformable interfaces, where traditional unified PINN architectures struggle to capture the distinct physics governing fluid and structural domains simultaneously. We present an innovative Eulerian-Lagrangian PINN architecture that integrates immersed boundary method (IBM) principles to solve FSI problems with moving boundary conditions. Our approach fundamentally departs from conventional unified architectures by introducing domain-specific neural networks: an Eulerian network for fluid dynamics and a Lagrangian network for structural interfaces, coupled through physics-based constraints. Additionally, we incorporate learnable B-spline activation functions with SiLU to capture both localized high-gradient features near interfaces and global flow patterns. Empirical studies on a 2D cavity flow problem involving a moving solid structure show that while baseline unified PINNs achieve reasonable velocity predictions, they suffer from substantial pressure errors (12.9%) in structural regions. Our Eulerian-Lagrangian architecture with learnable activations (EL-L) achieves better performance across all metrics, improving accuracy by 24.1-91.4% and particularly reducing pressure errors from 12.9% to 2.39%. These results demonstrate that domain decomposition aligned with physical principles, combined with locality-aware activation functions, is essential for accurate FSI modeling within the PINN framework.
♻ ☆ Real Time Semantic Segmentation of High Resolution Automotive LiDAR Scans
In recent studies, numerous previous works emphasize the importance of semantic segmentation of LiDAR data as a critical component to the development of driver-assistance systems and autonomous vehicles. However, many state-of-the-art methods are tested on outdated, lower-resolution LiDAR sensors and struggle with real-time constraints. This study introduces a novel semantic segmentation framework tailored for modern high-resolution LiDAR sensors that addresses both accuracy and real-time processing demands. We propose a novel LiDAR dataset collected by a cutting-edge automotive 128 layer LiDAR in urban traffic scenes. Furthermore, we propose a semantic segmentation method utilizing surface normals as strong input features. Our approach is bridging the gap between cutting-edge research and practical automotive applications. Additionaly, we provide a Robot Operating System (ROS2) implementation that we operate on our research vehicle. Our dataset and code are publicly available: https://github.com/kav-institute/SemanticLiDAR.
♻ ☆ A Transformer approach for Electricity Price Forecasting
This paper presents a novel approach to electricity price forecasting (EPF) using a pure Transformer model. As opposed to other alternatives, no other recurrent network is used in combination to the attention mechanism. Hence, showing that the attention layer is enough for capturing the temporal patterns. The paper also provides fair comparison of the models using the open-source EPF toolbox and provide the code to enhance reproducibility and transparency in EPF research. The results show that the Transformer model outperforms traditional methods, offering a promising solution for reliable and sustainable power system operation.
comment: 9 pages
♻ ☆ From Channel Bias to Feature Redundancy: Uncovering the "Less is More" Principle in Few-Shot Learning
Deep neural networks often fail to adapt representations to novel tasks under distribution shifts, especially when only a few examples are available. This paper identifies a core obstacle behind this failure: channel bias, where networks develop a rigid emphasis on feature dimensions that were discriminative for the source task, but this emphasis is misaligned and fails to adapt to the distinct needs of a novel task. This bias leads to a striking and detrimental consequence: feature redundancy. We demonstrate that for few-shot tasks, classification accuracy is significantly improved by using as few as 1-5% of the most discriminative feature dimensions, revealing that the vast majority are actively harmful. Our theoretical analysis confirms that this redundancy originates from confounding feature dimensions-those with high intra-class variance but low inter-class separability-which are especially problematic in low-data regimes. This "less is more" phenomenon is a defining characteristic of the few-shot setting, diminishing as more samples become available. To address this, we propose a simple yet effective soft-masking method, Augmented Feature Importance Adjustment (AFIA), which estimates feature importance from augmented data to mitigate the issue. By establishing the cohesive link from channel bias to its consequence of extreme feature redundancy, this work provides a foundational principle for few-shot representation transfer and a practical method for developing more robust few-shot learning algorithms.
comment: arXiv admin note: substantial text overlap with arXiv:2206.08126
♻ ☆ HOFT: Householder Orthogonal Fine-tuning
Adaptation of foundation models using low-rank methods is a widespread approach. Another way to adapt these models is to employ orthogonal fine-tuning methods, which are less time and memory efficient despite their good generalization properties. In this work, we propose Householder Orthogonal Fine-tuning (HOFT), a novel orthogonal fine-tuning method that aims to alleviate time and space complexity. Moreover, some theoretical properties of the orthogonal fine-tuning paradigm are explored. From this exploration, Scaled Householder Orthogonal Fine-tuning (SHOFT) is proposed. Both HOFT and SHOFT are evaluated in downstream tasks, namely commonsense reasoning, machine translation, subject-driven generation and mathematical reasoning. Compared with state-of-the-art adaptation methods, HOFT and SHOFT show comparable or better results.
♻ ☆ RoseCDL: Robust and Scalable Convolutional Dictionary Learning for Rare-event Detection
Identifying recurring patterns and rare events in large-scale signals is a fundamental challenge in fields such as astronomy, physical simulations, and biomedical science. Convolutional Dictionary Learning (CDL) offers a powerful framework for modeling local structures in signals, but its use for detecting rare or anomalous events remains largely unexplored. In particular, CDL faces two key challenges in this setting: high computational cost and sensitivity to artifacts and outliers. In this paper, we introduce RoseCDL, a scalable and robust CDL algorithm designed for unsupervised rare event detection in long signals. RoseCDL combines stochastic windowing for efficient training on large datasets with inline outlier detection to enhance robustness and isolate anomalous patterns. This reframes CDL as a practical tool for event discovery and characterization in real-world signals, extending its role beyond traditional tasks like compression or denoising.
♻ ☆ Meta-Semantics Augmented Few-Shot Relational Learning EMNLP 2025
Few-shot relational learning on knowledge graph (KGs) aims to perform reasoning over relations with only a few training examples. While existing methods have primarily focused on leveraging specific relational information, rich semantics inherent in KGs have been largely overlooked. To address this critical gap, we propose a novel prompted meta-learning (PromptMeta) framework that seamlessly integrates meta-semantics with relational information for few-shot relational learning. PromptMeta has two key innovations: (1) a Meta-Semantic Prompt (MSP) pool that learns and consolidates high-level meta-semantics, enabling effective knowledge transfer and adaptation to rare and newly emerging relations; and (2) a learnable fusion token that dynamically combines meta-semantics with task-specific relational information tailored to different few-shot tasks. Both components are optimized jointly with model parameters within a meta-learning framework. Extensive experiments and analyses on two real-world KG datasets demonstrate the effectiveness of PromptMeta in adapting to new relations with limited data.
comment: Accepted by EMNLP 2025
♻ ☆ VIPER: Visual Perception and Explainable Reasoning for Sequential Decision-Making
While Large Language Models (LLMs) excel at reasoning on text and Vision-Language Models (VLMs) are highly effective for visual perception, applying those models for visual instruction-based planning remains a widely open problem. In this paper, we introduce VIPER, a novel framework for multimodal instruction-based planning that integrates VLM-based perception with LLM-based reasoning. Our approach uses a modular pipeline where a frozen VLM generates textual descriptions of image observations, which are then processed by an LLM policy to predict actions based on the task goal. We fine-tune the reasoning module using behavioral cloning and reinforcement learning, improving our agent's decision-making capabilities. Experiments on the ALFWorld benchmark show that VIPER significantly outperforms state-of-the-art visual instruction-based planners while narrowing the gap with purely text-based oracles. By leveraging text as an intermediate representation, VIPER also enhances explainability, paving the way for a fine-grained analysis of perception and reasoning components.
♻ ☆ Comprehensive Evaluation of Prototype Neural Networks
Prototype models are an important method for explainable artificial intelligence (XAI) and interpretable machine learning. In this paper, we perform an in-depth analysis of a set of prominent prototype models including ProtoPNet, ProtoPool and PIPNet. For their assessment, we apply a comprehensive set of metrics. In addition to applying standard metrics from literature, we propose several new metrics to further complement the analysis of model interpretability. In our experimentation, we apply the set of prototype models on a diverse set of datasets including fine-grained classification, Non-IID settings and multi-label classification to further contrast the performance. Furthermore, we also provide our code as an open-source library (https://github.com/uos-sis/quanproto), which facilitates simple application of the metrics itself, as well as extensibility -- providing the option for easily adding new metrics and models.
♻ ☆ Metis: Training Large Language Models with Advanced Low-Bit Quantization
This work identifies anisotropic parameter distributions as a fundamental barrier to training large language models (LLMs) with low-bit quantization: a few dominant singular values create wide numerical ranges that conflict with the inherent bias of block-wise quantization. This bias disproportionately preserves high-magnitude values while discarding smaller ones, causing training instability and low model performance. This work introduces Metis, a training framework that combines (i) spectral decomposition with random embedding to efficiently disentangle dominant from long-tail components, compressing broad distributions into quantization-friendly narrow ranges; (ii) adaptive learning rates in the spectral domain to amplify underrepresented directions and better capture diverse features critical for performance; and (iii) a dual-range regularizer that jointly constrains numerical precision and parameter range distribution, ensuring stable, unbiased low-bit training. With Metis, FP8 training surpasses FP32 baselines, and FP4 training achieves accuracy comparable to FP32, paving the way for robust and scalable LLM training under advanced low-bit quantization. The code implementation for Metis is available at: https://github.com/sii-research/Metis.
♻ ☆ Moment- and Power-Spectrum-Based Gaussianity Regularization for Text-to-Image Models
We propose a novel regularization loss that enforces standard Gaussianity, encouraging samples to align with a standard Gaussian distribution. This facilitates a range of downstream tasks involving optimization in the latent space of text-to-image models. We treat elements of a high-dimensional sample as one-dimensional standard Gaussian variables and define a composite loss that combines moment-based regularization in the spatial domain with power spectrum-based regularization in the spectral domain. Since the expected values of moments and power spectrum distributions are analytically known, the loss promotes conformity to these properties. To ensure permutation invariance, the losses are applied to randomly permuted inputs. Notably, existing Gaussianity-based regularizations fall within our unified framework: some correspond to moment losses of specific orders, while the previous covariance-matching loss is equivalent to our spectral loss but incurs higher time complexity due to its spatial-domain computation. We showcase the application of our regularization in generative modeling for test-time reward alignment with a text-to-image model, specifically to enhance aesthetics and text alignment. Our regularization outperforms previous Gaussianity regularization, effectively prevents reward hacking and accelerates convergence.
♻ ☆ Statistical-Computational Trade-offs for Recursive Adaptive Partitioning Estimators
Models based on recursive adaptive partitioning such as decision trees and their ensembles are popular for high-dimensional regression as they can potentially avoid the curse of dimensionality. Because empirical risk minimization (ERM) is computationally infeasible, these models are typically trained using greedy algorithms. Although effective in many cases, these algorithms have been empirically observed to get stuck at local optima. We explore this phenomenon in the context of learning sparse regression functions over $d$ binary features, showing that when the true regression function $f^*$ does not satisfy Abbe et al. (2022)'s Merged Staircase Property (MSP), greedy training requires $\exp(\Omega(d))$ to achieve low estimation error. Conversely, when $f^*$ does satisfy MSP, greedy training can attain small estimation error with only $O(\log d)$ samples. This dichotomy mirrors that of two-layer neural networks trained with stochastic gradient descent (SGD) in the mean-field regime, thereby establishing a head-to-head comparison between SGD-trained neural networks and greedy recursive partitioning estimators. Furthermore, ERM-trained recursive partitioning estimators achieve low estimation error with $O(\log d)$ samples irrespective of whether $f^*$ satisfies MSP, thereby demonstrating a statistical-computational trade-off for greedy training. Our proofs are based on a novel interpretation of greedy recursive partitioning using stochastic process theory and a coupling technique that may be of independent interest.
♻ ☆ Generative Example-Based Explanations: Bridging the Gap between Generative Modeling and Explainability ECML 2025
Recently, several methods have leveraged deep generative modeling to produce example-based explanations of image classifiers. Despite producing visually stunning results, these methods are largely disconnected from classical explainability literature. This conceptual and communication gap leads to misunderstandings and misalignments in goals and expectations. In this paper, we bridge this gap by proposing a probabilistic framework for example-based explanations, formally defining the example-based explanations in a probabilistic manner amenable for modeling via deep generative models while coherent with the critical characteristics and desiderata widely accepted in the explainability community. Our aim is on one hand to provide a constructive framework for the development of well-grounded generative algorithms for example-based explanations and, on the other, to facilitate communication between the generative and explainability research communities, foster rigor and transparency, and improve the quality of peer discussion and research progress in this promising direction.
comment: Accepted at the ECML 2025 Workshop for eXplainable Knowledge Discovery in Data Mining and Unlearning
♻ ☆ FAMES: Fast Approximate Multiplier Substitution for Mixed-Precision Quantized DNNs--Down to 2 Bits!
A widely-used technique in designing energy-efficient deep neural network (DNN) accelerators is quantization. Recent progress in this direction has reduced the bitwidths used in DNN down to 2. Meanwhile, many prior works apply approximate multipliers (AppMuls) in designing DNN accelerators to lower their energy consumption. Unfortunately, these works still assume a bitwidth much larger than 2, which falls far behind the state-of-the-art in quantization area and even challenges the meaningfulness of applying AppMuls in DNN accelerators, since a high-bitwidth AppMul consumes much more energy than a low-bitwidth exact multiplier! Thus, an important problem to study is: Can approximate multipliers be effectively applied to quantized DNN models with very low bitwidths? In this work, we give an affirmative answer to this question and present a systematic solution that achieves the answer: FAMES, a fast approximate multiplier substitution method for mixed-precision DNNs. Our experiments demonstrate an average 28.67% energy reduction on state-of-the-art mixed-precision quantized models with bitwidths as low as 2 bits and accuracy losses kept under 1%. Additionally, our approach is up to 300x faster than previous genetic algorithm-based methods.
comment: This work will be incorporated into another study as part of a larger project, so we request to temporarily withdraw it. The new study involves substantial changes and will be submitted as a new paper
♻ ☆ Joint Optimization of Energy Consumption and Completion Time in Federated Learning
Federated Learning (FL) is an intriguing distributed machine learning approach due to its privacy-preserving characteristics. To balance the trade-off between energy and execution latency, and thus accommodate different demands and application scenarios, we formulate an optimization problem to minimize a weighted sum of total energy consumption and completion time through two weight parameters. The optimization variables include bandwidth, transmission power and CPU frequency of each device in the FL system, where all devices are linked to a base station and train a global model collaboratively. Through decomposing the non-convex optimization problem into two subproblems, we devise a resource allocation algorithm to determine the bandwidth allocation, transmission power, and CPU frequency for each participating device. We further present the convergence analysis and computational complexity of the proposed algorithm. Numerical results show that our proposed algorithm not only has better performance at different weight parameters (i.e., different demands) but also outperforms the state of the art.
comment: This paper appears in the Proceedings of IEEE International Conference on Distributed Computing Systems (ICDCS) 2022. Please feel free to contact us for questions or remarks
♻ ☆ Nearest Neighbor Projection Removal Adversarial Training
Deep neural networks have exhibited impressive performance in image classification tasks but remain vulnerable to adversarial examples. Standard adversarial training enhances robustness but typically fails to explicitly address inter-class feature overlap, a significant contributor to adversarial susceptibility. In this work, we introduce a novel adversarial training framework that actively mitigates inter-class proximity by projecting out inter-class dependencies from adversarial and clean samples in the feature space. Specifically, our approach first identifies the nearest inter-class neighbors for each adversarial sample and subsequently removes projections onto these neighbors to enforce stronger feature separability. Theoretically, we demonstrate that our proposed logits correction reduces the Lipschitz constant of neural networks, thereby lowering the Rademacher complexity, which directly contributes to improved generalization and robustness. Extensive experiments across standard benchmarks including CIFAR-10, CIFAR-100, and SVHN show that our method demonstrates strong performance that is competitive with leading adversarial training techniques, highlighting significant achievements in both robust and clean accuracy. Our findings reveal the importance of addressing inter-class feature proximity explicitly to bolster adversarial robustness in DNNs.
♻ ☆ Symbolic regression via MDLformer-guided search: from minimizing prediction error to minimizing description length
Symbolic regression, a task discovering the formula best fitting the given data, is typically based on the heuristical search. These methods usually update candidate formulas to obtain new ones with lower prediction errors iteratively. However, since formulas with similar function shapes may have completely different symbolic forms, the prediction error does not decrease monotonously as the search approaches the target formula, causing the low recovery rate of existing methods. To solve this problem, we propose a novel search objective based on the minimum description length, which reflects the distance from the target and decreases monotonically as the search approaches the correct form of the target formula. To estimate the minimum description length of any input data, we design a neural network, MDLformer, which enables robust and scalable estimation through large-scale training. With the MDLformer's output as the search objective, we implement a symbolic regression method, SR4MDL, that can effectively recover the correct mathematical form of the formula. Extensive experiments illustrate its excellent performance in recovering formulas from data. Our method successfully recovers around 50 formulas across two benchmark datasets comprising 133 problems, outperforming state-of-the-art methods by 43.92%. Experiments on 122 unseen black-box problems further demonstrate its generalization performance. We release our code at https://github.com/tsinghua-fib-lab/SR4MDL .
♻ ☆ A general language model for peptide identification
Accurate identification of bioactive peptides (BPs) and protein post-translational modifications (PTMs) is essential for understanding protein function and advancing therapeutic discovery. However, most computational methods remain limited in their generalizability across diverse peptide functions. Here, we present PDeepPP, a unified deep learning framework that integrates pretrained protein language models with a hybrid transformer-convolutional architecture, enabling robust identification across diverse peptide classes and PTM sites. We curated comprehensive benchmark datasets and implemented strategies to address data imbalance, allowing PDeepPP to systematically extract both global and local sequence features. Through extensive analyses-including dimensionality reduction and comparison studies-PDeepPP demonstrates strong, interpretable peptide representations and achieves state-of-the-art performance in 25 of the 33 biological identification tasks. Notably, PDeepPP attains high accuracy in antimicrobial (0.9726) and phosphorylation site (0.9984) identification, with 99.5% specificity in glycosylation site prediction and substantial reduction in false negatives in antimalarial tasks. By enabling large-scale, accurate peptide analysis, PDeepPP supports biomedical research and the discovery of novel therapeutic targets for disease treatment. All code, datasets, and pretrained models are publicly available via GitHub:https://github.com/fondress/PDeepPP and Hugging Face:https://huggingface.co/fondress/PDeppPP.
comment: 24 pages, 9 figures, 4 tables, submitted to arXiv
♻ ☆ A Survey on Training-free Alignment of Large Language Models EMNLP 2025
The alignment of large language models (LLMs) aims to ensure their outputs adhere to human values, ethical standards, and legal norms. Traditional alignment methods often rely on resource-intensive fine-tuning (FT), which may suffer from knowledge degradation and face challenges in scenarios where the model accessibility or computational resources are constrained. In contrast, training-free (TF) alignment techniques--leveraging in-context learning, decoding-time adjustments, and post-generation corrections--offer a promising alternative by enabling alignment without heavily retraining LLMs, making them adaptable to both open-source and closed-source environments. This paper presents the first systematic review of TF alignment methods, categorizing them by stages of pre-decoding, in-decoding, and post-decoding. For each stage, we provide a detailed examination from the viewpoint of LLMs and multimodal LLMs (MLLMs), highlighting their mechanisms and limitations. Furthermore, we identify key challenges and future directions, paving the way for more inclusive and effective TF alignment techniques. By synthesizing and organizing the rapidly growing body of research, this survey offers a guidance for practitioners and advances the development of safer and more reliable LLMs.
comment: Accepted to EMNLP 2025 (findings), camera-ready version
♻ ☆ From Static to Adaptive Defense: Federated Multi-Agent Deep Reinforcement Learning-Driven Moving Target Defense Against DoS Attacks in UAV Swarm Networks
The proliferation of UAVs has enabled a wide range of mission-critical applications and is becoming a cornerstone of low-altitude networks, supporting smart cities, emergency response, and more. However, the open wireless environment, dynamic topology, and resource constraints of UAVs expose low-altitude networks to severe DoS threats. Traditional defense approaches, which rely on fixed configurations or centralized decision-making, cannot effectively respond to the rapidly changing conditions in UAV swarm environments. To address these challenges, we propose a novel federated multi-agent deep reinforcement learning (FMADRL)-driven moving target defense (MTD) framework for proactive DoS mitigation in low-altitude networks. Specifically, we design lightweight and coordinated MTD mechanisms, including leader switching, route mutation, and frequency hopping, to disrupt attacker efforts and enhance network resilience. The defense problem is formulated as a multi-agent partially observable Markov decision process, capturing the uncertain nature of UAV swarms under attack. Each UAV is equipped with a policy agent that autonomously selects MTD actions based on partial observations and local experiences. By employing a policy gradient-based algorithm, UAVs collaboratively optimize their policies via reward-weighted aggregation. Extensive simulations demonstrate that our approach significantly outperforms state-of-the-art baselines, achieving up to a 34.6% improvement in attack mitigation rate, a reduction in average recovery time of up to 94.6%, and decreases in energy consumption and defense cost by as much as 29.3% and 98.3%, respectively, under various DoS attack strategies. These results highlight the potential of intelligent, distributed defense mechanisms to protect low-altitude networks, paving the way for reliable and scalable low-altitude economy.
comment: 16pages; Major Revision for IEEE TCCN
♻ ☆ A single-loop SPIDER-type stochastic subgradient method for expectation-constrained nonconvex nonsmooth optimization
Many real-world problems, such as those with fairness constraints, involve complex expectation constraints and large datasets, necessitating the design of efficient stochastic methods to solve them. Most existing research focuses on cases with no {constraint} or easy-to-project constraints or deterministic constraints. In this paper, we consider nonconvex nonsmooth stochastic optimization problems with expectation constraints, for which we build a novel exact penalty model. We first show the relationship between the penalty model and the original problem. Then on solving the penalty problem, we present a single-loop SPIDER-type stochastic subgradient method, which utilizes the subgradients of both the objective and constraint functions, as well as the constraint function value at each iteration. Under certain regularity conditions (weaker than Slater-type constraint qualification or strong feasibility assumed in existing works), we establish an iteration complexity result of $O(\epsilon^{-4})$ to reach a near-$\epsilon$ stationary point of the penalized problem in expectation, matching the lower bound for such tasks. Building on the exact penalization, an $(\epsilon,\epsilon)$-KKT point of the original problem is obtained. For a few scenarios, our complexity of either the {objective} sample subgradient or the constraint sample function values can be lower than the state-of-the-art results by a factor of $\epsilon^{-2}$. Moreover, on solving two fairness-constrained problems and a multi-class Neyman-Pearson classification problem, our method is significantly (up to 466 times) faster than the state-of-the-art algorithms, including switching subgradient method and inexact proximal point methods.
comment: Key word: stochastic, subgradient, expectation constraints, weakly convex, fairness constrained classification
♻ ☆ CITER: Collaborative Inference for Efficient Large Language Model Decoding with Token-Level Routing
Large language models have achieved remarkable success in various tasks but suffer from high computational costs during inference, limiting their deployment in resource-constrained applications. To address this issue, we propose a novel Collaborative Inference with Token-lEvel Routing (CITER) framework that enables efficient collaboration between small and large language models (SLMs \& LLMs) through a token-level routing strategy. Specifically, CITER routes non-critical tokens to an SLM for efficiency and routes critical tokens to an LLM for generalization quality. We formulate router training as a policy optimization, where the router receives rewards based on both the quality of predictions and the inference costs of generation. This allows the router to learn to predict token-level routing scores and make routing decisions based on both the current token and the future impact of its decisions. To further accelerate the reward evaluation process, we introduce a shortcut which significantly reduces the costs of the reward estimation and improving the practicality of our approach. Extensive experiments on five benchmark datasets demonstrate that CITER reduces the inference costs while preserving high-quality generation, offering a promising solution for real-time and resource-constrained applications. Our data and code are available at https://github.com/aiming-lab/CITER.
♻ ☆ Discrete Diffusion in Large Language and Multimodal Models: A Survey
In this work, we provide a systematic survey of Discrete Diffusion Language Models (dLLMs) and Discrete Diffusion Multimodal Language Models (dMLLMs). Unlike autoregressive (AR) models, dLLMs and dMLLMs adopt a multi-token, parallel decoding paradigm using full attention and a denoising-based generation strategy. This paradigm naturally enables parallel generation, fine-grained output control, and dynamic perception. These capabilities are previously difficult to achieve with AR models. A growing number of industrial-scale proprietary d(M)LLMs, as well as a large number of open-source academic d(M)LLMs, have demonstrated performance comparable to their autoregressive counterparts, while achieving up to \textit{10$\times$} acceleration in inference speed. These developments position discrete diffusion models as a promising alternative to intelligence based on the traditional autoregressive approach. In this work, we present a comprehensive overview of the research in the dLLM and dMLLM domains. We trace the historical development of dLLMs and dMLLMs, formalize the underlying mathematical frameworks, and categorize representative models. We further analyze key techniques for training and inference, and summarize emerging applications across language, vision-language, and biological domains and \textit{etc.}. We conclude by discussing future directions for research and deployment. Relative papers are collected in https://github.com/LiQiiiii/Awesome-Discrete-Diffusion-LLM_MLLM
♻ ☆ A Randomized Zeroth-Order Hierarchical Framework for Heterogeneous Federated Learning
Heterogeneity in federated learning (FL) is a critical and challenging aspect that significantly impacts model performance and convergence. In this paper, we propose a novel framework by formulating heterogeneous FL as a hierarchical optimization problem. This new framework captures both local and global training processes through a bilevel formulation and is capable of the following: (i) addressing client heterogeneity through a personalized learning framework; (ii) capturing the pre-training process on the server side; (iii) updating the global model through nonstandard aggregation; (iv) allowing for nonidentical local steps; and (v) capturing clients' local constraints. We design and analyze an implicit zeroth-order FL method (ZO-HFL), equipped with nonasymptotic convergence guarantees for both the server-agent and the individual client-agents, and asymptotic guarantees for both the server-agent and client-agents in an almost sure sense. Notably, our method does not rely on standard assumptions in heterogeneous FL, such as the bounded gradient dissimilarity condition. We implement our method on image classification tasks and compare with other methods under different heterogeneous settings.
comment: Accepted at the 64th IEEE Conference on Decision and Control (CDC 2025)
♻ ☆ MetaExplainer: A Framework to Generate Multi-Type User-Centered Explanations for AI Systems
Explanations are crucial for building trustworthy AI systems, but a gap often exists between the explanations provided by models and those needed by users. To address this gap, we introduce MetaExplainer, a neuro-symbolic framework designed to generate user-centered explanations. Our approach employs a three-stage process: first, we decompose user questions into machine-readable formats using state-of-the-art large language models (LLM); second, we delegate the task of generating system recommendations to model explainer methods; and finally, we synthesize natural language explanations that summarize the explainer outputs. Throughout this process, we utilize an Explanation Ontology to guide the language models and explainer methods. By leveraging LLMs and a structured approach to explanation generation, MetaExplainer aims to enhance the interpretability and trustworthiness of AI systems across various applications, providing users with tailored, question-driven explanations that better meet their needs. Comprehensive evaluations of MetaExplainer demonstrate a step towards evaluating and utilizing current state-of-the-art explanation frameworks. Our results show high performance across all stages, with a 59.06% F1-score in question reframing, 70% faithfulness in model explanations, and 67% context-utilization in natural language synthesis. User studies corroborate these findings, highlighting the creativity and comprehensiveness of generated explanations. Tested on the Diabetes (PIMA Indian) tabular dataset, MetaExplainer supports diverse explanation types, including Contrastive, Counterfactual, Rationale, Case-Based, and Data explanations. The framework's versatility and traceability from using ontology to guide LLMs suggest broad applicability beyond the tested scenarios, positioning MetaExplainer as a promising tool for enhancing AI explainability across various domains.
♻ ☆ FedComLoc: Communication-Efficient Distributed Training of Sparse and Quantized Models
Federated Learning (FL) has garnered increasing attention due to its unique characteristic of allowing heterogeneous clients to process their private data locally and interact with a central server, while being respectful of privacy. A critical bottleneck in FL is the communication cost. A pivotal strategy to mitigate this burden is Local Training, which involves running multiple local stochastic gradient descent iterations between communication phases. Our work is inspired by the innovative Scaffnew algorithm, which has considerably advanced the reduction of communication complexity in FL. We introduce FedComLoc (Federated Compressed and Local Training), integrating practical and effective compression into Scaffnew to further enhance communication efficiency. Extensive experiments, using the popular TopK compressor and quantization, demonstrate its prowess in substantially reducing communication overheads in heterogeneous settings.
comment: Accepted version at Transactions on Machine Learning Research (TMLR)
♻ ☆ Traversal Learning: A Lossless And Efficient Distributed Learning Framework
In this paper, we introduce Traversal Learning (TL), a novel approach designed to address the problem of decreased quality encountered in popular distributed learning (DL) paradigms such as Federated Learning (FL), Split Learning (SL), and SplitFed Learning (SFL). Traditional FL experiences from an accuracy drop during aggregation due to its averaging function, while SL and SFL face increased loss due to the independent gradient updates on each split network. TL adopts a unique strategy where the model traverses the nodes during forward propagation (FP) and performs backward propagation (BP) on the orchestrator, effectively implementing centralized learning (CL) principles within a distributed environment. The orchestrator is tasked with generating virtual batches and planning the sequential node visits of the model during FP, aligning them with the ordered index of the data within these batches. We conducted experiments on six datasets representing diverse characteristics across various domains. Our evaluation demonstrates that TL is on par with classic CL approaches in terms of accurate inference, thereby offering a viable and robust solution for DL tasks. TL outperformed other DL methods and improved accuracy by 7.85% for independent and identically distributed (IID) datasets, macro F1-score by 1.06% for non-IID datasets, accuracy by 2.60% for text classification, and AUC by 3.88% and 4.54% for medical and financial datasets, respectively. By effectively preserving data privacy while maintaining performance, TL represents a significant advancement in DL methodologies. The implementation of TL is available at https://github.com/neouly-inc/Traversal-Learning
♻ ☆ HopCast: Calibration of Autoregressive Dynamics Models
Deep learning models are often trained to approximate dynamical systems that can be modeled using differential equations. Many of these models are optimized to predict one step ahead; such approaches produce calibrated one-step predictions if the predictive model can quantify uncertainty, such as Deep Ensembles. At inference time, multi-step predictions are generated via autoregression, which needs a sound uncertainty propagation method to produce calibrated multi-step predictions. This work introduces an alternative Predictor-Corrector approach named \hop{} that uses Modern Hopfield Networks (MHN) to learn the errors of a deterministic Predictor that approximates the dynamical system. The Corrector predicts a set of errors for the Predictor's output based on a context state at any timestep during autoregression. The set of errors creates sharper and well-calibrated prediction intervals with higher predictive accuracy compared to baselines without uncertainty propagation. The calibration and prediction performances are evaluated across a set of dynamical systems. This work is also the first to benchmark existing uncertainty propagation methods based on calibration errors.
♻ ☆ Damped Proximal Augmented Lagrangian Method for weakly-Convex Problems with Convex Constraints
We give a damped proximal augmented Lagrangian method (DPALM) for solving problems with a weakly-convex objective and convex linear/nonlinear constraints. Instead of taking a full stepsize, DPALM adopts a damped dual stepsize to ensure the boundedness of dual iterates. We show that DPALM can produce a (near) $\vareps$-KKT point within $O(\vareps^{-2})$ outer iterations if each DPALM subproblem is solved to a proper accuracy. In addition, we establish overall iteration complexity of DPALM when the objective is either a regularized smooth function or in a regularized compositional form. For the former case, DPALM achieves the complexity of $\widetilde{\mathcal{O}}\left(\varepsilon^{-2.5} \right)$ to produce an $\varepsilon$-KKT point by applying an accelerated proximal gradient (APG) method to each DPALM subproblem. For the latter case, the complexity of DPALM is $\widetilde{\mathcal{O}}\left(\varepsilon^{-3} \right)$ to produce a near $\varepsilon$-KKT point by using an APG to solve a Moreau-envelope smoothed version of each subproblem. Our outer iteration complexity and the overall complexity either generalize existing best ones from unconstrained or linear-constrained problems to convex-constrained ones, or improve over the best-known results on solving the same-structured problems. Furthermore, numerical experiments on linearly/quadratically constrained non-convex quadratic programs and linear-constrained robust nonlinear least squares are conducted to demonstrate the empirical efficiency of the proposed DPALM over several state-of-the art methods.
comment: 27 pages
♻ ☆ CURE: Controlled Unlearning for Robust Embeddings -- Mitigating Conceptual Shortcuts in Pre-Trained Language Models EMNLP 2025
Pre-trained language models have achieved remarkable success across diverse applications but remain susceptible to spurious, concept-driven correlations that impair robustness and fairness. In this work, we introduce CURE, a novel and lightweight framework that systematically disentangles and suppresses conceptual shortcuts while preserving essential content information. Our method first extracts concept-irrelevant representations via a dedicated content extractor reinforced by a reversal network, ensuring minimal loss of task-relevant information. A subsequent controllable debiasing module employs contrastive learning to finely adjust the influence of residual conceptual cues, enabling the model to either diminish harmful biases or harness beneficial correlations as appropriate for the target task. Evaluated on the IMDB and Yelp datasets using three pre-trained architectures, CURE achieves an absolute improvement of +10 points in F1 score on IMDB and +2 points on Yelp, while introducing minimal computational overhead. Our approach establishes a flexible, unsupervised blueprint for combating conceptual biases, paving the way for more reliable and fair language understanding systems.
comment: Accepted at the Conference on Empirical Methods in Natural Language Processing (EMNLP 2025)
♻ ☆ SurGBSA: Learning Representations From Molecular Dynamics Simulations
Self-supervised pretraining from static structures of drug-like compounds and proteins enable powerful learned feature representations. Learned features demonstrate state of the art performance on a range of predictive tasks including molecular properties, structure generation, and protein-ligand interactions. The majority of approaches are limited by their use of static structures and it remains an open question, how best to use atomistic molecular dynamics (MD) simulations to develop more generalized models to improve prediction accuracy for novel molecular structures. We present SURrogate mmGBSA (SurGBSA) as a new modeling approach for MD-based representation learning, which learns a surrogate function of the Molecular Mechanics Generalized Born Surface Area (MMGBSA). We show for the first time the benefits of physics-informed pre-training to train a surrogate MMGBSA model on a collection of over 1.4 million 3D trajectories collected from MD simulations of the CASF-2016 benchmark. SurGBSA demonstrates a dramatic 27,927x speedup versus a traditional physics-based single-point MMGBSA calculation while nearly matching single-point MMGBSA accuracy on the challenging pose ranking problem for identification of the correct top pose (-0.4% difference). Our work advances the development of molecular foundation models by showing model improvements when training on MD simulations. Models, code and training data are made publicly available.
♻ ☆ To Theoretically Understand Transformer-Based In-Context Learning for Optimizing CSMA
The binary exponential backoff scheme is widely used in WiFi 7 and still incurs poor throughput performance under dynamic channel environments. Recent model-based approaches (e.g., non-persistent and $p$-persistent CSMA) simply optimize backoff strategies under a known and fixed node density, still leading to a large throughput loss due to inaccurate node density estimation. This paper is the first to propose LLM transformer-based in-context learning (ICL) theory for optimizing channel access. We design a transformer-based ICL optimizer to pre-collect collision-threshold data examples and a query collision case. They are constructed as a prompt as the input for the transformer to learn the pattern, which then generates a predicted contention window threshold (CWT). To train the transformer for effective ICL, we develop an efficient algorithm and guarantee a near-optimal CWT prediction within limited training steps. As it may be hard to gather perfect data examples for ICL in practice, we further extend to allow erroneous data input in the prompt. We prove that our optimizer maintains minimal prediction and throughput deviations from the optimal values. Experimental results on NS-3 further demonstrate our approach's fast convergence and near-optimal throughput over existing model-based and DRL-based approaches under unknown node densities.
♻ ☆ Examining Different Research Communities: Authorship Network
Google Scholar is one of the top search engines to access research articles across multiple disciplines for scholarly literature. Google scholar advance search option gives the privilege to extract articles based on phrases, publishers name, authors name, time duration etc. In this work, we collected Google Scholar data (2000-2021) for two different research domains in computer science: Data Mining and Software Engineering. The scholar database resources are powerful for network analysis, data mining, and identify links between authors via authorship network. We examined coauthor-ship network for each domain and studied their network structure. Extensive experiments are performed to analyze publications trend and identifying influential authors and affiliated organizations for each domain. The network analysis shows that the networks features are distinct from one another and exhibit small communities within the influential authors of a particular domain.
♻ ☆ Communication Compression for Distributed Learning without Control Variates
Distributed learning algorithms, such as the ones employed in Federated Learning (FL), require communication compression to reduce the cost of client uploads. The compression methods used in practice are often biased, making error feedback necessary both to achieve convergence under aggressive compression and to provide theoretical convergence guarantees. However, error feedback requires client-specific control variates, creating two key challenges: it violates privacy-preserving principles and demands stateful clients. In this paper, we propose Compressed Aggregate Feedback (CAFe), a novel distributed learning framework that allows highly compressible client updates by exploiting past aggregated updates, and does not require control variates. We consider Distributed Gradient Descent (DGD) as a representative algorithm and analytically prove CAFe's superiority to Distributed Compressed Gradient Descent (DCGD) with biased compression in the non-convex regime with bounded gradient dissimilarity. Experimental results confirm that CAFe outperforms existing distributed learning compression schemes.
comment: Revised format and minor exposition edits, results unchanged
♻ ☆ Missing Fine Details in Images: Last Seen in High Frequencies
Latent generative models have shown remarkable progress in high-fidelity image synthesis, typically using a two-stage training process that involves compressing images into latent embeddings via learned tokenizers in the first stage. The quality of generation strongly depends on how expressive and well-optimized these latent embeddings are. While various methods have been proposed to learn effective latent representations, generated images often lack realism, particularly in textured regions with sharp transitions, due to loss of fine details governed by high frequencies. We conduct a detailed frequency decomposition of existing state-of-the-art (SOTA) latent tokenizers and show that conventional objectives inherently prioritize low-frequency reconstruction, often at the expense of high-frequency fidelity. Our analysis reveals these latent tokenizers exhibit a bias toward low-frequency information during optimization, leading to over-smoothed outputs and visual artifacts that diminish perceptual quality. To address this, we propose a wavelet-based, frequency-aware variational autoencoder (FA-VAE) framework that explicitly decouples the optimization of low- and high-frequency components. This decoupling enables improved reconstruction of fine textures while preserving global structure. Moreover, we integrate our frequency-preserving latent embeddings into a SOTA latent diffusion model, resulting in sharper and more realistic image generation. Our approach bridges the fidelity gap in current latent tokenizers and emphasizes the importance of frequency-aware optimization for realistic image synthesis, with broader implications for applications in content creation, neural rendering, and medical imaging.
♻ ☆ Deep Reinforcement Learning for Inventory Networks: Toward Reliable Policy Optimization
We argue that inventory management presents unique opportunities for the reliable application of deep reinforcement learning (DRL). To enable this, we emphasize and test two complementary techniques. The first is Hindsight Differentiable Policy Optimization (HDPO), which uses pathwise gradients from offline counterfactual simulations to directly and efficiently optimize policy performance. Unlike standard policy gradient methods that rely on high-variance score-function estimators, HDPO computes gradients by differentiating through the known system dynamics. Via extensive benchmarking, we show that HDPO recovers near-optimal policies in settings with known or bounded optima, is more robust than variants of the REINFORCE algorithm, and significantly outperforms generalized newsvendor heuristics on problems using real time series data. Our second technique aligns neural policy architectures with the topology of the inventory network. We exploit Graph Neural Networks (GNNs) as a natural inductive bias for encoding supply chain structure, demonstrate that they can represent optimal and near-optimal policies in two theoretical settings, and empirically show that they reduce data requirements across six diverse inventory problems. A key obstacle to progress in this area is the lack of standardized benchmark problems. To address this gap, we open-source a suite of benchmark environments, along with our full codebase, to promote transparency and reproducibility. All resources are available at github.com/MatiasAlvo/Neural_inventory_control.
♻ ☆ Semantic Augmentation in Images using Language
Deep Learning models are incredibly data-hungry and require very large labeled datasets for supervised learning. As a consequence, these models often suffer from overfitting, limiting their ability to generalize to real-world examples. Recent advancements in diffusion models have enabled the generation of photorealistic images based on textual inputs. Leveraging the substantial datasets used to train these diffusion models, we propose a technique to utilize generated images to augment existing datasets. This paper explores various strategies for effective data augmentation to improve the out-of-domain generalization capabilities of deep learning models.
♻ ☆ Crack Path Prediction with Operator Learning using Discrete Particle System data Generation
Accurately modeling crack propagation is critical for predicting failure in engineering materials and structures, where small cracks can rapidly evolve and cause catastrophic damage. The interaction of cracks with discontinuities, such as holes, significantly affects crack deflection and arrest. Recent developments in discrete particle systems with multibody interactions based on constitutive behavior have demonstrated the ability to capture crack nucleation and evolution without relying on continuum assumptions. In this work, we use data from Constitutively Informed Particle Dynamics (CPD) simulations to train operator learning models, specifically Deep Operator Networks (DeepONets), which learn mappings between function spaces instead of finite-dimensional vectors. We explore two DeepONet variants: vanilla and Fusion DeepONet, for predicting time-evolving crack propagation in specimens with varying geometries. Three representative cases are studied: (i) varying notch height without active fracture; and (ii) and (iii) combinations of notch height and hole radius where dynamic fracture occurs on irregular discrete meshes. The models are trained using geometric inputs in the branch network and spatial-temporal coordinates in the trunk network. Results show that Fusion DeepONet consistently outperforms the vanilla variant, with more accurate predictions especially in non-fracturing cases. Fracture-driven scenarios involving displacement and crack evolution remain more challenging. These findings highlight the potential of Fusion DeepONet to generalize across complex, geometry-varying, and time-dependent crack propagation phenomena.
comment: 22 pages, 14 figures